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Abstract. A multiresolution analysis is defined in a class of locally compact abelian
groups G. It is shown that the spaces of integrable functions Lp(G) and the complex
Radon measures M(G) admit a simple characterization in terms of this multiresolution
analysis.
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1. Introduction

One of the most fruitful ideas, both in theory and applications, in recent studies
on harmonic analysis is the notion of multiresolution approximation. The concept

is described by Y. Meyer [11]: “The idea of a multiresolution approximation enables
us to combine analysis in the space variable with analysis in the frequence vari-

able, while satisfying Heisenberg’s uncertainty principle. To be more precise, it is
a question of approximating a general function f by a sequence of simple functions

fn.” So far multiresolution approximations have been mostly studied in the Euclid-
ean n-dimensional space [10, 11], but the concept may be extended to other types

of locally compact abelian (LCA) groups [7, 9] and the functions defined in them,
which often describe important notions in physics and engineering; thus the poten-

tial applicability of this extension is considerable. We will show that the spaces of
integrable functions Lp(G) and complex Radon measuresM(G) may be constructed

in terms of a multiresolution analysis. Specifically, we will consider groups with a
special structure:
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We will assume that G is a locally compact abelian group containing a sequence

(Gn)∞n=−∞ of subgroups with the following properties:
(i) Gn is open and compact;

(ii) Gn+1 ⊂ Gn;

(iii)
⋃

Gn = G;

(iv)
⋂

Gn = {0}.
As a matter of fact property iv) could be replaced by

(iv′) (Gn)∞n=−∞ is a base of neighbourhoods at 0.
Since Gn is an open and compact subgroup, the quotient group Gn+1/Gn is finite

and hence G/Gn is countable. We denote by Gn,j the cosets of Gn. Let H = Ĝ be
the dual group of G and Hn = G⊥

n the annihilator of Gn in H . Since Gn is open, the

quotient group G/Gn is discrete and its dual group Hn is compact; in a similar way,
the compactness of Gn implies that Ĝ/Hn is a discrete group and it follows that Hn

is open. It is easy to prove that the sequence (Hn)∞n=−∞ is increasing (Hn ⊂ Hn+1),⋂
Hn = {0} and ⋃

Hn = H , which means that the dual group H has also a suitable

family of compact open subgroups. For further details about these groups, see [3].

Going back to the idea of multiresolution approximation, in our case the func-
tions fn approaching f will have the two features of simplicity and regularity in

the following sense: their simplicity comes from the fact that they are completely
determined when sampled on a fundamental domain of G/Gn. The regularity of the

functions fn corresponds to the fact that their Fourier transforms f̂n are supported
by the compacts Hn. We remark that the product of the Haar measures of Gn and

Hn is constant, reflecting the idea of the uncertainty principle.

Two examples are specially important:

1. The group G defined by

G =
0∏

−∞
(�/aj�)×

∞⊕
1

(�/aj�),

the product of a compact product and a discrete direct sum, where (ai)∞i=−∞ is a
sequence of integers with ai � 2. The group operation is performed coordinatewise,
and the topology is the product topology.

For n ∈ �, let Gn be the subgroup

Gn = {(xj)j∈�∈ G : xj = 0 for j > n}.

The family {Gn} is an increasing sequence of open and compact subgroups coveringG

that is a base of neighbourhoods at 0.

860



When ai = 2 for all i, it is possible to identify G with [0,∞) as a measure space
using the map | | : G → [0,∞) given by

x = (xj)j∈� �→ |x| =
∑
j∈�

xj2j.

This induces the Haar measure on G. The subgroup G0 is the Cantor dyadic group;
questions of a measure-theoretic character concerning Walsh series on [0, 1] are the

same as the corresponding questions about Fourier series on G0.

2. The group Ωa of the a-adic numbers.

Let a = (an)n∈� be a sequence of positive integers, where each an is greater than

or equal to 2. Consider the Cartesian product
∏
n
{0, 1, . . . , an − 1}. Let G = Ωa be

the set of all x = (xn) in this space such that xn is 0 for all n > n0, where n0 is an

integer that depends upon x.

For x = (xn), y = (yn) in Ωa, let z = (zn) be defined as follows. Suppose

that xm0 �= 0 and xn = 0 for n > m0, and yn0 �= 0 and yn = 0 for n > n0.
Then let zn = 0 for n > p0 = min(m0, n0). Write xp0 + yp0 = tp0ap0 + zp0 , where

zp0 ∈ {0, 1, . . . , ap0 − 1} and tp0 is an integer. Suppose that zp0 , zp0−1, . . . , zk and
tp0 , tp0−1, . . . , tk have been defined. Then write xk−1+ yk−1+ tk = tk−1ak−1+ zk−1,
where zk−1 ∈ {0, 1, . . . , ak−1 − 1} and tk−1 is an integer. This defines by induction
a sequence z = (zn) in Ωa, and we set x+ y = z. With the operation + defined in

this way, the set Ωa is an Abelian group.

For n ∈ �, let Λn be the set defined by

Λn = {(xj)j∈�∈ G : xj = 0 for all j > n}.

The sets {Λk} define a topology on Ωa which makes it an LCA group having the
desired properties. See [5] for the development of harmonic analysis on these groups.

Applications of groups of this type can be found in [4], [12].

2. A multiresolution analysis of L2(G)

In the following let m be a Haar measure on G and Lp(G) the spaces obtained

with this measure.

A complex function f defined on G is Gn-periodic if

f(x+ y) = f(x) for all x ∈ G, y ∈ Gn.
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We denote by Pn the set of the Gn-periodic functions. A function f in Pn is constant

on the cosets Gn,j , and we can write

f =
∑

j

ajχGn,j ,

where χGn,j is the characteristic function of Gn,j . It is easy to see that (Pn)∞n=−∞ is
an increasing sequence of linear subspaces of infinite dimension in the space Cu(G)
of uniformly continuous functions on G. If P = ⋃

n
Pn is the set of Gn-periodic

functions for some n, the Stone-Weierstrass theorem asserts that P ∩ Cc(G) is dense
in C0(G) with the supremum norm. Hence, the space P ∩ Lp(G) is dense in Lp(G)

for 1 � p < ∞.
Let us now consider the case p = 2. For n ∈ �, let Vn denote the linear subspace

of Gn-periodic functions in L2(G), i.e.,

Vn = Pn ∩ L2(G).

The family {Vn}∞n=−∞ is a multiresolution analysis (MRA) of L2(G); this means
that it satisfies the following properties:
(MR1) Vn is a closed linear subspace of L2(G);
(MR2) Vn ⊂ Vn+1;
(MR3)

⋃
n

Vn is dense in L2(G);
(MR4)

⋂
n

Vn = {0}.

Some remarks are called for:

1. The family of functions {ϕn,j}j, where

ϕn,j =
1

m(Gn)
χGn,j ,

is an orthogonal basis of Vn.
2. If we denote by ϕn the function

ϕn =
1

m(Gn)
χGn ,

the family {ϕn,j}j is the set of all functions obtained by translating ϕn. Hence the
subspaces Vn are translation invariant.

3. For the locally compact Cantor group, the Haar wavelet is constructed from
this MRA ([7]). In general, we can expect to obtain a construction of wavelets only

on groups where a dilation operator has been defined (as, for instance, in [7] and
[9]).
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4. Non-existence of a dilation operator has another consequence: we have not a

unique scaling function, but scaling functions ϕn depending on the level. Certain
“cascade” conditions give the change of scale in our case.
5. Finally we note that Vn can also be defined in the following way:

Vn = {f ∈ L2(G) : supp f̂ ⊂ Hn}.

In a certain sense, our multiresolution analysis is the only one possible: if we did not
have a countable subgroup playing the role of the integer numbers in the real line

(in the locally compact Cantor group, D = {(xj)j∈� ∈ G : xj = 0 for j � 0} plays
this role), we ought to work with closed translation invariant linear subspaces V ,

i.e. subspaces given by V̂ = χEL2(H), where E is a Borel measurable subset of H [8].

If f ∈ L2(G) and we define

αf (n, j) = 〈f, ϕn,j〉 = 1
m(Gn)

∫
Gn,j

f(x) dm(x),

the function

Snf =
∑

j

αf (n, j)χGn,j = m(Gn)
∑

j

αf (n, j)ϕn,j

is the orthogonal projection of f onto Vn. Note that if f is Gn-periodic, the coefficient

αf (n, j) is the value that f takes in Gn,j : indeed, for x ∈ Gn,j ,

αf (n, j) =
1

m(Gn)

∫
Gn,j

f(y) dm(y) =
1

m(Gn)
f(x)m(Gn,j) = f(x).

The numbers αf (n, j) so defined satisfy the following cascade conditions: if r � s,

then

αf (s, k) =
m(Gr)
m(Gs)

∑
j : Gr,j⊂Gs,k

αf (r, j).

The properties of the functions ϕn enable us to extend the multiresolution approx-
imation Vn of L2(G) to other functions spaces. We note that αf (n, j) is perfectly

defined if f ∈ Lp(G), 1 � p � ∞ (in fact, it would be enough if f were a locally
integrable function).

Two questions arise in a natural way. First, is it possible to characterize the
spaces Lp(G) by controlling the size of the coefficients αf (n, j)? Second, does the
corresponding moment problem have a solution, i.e., if α = {α(n, j)} is a family of
complex numbers, can we find f ∈ Lp(G) such that

〈f, ϕn,j〉 = α(n, j)?
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3. The spaces Lp(G)

Let f be a function of Lp(G) with 1 � p � ∞. We define

αf (n, j) = 〈f, ϕn,j〉 = 1
m(Gn)

∫
Gn,j

f(x) dm(x).

The first point to notice is that for a Gn-periodic function f , the norm ‖f‖p is
easy to calculate in terms of αf (n, j).

Lema 3.1. Let p be a real number, 1 � p � ∞. If f ∈ Pn ∩ Lp(G), then

(1) ‖f‖p =




(
m(Gn)

∑
j

|αf (n, j)|p
)1/p

, if 1 � p < ∞;

sup
j

|αf (n, j)|, if p =∞.

This fact will allow us to identify Lp(G) with a space of families {α(n, j)} of
complex numbers. The last remark in the previous section and Lemma 3.1 take us

to the following definition:

Definition 3.2. An infinite tree is a family α = {α(n, j)} of complex numbers
satisfying the cascade conditions

(2) α(s, k) =
m(Gr)
m(Gs)

∑
j : Gr,j⊂Gs,k

α(r, j) for r � s.

The set of infinite trees with pointwise operations is a linear space.

Lema 3.3. Let p be a real number, 1 � p < ∞, and f ∈ Lp(G). Then
αf = {αf (n, j)} is an infinite tree and

(3) ‖f‖p = sup
n∈�

(
m(Gn)

∑
j

|αf (n, j)|p
)1/p

.

�����. If r � s, the equation

χGs,k
=

∑
j : Gr,j⊂Gs,k

χGr,j

gives, after some easy calculations, the cascade conditions (2).
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To show (3), we define

(4) Snf =
∑

j

αf (n, j)χGn,j .

We note that Snf = f ∗ϕn. Since {ϕn}∞n=−∞ is an approximation of unity, we have

‖Snf‖p � ‖f‖p,(5)

lim
n→∞ ‖Snf − f‖p = 0.(6)

By Lemma 3.1,

‖f‖p = sup
n∈�

‖Snf‖p = sup
n∈�

(
m(Gn)

∑
j

|αf (n, j)|p
)1/p

.

�

Surprisingly, for 1 < p < ∞ these conditions are also sufficient to characterize
Lp(G) and we do not need any “convergence” condition that, however, is necessary

for p = 1. We state this fact as follows:

Theorem 3.4. Let p be a real number, 1 < p < ∞. If f ∈ Lp(G), then the
family αf = {αf(n, j)} is an infinite tree and

(7) ‖f‖p = sup
n∈�

(
m(Gn)

∑
j

|αf (n, j)|p
)1/p

.

Conversely, if α = {α(n, j)} is an infinite tree and

(8) sup
n∈�

(
m(Gn)

∑
j

|α(n, j)|p
)1/p

< ∞,

there exists a unique f ∈ Lp(G) such that

(9) α(n, j) = 〈f, ϕn,j〉.

�����. We have proved the first part of the statement in Lemma 3.3. Now

we will prove the second part. Assume that α = {α(n, j)} is an infinite tree that
satisfies (8). We consider the sequence of functions (fn)∞n=−∞ defined by

(10) fn =
∑

j

α(n, j)χGn,j .
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By Lemma 3.1 and (8), the sequence (fn)∞n=−∞ is bounded in Lp(G). Applying the

Alaoglu theorem ([2]), there exists a subsequence (fnl
)∞l=−∞ weakly convergent to a

function f in Lp(G). Then,

αf (n, k) = 〈f, ϕn,k〉 = lim
l→∞

〈fnl
, ϕn,k〉 = lim

l→∞
m(Gnl

)
m(Gn)

∑
j : Gnl,j⊂Gn,k

α(nl, j) = α(n, k),

which shows (9). The uniqueness is a consequence of (7): indeed, let g be another
function of Lp(G) such that α(n, j) = 〈g, ϕn,j〉. Then αf−g(n, j) = 0 for all n, j.

Applying (7), we have ‖f − g‖p = 0. �

The last proof does not work in L1(G), since this space is not a dual one. An
example shows that condition (8) is not sufficient for p = 1: indeed, the family
α = {α(n, j)} given by

α(n, j) =

{
1/m(Gn) if j = 0,

0 if j �= 0,

is an infinite tree that satisfies (8) for p = 1, and the sequence defined by (10) is

the sequence of the scaling functions (ϕn)∞n=−∞ that converges weakly to the Dirac
measure δ0. We must add a convergence condition.

Theorem 3.5. If f ∈ L1(G), then the family αf = {αf (n, j)} is an infinite tree
that satisfies the following two properties:

(11) ‖f‖1 = sup
n∈�

(
m(Gn)

∑
j

|αf (n, j)|
)

,

and for every ε > 0 there exists N ∈ � such that

(12)

(
m(Gr)

∑
k

∑
j : Gr,j⊂Gs,k

|αf (r, j)− αf (s, k)|
)

< ε, r > s � N.

Conversely, if α = {α(n, j)} is an infinite tree such that

(13) sup
n∈�

(
m(Gn)

∑
j

|α(n, j)|
)

< ∞,

and for every ε > 0 there exists N ∈ � such that

(14)

(
m(Gr)

∑
k

∑
j : Gr,j⊂Gs,k

|α(r, j)− α(s, k)|
)

< ε, r > s � N,
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then there exists a unique f ∈ L1(G) such that

(15) α(n, j) = 〈f, ϕn,j〉.

�����. It is enough to note that (14) is equivalent to the Cauchy condition
in L1(G) for the sequence (fn)∞n=−∞ defined by (10); now we repeat the proof of
Theorem 3.4. �

What happens in the case p = ∞? The key to this question is the fact that,
in general, the sequence (Snf)∞n=−∞ defined by (4) need not converge in L∞(G),
because its limit should be a bounded uniformly continuous function on G.

Theorem 3.6. If f ∈ L∞(G), then the family αf = {αf (n, j)} is an infinite tree
and

(16) ‖f‖∞ = sup
n∈�

(
sup

j
|αf (n, j)|).

Conversely, if α = {α(n, j)} is an infinite tree and

(17) sup
n∈�

(
sup

j
|α(n, j)|) < ∞,

then there exists a unique f ∈ L∞(G) such that

(18) α(n, j) = 〈f, ϕn,j〉.

�����. If f ∈ L∞(G), as in the proof of Lemma 3.3, then

sup
j

|α(n, j)| = ‖Snf‖∞ � ‖f∞‖.

Now, let α = {α(n, j)} be an infinite tree such that

sup
n∈�

(
sup

j
|α(n, j)|) < ∞.

If (fn)∞n=−∞ is the sequence of functions in L∞(G) defined by (10) in the proof of
Theorem 3.4, we note the following: for every g in L1, the sequence

(〈g, fn〉
)∞

n=−∞ =
(

m(Gn)
∑

j

α(n, j)αg(n, j)

)∞

n=−∞
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is a Cauchy sequence of complex numbers. Indeed, if r, s ∈ �, r � s, we have

∣∣∣∣m(Gr)
∑

j

α(r, j)αg(r, j)− m(Gs)
∑

k

α(s, k)αg(s, k)

∣∣∣∣
=

∣∣∣∣m(Gr)
∑
j∈�r

α(r, j)αg(r, j)− m(Gs)
∑

k

(
m(Gr)
m(Gs)

∑
j : Gr,j⊂Gs,k

α(r, j)

)
αg(s, k)

∣∣∣∣
=

∣∣∣∣m(Gr)
∑

j

α(r, j)αg(r, j)− m(Gr)
∑

k

( ∑
j : Gr,j⊂Gs,k

α(r, j)

)
αg(s, k)

∣∣∣∣
� m(Gr)

∑
k

∑
j : Gr,j⊂Gs,k

|α(r, j)| |αg(r, j)− αg(s, k)|

�
(

m(Gr)
∑

k

∑
j : Gr,j⊂Gs,k

|αg(s, k)− αg(r, j)|
)
sup

j
|α(r, j)|,

and we can apply Theorem 3.5 and (17). In particular, if g is Gn-periodic, the limit
is

m(Gn)
∑

j

α(n, j)αg(n, j).

Hence, we can define a map ϕ from L1(G) to � by

ϕ(g) = lim
n→∞ m(Gn)

∑
j

α(n, j)αg(n, j).

Since ϕ is an element of the dual space of L1(G), there exists a unique function
f ∈ L∞(G) such that

ϕ(g) =
∫

G

gf dm, g ∈ L1(G).

If we consider the function g = χGn,j , then

∫
Gn,j

f dm = ϕ(χGn,j ) = m(Gn)α(n, j).

Moreover,

‖f‖∞ = ‖ϕ‖ � sup
n∈�

‖fn‖∞ = sup
n∈�

(
sup

j
|α(n, j)|).

�

This proof could also be made by a compactness argument, but we think it worth-

while to obtain this result using only that L∞(G) is the dual space of L1(G) and
Theorem 3.5.
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Remark. If Bn is the smallest σ-algebra containing {Gn,j}j , it is interesting to

note that the function Snf defined by (4) is the conditional expectation of f given Bn.
On the other hand, if α is an infinite tree, the family of functions (fα

n )
∞
n=−∞ defined

by (10) is a martingale relative to Bn (see, for instance, [1]).

4. Radon measures on G

In the previous section, we have seen that, in general, infinite trees α with

sup
n∈�

(
m(Gn)

∑
j

|α(n, j)|
)

< ∞

do not correspond to functions of L1(G). It is natural to ask if some special space is
obtained when we consider infinite trees under this sole condition. We will see that

this is the space M(G) of the complex Radon measures defined on G.
Let µ be an element of M(G). We define

(19) αµ(n, j) = 〈µ, ϕn,j〉 =
∫

G

ϕn,j dµ.

Lema 4.1. Let µ be an element of M(G). Then the family αµ = {αµ(n, j)} is
an infinite tree and

(20) sup
n∈�

(
m(Gn)

∑
j

|αµ(n, j)|
)

� ‖µ‖.

�����. If µ ∈ M(G), it is straigthforward to show that αµ is an infinite tree,
and, noting that

µ(Gn,j) = m(Gn)αµ(n, j),

we have from the definition of total variation of µ that

m(Gn)
∑

j

|αµ(n, j)| � ‖µ‖, n ∈ �.

�

Theorem 4.2. Let µ be an element of M(G). Then the family αµ = {αµ(n, j)}
is an infinite tree and

(21) ‖µ‖ = sup
n∈�

(
m(Gn)

∑
j

|αµ(n, j)|
)

.
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Conversely, if α = {α(n, j)} is an infinite tree and

(22) sup
n∈�

(
m(Gn)

∑
j

|α(n, j)|
)

< ∞,

there exists a unique µ ∈ M(G) such that

(23) α(n, j) = 〈µ, ϕn,j〉.

�����. Since M(G) is the dual of the space C0(G) of continuous functions on
G which vanish at infinity, we can repeat the proof of Theorem 3.4. �

Finally we remark that certain properties of a measure µ of M(G) are reflected
in its infinite tree αµ = {αµ(n, j)}. For instance, Theorem 3.5 characterizes the
absolutely continuous measures with respect to the Haar measure m. We give some

others examples:

Proposition 4.3. Let µ ∈ M(G). Then the limit

h(x) = lim
n→∞αµ(n, j(x)),

exists almost everywhere (where j(x) is the unique index such that x ∈ Gn,j(x)).

Moreover, h is the Radon-Nikodym derivative dµ/dm of µ with respect to the Haar
measure m.

�����. This is a consequence of Possel’s theorem ([13], pp. 215–216) applied

to the net H =
∞⋃

n=−∞
Hn, where Hn is the family of cosets of Gn. �

Corolary 4.4. Let µ ∈ M(G). Then µ is singular to m if, and only if,

lim
n→∞αµ(n, j(x)) = 0 almost everywhere.

Proposition 4.5. Let µ ∈ M(G). Then µ is diffuse (i.e. µ({x}) = 0 for all
x ∈ G) if and only if

lim
n→∞ m(Gn)αµ(n, j(x)) = 0

uniformly on every compact of G.

�����. It is enough to prove the proposition for nonnegative measures, as the

Jordan components of a diffuse measure are also diffuse. Consider functions

gn(x) = m(Gn)
∑

j

αµ(n, j)χGn,j , x ∈ G.

870



Then (gn)∞n=−∞ is a decreasing sequence of continuous functions. Since µ is diffuse,

(gn(x))∞n=−∞ converges to zero for every x ∈ G:

gn(x) = µ(Gn,j(x))→ µ({x}) = 0 as n → ∞.

Now, by Dini’s theorem, the convergence is uniform on every compact of G. �
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