Section C
 INVESTIGAIIONS OE HIGHER AMMOSPHERE

Секцин म

ИССЛЕДОВАЕИЕ BEPXHE IV ATMOCゅEPN

Density Soale Height
Determined from the Motion of
Dash 2 Satellite by_{y}
X.E. Helali and M.Y. Tawadraus Felwan Observatory of Astronomy and Geophysics
Ielwan-Cairo- Hoypt

Abstract:

The density scale hejeht E is detormined at low as well as high altitudes using the equation of change rate of the orbital period of Dash 2 satellite. The computed values of H are compared with those statistical values obtained by Jacchian Jacchia's values of H are given up to altitude 2500 km . We extend Jacchia's values of \mathbb{H} up to altitude 3110.7 km since our values of H are computed from altitude 315.7 km to altitude 3210.7 km . Finally a comparison between our values and Jacchiais values of H at different altitudes and different MOD are given. For higher altitudes, our values of H are much greater than Jacchia's values while at smaller altitudes, our values are approximately the same as Jacchia's values.

1. Introduction

The problem of the determination of the density scale height. H has been studied by many authors. King-Hele /1963/ stated two metnods for determining H; the first: knowjng the perigee distance and eccentricity e of the satellite orbit for two different dates, we can compute the mean value of H during the time interval between the two dates; the second for finding firom the changes in the orbital period for small eccentricity, and the equation for this purpose applied for $C<3$ with e <0.02, where $C=$ ae/H (a is the
semi-major axis of the orbit $)$ and $H=-\rho /(d \rho / d z)$, were ρ is the density of the upper atmosphere and z is the altitude. However, the 44 average day/night values of H obtained $b_{\text {F }}$ King-Hele were up to about 450 km altitude. His conciusion is that the increase of I with height becomes much less rapid at heichts above 350 km .

> 2. - The data used

The present paper deals with the determination of fior Iow as well as high altitudes above the Earth's surface for some selected MJD between 38397 \& 41045 , which correspond. to altitudes from 3.454 to 300 km ; using the equation of the rate of change of the orbital period derived by Stern (1960), under the effect of air drag only. The rate of change of the period \dot{p} is related to a, e of the satellite's orbit as well as to p_{p} density at perigee, the cross-sectional area to mass ratio of the satellite (A / in), and the air dras coefficient C_{D}. For this purpose we used the data of the balloon satellite 1963 30D (Dash 2), which was derived by Slowey (1974). Slowey computed densities using J 71 model to represent the variation in density around the orbit, improving the $J 71$ model for use in the beginning interval (MJD 38397 to 38814) which corresponds to altitudes from 3464 to 3.112 km . Also the end interval beginning with MJD 40237 to 41045, which corresponds to altitudes from I 811.4 to 300 km during five time periods, each seperated from the next by a period when the orbit was partly in shadow.

We selected 103 different WJD distributed, as much as possible, over the mentioned two intervals for computing using the equation of \dot{P}. Of the $103 \mathrm{MJD}, 20 \mathrm{MJD}$
F/MJD $=J D-2400000.5$
lie in the beginning intorval where the perigee height is very large and the remaining MJD lie in the end interval.

3 - Determination of H from the rate of change of the orbital period

The rate of change of the period \dot{p} for an artificial satellite, given by Sterne (1960), as
$\dot{p}=-3 C_{D}(A / m)$ a $x \rho_{p}\left\{e^{-c}\left(1+\frac{3}{4} e^{2}+c e\left(1+\frac{3}{8} e^{2}\right)+\right.\right.$
$+\frac{1}{4} c^{2}\left(1+\frac{9}{8} e^{2}\right)+c^{3}(e / 8)\left(1+\frac{5}{12} e^{2}\right)+(1 / 64) c^{4}(1+$
$\left.\left.+-\frac{1}{4} e^{2}+\cdots \cdot\right)\right\}$
We used the above equation when c was small ($c<2$), and o very much smaller (e<0.07).

For $c>2$ and e larger than 0.07, we used the equation of Sterne (1960)

$$
\begin{align*}
& \dot{P}=-30_{D}(A / m) \text { a } \rho_{p}(1+e)^{3 / 2} /(1-e)^{1 / 2}(\pi / 2 c)^{1 / 2}\left(1+\frac{1}{80} f_{1}+\right. \\
& \left.+\frac{9}{128 c^{2} f_{2}}+\cdots\right) \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& f_{1}(e)=\left(1-8 e+3 e^{2}\right) /\left(1-e^{2}\right) \text { and } \\
& f_{2}(e)=\left(3-16 e^{2}+16 e^{3}-5 e^{4}\right) / 3\left(1-e^{2}\right)^{2}
\end{aligned}
$$

Equations (1) \& (2) can be solved separately, knowing the values of $a, e,(A / m), C_{D}, \rho_{D}$, and \dot{P}, to find c, and hence H from $H=a e / c$. However, because e and c are small quantities, we retained in equation (1) powers of c up to c^{4} only. It should be noted that equation (I) is suitable for large
perigee distances in the beginning interval, while the second equation is applied to smaller perisee distances in the end interval.

Now the part $\{\cdots\}$ between braces in equation (I) depends on c; let it be $K(c)$, then equation (I) is writen in the form $\dot{p}=-3 C_{D}(A / m)$ a $r \rho_{p} K(c)$, from which we can compute $K(c)$ which, in turn, is solvable for c, since all other parameteres are regarded to be known. Therefore $H=a e / c$ is the value of the density scale height computed for given MJD and the corresponaing altitude.

Equations (1) \& (2) are derived without taking into acco~ unt the atmospheric rotation and the Earth's flattening. The rotation effect, as pointed out by Sterne (1960), can alter the density deduced from \dot{P} by as much as one part in ten. Therefore the negligence of the effect of rotation of the atmosphere is to affect the computed values of H by as much as one part in 500 only.

Now, we amend equation (2) to permit computation of H in the following way:

$$
\begin{equation*}
\dot{P}=-3 C_{D}(A / m)(1+e)^{3 / 2} /(1-e)^{1 / 2} \text { a } \rho_{p}(\pi / 2)^{\frac{1}{2}} K(L) \tag{3}
\end{equation*}
$$

where $I=\left(1 / c^{I / 2}\right)$ and,
$K(I)=I+\frac{1}{8^{3}} I^{3} f_{1}+\frac{9}{128} I^{5} f_{2}$
We can obtain $K(I)$ from equation (3), as a, e, \dot{P}, C_{D}, A / m, and 9 p are all known, and then I from equation (4), and herice H from $H=$ ae $/ c$. It should be noted that \dot{p} used in fquations (1) \& (2) is that part of \dot{p}, which is related to drag force only. Also C_{D} is considered to be 3.6 for the beginning interval, 3 for the early portion of

Whe end intenval, and 2.2 at the last part of the end intenvar: A/m is.taken to be $3769 \mathrm{~cm}^{2} / \mathrm{m}$; SIowey (1974).

The semj-major aris a and density scale height H are measured in km, the density P ip is measured in gin/cm. We shall denote our densty scale height computed from either equation (2) or (2) by H_{g} and those statistical values of pressure scale beight given by Jacchia by H_{p}, while the density scale height F_{f} van be computed from values of H_{p}.

```
4-Computation of \(\mathrm{H}_{\rho}^{\prime}\) from \(\mathrm{H}_{\mathrm{p}}^{\prime}\)
```

Indeed, the values of scale height given by Jacchia (1970) are pressure scale height $H^{\prime} p$, and it is important to convert
them from pressure to density scale height to be able to compare our results of Ho with the corresponding values H_{p} at different altitudes. Thus if we assume that density ρ is an empinically determined function of altitude z in the form
$\rho=\rho_{p} \cdot e^{-\left(z-z_{0}\right) / H_{p}}$
where z_{0} is the altitude at perigee, Hy the density scale height, and i_{p} the density at perigee. We can compute the pressure $p\left(a y n / m^{2}\right)$ at different altitudes, using the ideal gas law, $D=\rho R T / u$; where R is the universal gas constant, μ is the mean molecular veight and I is the aosolute temperature, on using $p=$, RT ${ }_{n} / \mu_{0}$, where μ_{0} is the sea-level moleculen weight $28.960 \mathrm{gm}, \mathrm{R}$ equals 3.31439 Joules $/{ }^{O_{K}}$; T_{n} is a fictitous "molecular temperature" given physicaliy by $T_{n}=T\left(\mu_{6} / \omega\right)$. It is thus possible to compute the pressure p fof corresponding known values of ρ at different values of temperatures.

As the pressure p decreases with height, similar to that of the density, one can assume an exponential form for the pressure similar to equation (5). Mherefore, we can
write,
$\rho / \rho_{p}=e^{-\left(z-z_{0}\right) / H_{p}}$, and $D / P_{p}=e^{-\left(z-z_{0}\right) / H_{p} \text {, where }}$
H_{ρ} and H_{p} are the density and pressure scale height respectively, and P_{p} is the pressure at perigee. Taking in of both sides of the two above equations, we can witite
$\ln \left(P / P_{p}\right) / \ln \left(\rho / \rho_{p}\right)=H_{\rho} / H_{p}$, so H_{ρ} may be computed from volues of H_{p} given by Jacchia /l970) if we kno: the pressure, density, teraperature, and altitude.

$$
5 \text { - Eigures }
$$

We have plotted four figures to represent the altitudes on the x-axis, with the density scale heights F_{ρ} and H_{ρ} on the J-axis. It should be noted that we extend Jacchia's values of H_{ρ}^{\prime} for altitudes greater than 2500 km ; values of H_{g} and H_{ρ}^{-}are computed at the same altitudes.

Fig (I) shows that H_{f} values are much greater than H_{ρ} values, maybe due to the different values of the density used by Slowey and Jacchia. Altitudes are ranging fro: $=064$ to 3110.7 km and corresponding to MUD from 38760 to 35810 . We nuted from Fig(I) that H_{ρ} values are increasing with decreasing altitude, while H_{ρ}^{*} values are approximately constant. H values in Fig (2) are greater than H_{3}, values for altitudes between 3,800 and $1,200 \mathrm{~km}$ and for NJD from 40240 to 40608.

Fig (3) indicates that H_{ρ} values are slightly greater than H_{ρ}^{\prime} values for altitudes from 983.0 to 895.9 km , except for aititude 983 km , where $H_{\rho}=H_{\rho}=230 \mathrm{~km}$, and approximately the same from altitudes 696.4 to 600.5 km . These aititudes correspond to MJD from 40720 to 40894.

Fig (4), gives an clear picture for changing H_{ρ} and H_{S} at altitudes from 316 to 600 km and MJD from 40850 to 41000. It also seems that H_{ρ} values oscillate around He values with differences between them ranging from 0 to 10 km .

Fig (I) : H_{ρ} and H_{ρ}^{\prime} with altitude. H_{ρ} values are increasing with decreasing altitude, while H_{ρ}^{\prime} values inaicate approximately constant values for different altitudes.

Fig (2) : H_{ρ} and H_{ρ}^{\prime} values with altitude. H_{ρ} values are greater than H_{p}^{*} for the same altitudes.

Fig (3): H_{ρ} and H_{ρ}° values with altitude H_{ρ} and H_{ρ}^{\prime} values are approximately the same for altitudes from 605 to 750 km , and H_{p} values are greater than H_{p}^{\prime} values for other altituans, except for altitude 983 km where they are equal.

Fig (4) : H_{ρ} \& H_{ρ}^{\prime} values with altitude. The differences between $H_{f} \& H_{\rho}^{\prime}$ values are small and ranging from 0 to 10 km .

$$
6 \text { - Conclusion }
$$

Our H_{f} values are in good agreament with those values of Jacchia H_{ρ} for altitudes ranging from about 316 to 700 km with an arithmetic mean percentage 5% of the differences between $\mathrm{F}_{\rho} \& H_{\rho}^{\prime}$ with respect to H_{ρ}, while for altitudes from 700 to $1,760 \mathrm{~km}$, Hp values are greater than H_{ρ}^{\prime} with an arithmetic mean percentage about 14% for the mentioned differences. For altitudes greater than 3000 km , we obtained very great values for H_{ρ} compared with those of H_{p}. Nevertheless, the inaccurate values of the density of upper atmosphere for high altitudes may be the reason for such great differences between H_{ρ} and E' values.

7- Acknowledgment
It is a pleasure to thank Prof. Dr. I. Sehnal, for his valuable discussions when we were at Ondrejov Observatory near Prague last Fear, September, 1983 :

Jacchia,I.G. (I970), "New Static Hodels of the Themosrame and Exosphere with Empirical Temperature Profiles". Smithsonian Astrophys. Obs. Spec. Rep. No. 313.

King-Hele.D.G. (I963), "The Contraction of Satellitie Orbit under the Action of Air Drag, Allowing for the Variation of Scale Height with Altitude". Dynamics of Satellite, Springer-Verlaß, Berlin.

Sterne, E.P. (1960), "Atmospheric Drag on Moo-Spherical A.E.S". Space science Review, Rep. No. 65.

Slowey, W.J. "Kadiation Pressure and Air Drag effects on the Orbit of the Balloon Satelilite 196330 D". Research in Space Science, Spec. Rep. No. 356. Smithsonian Institution, Astrophys. Obs. Cambridge, Massachusetts, (I974).

