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Abstract. We study some classes of summing operators between spaces of integrable
functions with respect to a vector measure in order to prove a factorization theorem for
1-summing operators between Banach spaces.
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1. Introduction

Let (Ω, Σ, µ) be a positive finite measure space, where Ω is a set, Σ is a σ-algebra of

subsets of Ω and µ is a finite positive measure. A set function m : Σ → X defined on

a Banach space X is called a vector measure whenever it is σ-additive. Throughout

this work λ will stand for a Rybakov’s control measure for m. Further references

about vector measure theory can be found in [5].

Integrability of scalar functions with respect to a vector measure was first studied

by Dunford, Bartle and Schwartz in [1]. Several years later, Lewis gave an equivalent

definition in [8]. He showed that a real λ-measurable function f is integrable with

respect tom if the following two conditions hold. The function f is 〈m, x∗〉-integrable

for every x∗ in the dual of X , X∗, where 〈m, x∗〉 is the scalar measure defined by

〈m, x∗〉(A) := 〈m(A), x∗〉 for A ∈ Σ. Moreover, for each set A in Σ there is a unique

elementmf (A) ∈ X such that 〈mf (A), x∗〉 =
∫

A
f d〈m, x∗〉 for every x∗ ∈ X∗. In this

casemf (A) corresponds to the integral of f over the set A with respect to the measure

m, and it is denoted by
∫

A
f dm. We denote by L1(m) the space of equivalence
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classes of (λ-a.e. equal) functions that are integrable with respect to m. The space

L1(m) endowed with the norm given by ‖f‖L1(m) := sup
x∗∈B(X∗)

∫

Ω |f | d|〈m, x∗〉| for

f ∈ L1(m) is a Banach function space over the measure space (Ω, Σ, λ) and the

norm is order continuous. The constant function χΩ is a weak order unit. These

spaces are particularly interesting because they represent a large class of Banach

lattices; G. Curbera proved in [4, Theorem 8] that every order continuous Banach

lattice X with weak order unit is lattice isomorphic and isometric to L1(m) for m

an X-valued vector measure. Further properties of these spaces can be found in [9]

For p = ∞, the space L∞(m) consists of the real valued functions that are Σ-

measurable andm-essentially bounded. When equipped with the essential supremum

norm ‖ · ‖L∞(m), L∞(m) is a Banach function space over (Ω, Σ, λ). Bounded Σ-

measurable functions are integrable with respect to m.

The aim of this article is to characterize the 1-summing operators as those that

factorize through a space of integrable functions with respect to a vector measure.

The operators that appear in the decomposition will have particular properties of

summability. We will begin by introducing a space of summable sequences in the

space L1(m), the space of m-r-summable sequences. This space is an intermediate

space between the classical spaces of strong and weakly summable sequences in Ba-

nach spaces and has been already studied in a more general setting in [2], [3]. The

reference for the study of classical spaces of summable sequences on Banach spaces is

[6]. As usual we will denote by ℓr(X) and ℓw
r (X) the spaces of strongly and weakly

summable X-valued sequences, respectively. The ideal of r-summing operators is

denoted by Πr, and we write πr(T ) for the norm of an operator T in the space of

r-summing operators. We use standard Banach space notation; if Y is a Banach

space, B(Y ) denotes its unit ball and Y ∗ its topological dual.

2. Definitions

Let Ψ: X × Y → Z be a bounded bilinear map and X, Y and Z Banach spaces.

In [3, Section 2.2] the author defines the space ℓΨ
r (X) of X-valued sequences (xn)n

so that (Ψ(xn, y))n is strongly r-summable in Z for every y ∈ B(Y ). This space is

endowed with a norm naturally defined by

(2.1) ‖(xn)n‖ℓΨ
r

(X) := sup{‖(Ψ(xn, y))n‖ℓr(Z) : y ∈ B(Y )}.

The space X is Ψ-normed whenever there is K > 0 such that

‖x‖X 6 K sup{‖Ψ(x, y)‖Z : y ∈ B(Y )}.
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The following proposition is proved in [2] for r = 1 and in [3] for r > 1.

Proposition 2.1. Let X be a Banach space, Ψ: X × Y → Z a bounded bilinear

map and 1 6 r < ∞.

i) X is Ψ-normed if and only if ℓr(X) ⊆ ℓΨ
r (X) ⊆ ℓw

r (X).

ii) If X is Ψ-normed then ℓB
r (X) is a Banach space when endowed with the norm

‖ · ‖ℓΦ
r
(X).

In order to study the sequences in L1(m), let Φ be the bilinear map defined by:

Φ: L1(m) × L∞(m) → X,

(f, g) 7→

∫

Ω

fg dm.

A sequence (fn)n ⊂ L1(m) is m-r-summable whenever for each g ∈ L∞(m), the

X-valued sequence (Φ(fn, g))n is strongly r-summable in X . In what follows we

denote by ℓm
r (L1(m)) the space of m-r-summable sequences in L1(m). Following the

previous definitions we have that a suitable norm is given by

(2.2) ‖(fn)‖ℓm

r
(L1(m)) := sup

{(

∑

n

∥

∥

∥

∥

∫

Ω

fng dm

∥

∥

∥

∥

r

X

)1/r

: g ∈ B(L∞(m))

}

.

By [9, Proposition 3.31 (i)] we have that the norm of f ∈ L1(m) can be computed

as

‖f‖L1(m) := sup
g∈B(L∞(m))

∥

∥

∥

∥

∫

Ω

fg dm

∥

∥

∥

∥

X

,

therefore the space L1(m) is Φ-normed. By Proposition 2.1 we conclude that

(ℓm
r (L1(m)), ‖ · ‖ℓm

r
(L1(m))) is a Banach space. Moreover, the following chain of

inclusions holds:

ℓr(L
1(m)) ⊆ ℓm

r (L1(m)) ⊆ ℓw
r (L1(m)).

In the following we will study those operators that transform m-r-summable se-

quences of (a closed subspace of) L1(m) into strongly r-summable sequences in a Ba-

nach space Y and also those that transform weakly r-summable sequences in Y into

m-r-summable ones into L1(m).

We say that T : L1(m) → Y is m-r-summing if there is a constant C > 0 such

that for every natural number n and regardless of the choice of functions f1, . . . , fn

in L1(m) we have

(2.3)

( n
∑

i=1

‖T (fi)‖
r
Y

)1/r

6 C sup
g∈B(L∞(m))

( n
∑

i=1

∥

∥

∥

∥

∫

Ω

fig dm

∥

∥

∥

∥

r

X

)1/r

.
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The least C for which the inequality (2.3) always holds is denoted by πm
r (T ). We

shall write Πm
r (L1(m), Y ) for the set of m-r-summing operators in L (L1(m), Y ).

We clearly have that Πm
r (L1(m), Y ) is a linear subspace of L (L1(m), Y ) and that

πm
r defines a norm in Πm

r (L1(m), Y ) with ‖T ‖ 6 πm
r (T ) for each T ∈ Πm

r (L1(m), Y ).

Remark 2.2. Let L be a closed subspace of L1(m). We say that T : L → Y is

m-r-summing if for every finite choice of functions f1, . . . , fn in L, inequality (2.3)

holds for some positive constant C.

Notice that for m a scalar measure the notion of m-r-summability coincides with

classical r-summability; for a general vector measurem the inclusion Πr(L
1(m), Y ) ⊂

Πm
r (L1(m), Y ) always holds.

In [6, p. 36] the authors proved that the weak norm of a sequence can be computed

by taking the supremum in a norming subset. Moreover, by [7] we know that the

set Γ := {〈Φ(·, g), x∗〉 : g ∈ B(L∞(m)), x∗ ∈ B(X∗)} ⊂ L1(m)∗ is norming. Then

it is easy to conclude that each bounded linear operator T : L1(m) → Y induces

a bounded linear map T̂ : (fn)n 7→ (T (fn))n between the spaces ℓm
r (L1(m)) and

ℓw
r (Y ).

The following result shows that m-r-summing operators are exactly those that

transform m-r-summable sequences in L1(m) into strongly r-summable ones in the

range Y . We present the proof for completeness.

Theorem 2.3. An operator T ∈ L (L1(m), Y ) is m-r-summing if and only if

T̂ (ℓm
r (L1(m))) ⊂ ℓr(Y ). Moreover, ‖T̂‖ = πm

r (T ).

P r o o f. Suppose first that T is m-r-summing. Then for each finite collection

f1, . . . , fk ∈ L1(m) we have

( k
∑

i=1

‖T (fi)‖
r
Y

)1/r

6 πm
r (T ) sup

g∈B(L∞(m))

( k
∑

i=1

∥

∥

∥

∥

∫

Ω

fig dm

∥

∥

∥

∥

r

X

)1/r

.

Take a sequence (fn)n ∈ ℓm
r (L1(m)). We claim that T̂ ((fn)n) ∈ ℓr(Y ), hence

‖T̂ ((fn)n)‖ℓr(Y ) = ‖(T (fn))n‖ℓr(Y ) = sup
k∈N

(

∑

n6k

‖T (fn)‖r
Y

)1/r

6 πm
r (T ) sup

k∈N

sup
g∈B(L∞(m))

(

∑

n6k

∥

∥

∥

∥

∫

Ω

fng dm

∥

∥

∥

∥

r

X

)1/r

= πm
r (T ) sup

g∈B(L∞(m))

( ∞
∑

n=1

∥

∥

∥

∥

∫

Ω

fng dm

∥

∥

∥

∥

r

X

)1/r

= πm
r (T )‖(fn)n‖ℓm

r
(L1(m)),

therefore ‖T̂‖ 6 πm
r (T ).
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We prove the converse implication by a closed graph argument. Suppose that

T̂ (ℓm
r (L1(m))) ⊂ ℓr(Y ). Since T̂ : ℓw

r (L1(m)) → ℓr(Y ) is continuous and the

ℓr(Y ) norm dominates the ℓw
r (Y ) norm we have that the corresponding operator

T̂ : ℓm
r (L1(m)) → ℓr(Y ) has closed graph and is bounded. Thus for a finite sequence

(fi)
k
i=1 ⊂ L1(m) we get

‖(T (fi))
k
i=1‖ℓr(Y ) 6 ‖T̂‖‖(fi)

n
i=1‖ℓm

r
(L1(m)).

Therefore T is m-r-summing and πm
r (T ) 6 ‖T̂‖. �

It is direct, as a consequence of the previous characterization, that the space of

m-r-summing operators endowed with their respective norms are Banach spaces.

Theorem 2.4. Let Y be a Banach space, and 1 6 r < ∞. The space of m-r-

summing operators, Πm
r (L1(m), Y ) endowed with the norm πm

r is a Banach space.

We say that an operator T : Y → L1(m) is weakly m-r-summing if there is a con-

stant C > 0 such that for every finite set of elements y1, . . . , yn ∈ Y ,

(2.4) sup
g∈B(L∞(m))

( n
∑

i=1

∥

∥

∥

∥

∫

Ω

T (yi)g dm

∥

∥

∥

∥

r)1/r

6 C sup
y∗∈B(Y ∗)

( n
∑

i=1

|〈yi, y
∗〉|r

)1/r

.

We write πw−m
r (T ) for the least constant such that the inequality above holds and

denote by Πw−m
r (Y, L1(m)) the space of weakly m-r-summing operators. Applying

arguments similar to those used in the proof of Theorem 2.3 we get that weakly m-

r-summing operators are exactly those that transform weakly summable Y -valued

sequences into m-r-summable sequences in L1(m). As a consequence, the space

Πw−m
r (Y, L1(m)) is a Banach space when endowed with the norm πw−m

r (·).

Remark 2.5. Notice that every r-summing operator T : Y → L1(m) is weakly

m-r-summing, and πw−m
r (T ) 6 πr(T ). For a linear and continuous operator T be-

tween spaces of integrable functions with respect to a vector measure, T : L1(m1) →

L1(m2), we have that T is weakly m-r-summing whenever it is m-r-summing.

Examples of weakly m-r-summing operators are easy to find. More interesting

are spaces L1(m) such that the identity map has this property. The canonical case

happens when m is a scalar positive finite measure µ. Clearly, the identity Id:

L1(µ) → L1(µ) has this property since in this case the integrals in the left hand side

term of inequality (2.4) give exactly the usual duality, the one that appears in the

right hand side term.

In the following we present a characterization of weakly m-r-summing operators

in terms of a Pietsch type domination theorem. As we will show, it is required that
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the composition of T with the integration map for every g ∈ L∞(m) be r-summing,

together with some sort of uniform behavior of the associated r-summing norms.

Proposition 2.6. Let T : Y → L1(m) with Y be a Banach space. The following

statements are equivalent.

(i) T is weakly m-r-summing.

(ii) There is a constant C > 0 such that for every g ∈ B(L∞(m)), the operator

Ig ◦ T : Y → X is r-summing, and

πr(Ig ◦ T ) 6 C.

(iii) There is a constant C > 0 such that for every g ∈ B(L∞(m)), there is a proba-

bility measure ηg defined on the σ-algebra of Borel subsets of B(Y ∗) (endowed

with the weak∗-topology) such that, for every y ∈ Y ,

(2.5)

∥

∥

∥

∥

∫

Ω

T (y)g dm

∥

∥

∥

∥

X

6 C

(
∫

B(Y ∗)

|〈y, y∗〉|r dηg(y
∗)

)1/r

.

Moreover, the least C appearing in (i), (ii) and (iii) coincides with

sup
g∈B(L∞(m))

πr(Ig ◦ T ) = πw−m
r (T ).

P r o o f. For the implication (i) ⇒ (ii) it is enough to use the definition of an

r-summing operator. The converse is also obvious. The equivalence between (iii)

and (ii) is obtained just by applying the Pietsch Domination Theorem to each one

of the maps Ig ◦ T . The formula for the norm is also a direct consequence of the

definitions. �

Remark 2.7. The lattice properties of the sets of Pietsch measures appearing in

(iii) of Proposition 2.6 provide a criterion for an operator to be weaklym-r-summing.

In fact, a weakly m-r-summing operator T : Y → L1(m) is r-summing if and only

if the set of Pietsch measures is order bounded. Indeed, let T ∈ Πw−m
r (Y, L1(m)).

If M (B(Y ∗)) is the usual space of Radon measures over the σ-algebra of Borel

subsets of B(Y ∗), where Y ∗ is endowed with the weak∗-topology, thenM (B(Y ∗)) =

C (B(Y ∗))∗. As a consequence of Proposition 2.6 there is a set of Pietsch measures

{ηg : g ∈ B(L∞(m))} associated with the operator T such that for each g ∈ L∞(m)

inequality (2.5) holds. Assuming that the set {ηg : g ∈ B(L∞(m))} is order bounded

in M (B(Y ∗)) by an element η, we obtain that for every y ∈ Y ,

‖T (y)‖L1(m) 6 K

(
∫

B(Y ∗)

|〈y, y∗〉|r dη

)1/r

.
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Consequently, T is r-summing. The converse is also obvious, since every r-summing

operator T : Y → L1(m) is weakly m-r-summing.

Remark 2.8. When the previous argument is applied to the identity map Id :

L1(m) → L1(m), we obtain that it is weakly m-r-summing with a set of Pietsch

measures that is uniformly order bounded if and only if L1(m) is finite dimensional.

This is a consequence of the Dvoretsky-Rogers Theorem and the following calcula-

tions. If η is the required order bound, for every f ∈ L1(m) we have

‖f‖L1(m) = sup
g∈B(L∞(m))

∥

∥

∥

∥

∫

Ω

fg dm

∥

∥

∥

∥

X

6 K sup
g∈B(L∞(m))

(
∫

B((L1(m))∗)

|〈f, h〉|r dηg

)1/r

6 K

(
∫

B((L1(m))∗)

|〈f, h〉|r dη

)1/r

.

The previous remark shows that uniform boundedness of the integrals

‖
∫

Ω
(·)g dm‖X by an integral

( ∫

B((L1(m))∗)
|〈f, h〉|r dη

)1/r
only holds for finite di-

mensional L1(m) spaces. In the same direction, the following result shows that

L1(m) spaces where m-r-summable sequences and weakly r-summable sequences

coincide (i.e. the identity map is weakly m-r-summing) for some 1 6 r < ∞, have

strong restrictions on the properties of the integration maps
∫

Ω(·)g dm, g ∈ L∞(m).

Recall that an operator T between Banach spaces X and Y is said to be strictly

singular if, for every infinite dimensional (closed) subspace M of X , the restriction

T |M is not an isomorphism into Y.

Proposition 2.9. If Id : L1(m) → L1(m) is weakly m-r-summing for some 1 6

r < ∞, then for every g ∈ L∞(m) the integration operator Ig is strictly singular.

P r o o f. Let g ∈ L∞(m). Suppose that there is a subspace S such that

the restriction Ig|S : S → X is an isomorphism into the range. Let us write i

for the inclusion map i : S → L1(m) and R : Ig|S(S) → S for the inverse map

(Ig|S)−1 : Ig|S(S) → S. Since Id is weakly m-r-summing, each Ig is r-summing as

a consequence of (ii) in Proposition 2.6. Therefore, Ig|S = Ig ◦ i : S → L1(m) → X

is an r-summing isomorphism into the range, and since the identity in S can be

factorized as

R ◦ Ig|S : S → Ig(i(S)) → S,

the ideal property of the r-summing operators and the Dvoretsky-Rogers Theorem

yield that S is finite dimensional. �
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3. Main result

Recall that, by Remark 2.2, the definition of an m-r-summing operator can be

extended to the operators defined on closed subspaces of L1(m) in a natural way.

Therefore the composition T = R ◦ U of a weakly m-r-summing operator U : Y →

L1(m) and anm-r-summing oneR : S → Z, where S is a subspace of L1(m) such that

U(Y ) ⊆ S, is r-summing. The main result characterizes the 1-summing operators as

those that factorize through a space of integrable functions with respect to a vector

measure m. It shows that in a sense, regarding the structure properties of L1(m)

spaces and factorizations through them, 1-summability can be decomposed in m-1-

summability and weakly m-1-summability.

Theorem 3.1. Let T : Y → Z be an operator between Banach spaces. The

following statements are equivalent.

(i) T is 1-summing.

(ii) There is a vector measurem such that T factorizes through a subspace of L1(m)

as T = R ◦ U , where U is weakly m-1-summing and R is m-1-summing.

P r o o f. For the proof of (i) ⇒ (ii), consider the factorization of T as a 1-

summing operator through the map i : C (B(Y ∗)) → L1(B(Y ∗), η) given by the

classical Pietsch domination theorem. Recall that we consider B(Y ∗) endowed with

the weak∗-topology. Here η is a Radon probability measure and i(f) = f is the

identification map of continuous functions as integrable functions. Take the vector

measure defined on B, the σ-algebra of the Borel subsets of B(Y ∗), with range in

L1(B(Y ∗), η) given by m(A) = χA, A ∈ B. Then L1(m) = L1(B(Y ∗), η) isometri-

cally. Consider the map U : Y → F ⊂ L1(m) given by U(y) = 〈y, ·〉, where F is the

closure of the functions 〈y, ·〉 in L1(η). Recall that L∞(m) = L∞(η). The following

calculations show that U is weakly m-1-summing. For a finite set y1, . . . , yn ∈ Y ,

sup
g∈B(L∞(m))

n
∑

i=1

∥

∥

∥

∥

∫

U(yi)g dm

∥

∥

∥

∥

L1(η)

= sup
g∈B(L∞(m))

n
∑

i=1

∥

∥

∥

∥

∫

〈yi, ·〉g dm

∥

∥

∥

∥

L1(η)

= sup
g∈B(L∞(η))

n
∑

i=1

∫

B(Y ∗)

|〈yi, ·〉g| dη

=

n
∑

i=1

∫

B(Y ∗)

|〈yi, ·〉| dη

6 sup
y∗∈B(Y ∗)

n
∑

i=1

|〈yi, y
∗〉|.
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Now take the map R : F → Z given by R(〈x, ·〉) = T (x) and extended by density

to the elements of the closure of the range of U . Let us show that it is m-1-summing.

It is enough to prove it for the elements of the range of U . Take 〈y1, ·〉, . . . , 〈yn, ·〉.

Then, having in mind that there is a constantK such that for every y ∈ Y , ‖T (y)‖Z 6

K‖〈y, ·〉‖L1(η), we obtain

n
∑

i=1

‖R(〈yi, ·〉)‖Z =
n

∑

i=1

‖T (yi)‖ 6 K

n
∑

i=1

‖〈yi, ·〉‖L1(η)

6 K sup
g∈B(L∞(m))

n
∑

i=1

‖〈yi, ·〉g‖L1(η).

Consequently, the map is m-1-summing.

Implication (ii) ⇒ (i) follows directly by the definitions of m-r-summing and

weakly m-r-summing operators. �
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