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Abstract: The páper presents new rnethodology liow to decompose the higli di-
mensional LTI (linear time invariant) systém witli both distinct and repeated eigen-
values of the transition matrix into a set of first-order LTI models, which could
be combined to achieve approximation of the originál dynamics. As a tool, the
Sylvester’s theorems are ušed to design the filter bank and parameters of the first-
order models (transition values). At the end, the practical examples are shown and
the next steps of research of the decomposition theory are indicated.
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1. Introduction

The páper combines approaches known in the signál processing area with ap-

proaches typical for neural networks. In the signál processing cornmunity, signál
parameters as mean values, correlation matrix, covariance matrix, regression pa¬
rameters vector, etc. are estimated through measured data. The knowledge of
such parameters results in the identification of the optimal LTI (linear time invari¬
ant) model describing the main systém property [1]. The model with estimated
parameters could be ušed for time interpolation, filtering, extrapolation, etc. This
approach is very good for identification of unknown systém but in practice the high
dimensional LTI model directly yields to the curse of dimensionality [2]. This prob¬
lém is known, e.g., in control theory, decision-making, etc. [6]. On the other hand,
the main idea of the artificial neural network is based on complex combining (mix-
ture) of relatively simple dynarnical components^ (neurons) that could be easily
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^This argument means that the output of each neuron in time interval n could be described by
a simple function dependent only on linear combination of data vector measured in time interval
n —1. The typical m-dimensional LTI model in time interval u combines historical data measured
in time intervals n — l,n — 2,. .. ,n — m.
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optimized^. The appropriate mixture (synaptic weighs) of dynamical coinponeiits
is often estimated through some cornputing procedures, e.g. back-propagation, etc.
[3],

The presented theory of the LTI systém decomposition supposes the model
parameters (state-space matrices) to be identified by classical methods and the
obtained high dimensional state-space model is decomposed into a set of first-
order models by using Sylvester’s theorem [7]. The component matrices assigned
to transition matrix play the role of íilter banks. The designed filter bank could
be applied on the originál iriput, output or statě series in such a way that the
filtered data series could be modeled by first-order LTI models. By using sulhciently
enough one-dimensional models, the originál systém could be approximated with
the predefined approximation error.

The presented method has similarities with quantum physics, where the tra-
jectory could be modeled by easily measured statě vector but with the complex
transition matrix (Heisenberg representation) or, in the contrary, by complex statě
vector with simple transition matrix (Dirac representation). The main goal is to
find the complex statě representation of the LTI systém (e.g. more dimensional
State vector) with easy (diagonál) transition matrix. It concerns transformation
from time evolution complexity into complexity of statě vector.

In Chapter 2 the mathematical origin of the LTI systém description, Sylvester’s
theorems, derivative approximation and approximation of Sylvester’s theorems for
repeated eigenvalues is introduced. In Chapter 3 the methodology of LTI systém
decomposition for distinct and repeated eigenvalues is presented together with the
performance assessment. In chapter 4 the practical experiments demonstrating all
outlined theories (distinct and repeated eigenvalues, Sylvester’s theorem approxi¬
mation, and methods of transformed or modified distinct eigenvalues) are shown
and Chapter 5 summarizes the conclusions and shows the ways for next research.

2. Mathematical origin
2.1 Linear time invariant systém (LTI) description
In generál, the well known m-dimensional linear time invariant systém (LTI) [1]
could be described by the state-space model:

Xji^\ = A • Xji -|- B • Ufi

Vn ~ C ■ Xfi + D • Uji

where x^Un^ Vn are m-dimensional statě, input and output vectors in time interval
n and A, B, C, D are state-space m x m matrices (for non-square matrices B,
C, D, the zero elements could be completed also in vectors Un.Un to achieve the
generál form (1)). Matrix A is called a systém transition matrix.

Assume that the process dynamics is described by an m.-th order input-output
ARMA model [1] with known noise variance (ARMA model is an example of

is assumed that there exists a methodology how to combine the optimized models of neurons
to achieve the optimization of their mixture. This problém is not solved in this article and the
methodology is partly included in [8],
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variety of applications of state-space representation (1)):
m m

Vn 'f' ^ ■ IJn—i ~ ^ ^ ' ^n—i (2)
i=l i=l

where yn,UnSire model output and inpiit respectively, ~ is normál
white noise independent of output yn-i,i > 1, and input Un-i,i > 1 sequences and

a = [ííl 5 • • • ) Om]
b = [6o,... ,6^] (3)

are vectors of parameters^. The observer canonical form of ARMA model is de-
scribed by statě matrices:

/O 1 0 . • ^ ^
■

0 ■
0 0 1 . . 0 0

A =

0 0 0 .

Y —Ol —ai

. 1

0’ni )

, B =

0
1

— {^m ^0 ■ 0,mi Í^m—1 ^0 ‘ ®m—11 • • • ^0 ' i ^ — ^0
For the equivalent systém with zero noise signál tlie transfer function can be

written (other representation of LTI systems)
G (e^^) - C • (zl - A)“^ B + d (5)

where uj represents the frequency space.
The impulse response of the ARMA model can be also deterrnined (other rep¬

resentation of LTI systems)

p = [d, CB, CAB, (6)

2.2 Sylvester’s theorems
The decomposition methodology described in the páper is based on the application
of Sylvester’s theorems (both for distinct and repeated eigenvalues) on systém
transition matrix A. Both Sylvester’s theorems are presented in this chapter.

Theorem 1: Sylvester theorem for distinct eigenvalues

If A is square systém transition matrix (1) and if represents one of the n distinct
eigenvalues of A, and if P(A) is any polynomial of matrix A, then

pw = E P(Ai) ■ Adj{A - A,. I)
n

n (Aj - Xi)
E^M-n
i=l j/i

(A-A,-I)
(A. - A,)

(7)

where Adj{A) means the adjoint matrix that is formed by replacing each element
of matrix A by its cofactor and then taking the transpose.

^In the ARMA model definition equation ao = 1 is supposed.
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Theorem 2: Sylvester theorem for repeated eigenvalues

If A is square systém transition matrix (1) and if represents an eigenvaliie of A
repeated Si times, and if k is the number of all distinct eigenvalues Xj, and if P(A)
is any polynomial of matrix A, then

^(A) = t
i = 1

(all distinct
eigenvalues)

( \
(-1) P{X) -AdjiA-X-1)

{si - 1)! k

n (A - Aj)
v /

(8)

where Adj(A) means the adjoint matrix and if all eigenvalues are equal, then

k

n(A-A,-)=i.
j¥=i

Definition 1:

With respect to equation (7) and with assumption of distinct eigenvalues, the
speciál matrixes Z-i, Z2, ■ ■ ■, Zn could be defined for matrix A (in [6, 7] called
component matrices of matrix A):

n

z.=n
3^i

(A-A,.t)
(A.-A,)

with the following properties:

Zi • Zj = 0 for i / j,
Z^ ■ Zj = Zj for i = j,
n

E Zi = 1-
i=l

(9)

(10)

Proof: The proof of theorem 1 and 2 is made in [5] where the proof of matrix
components for repeated eigenvalues is also presented.

2.3 Approximation of derivatives

In equation (8) the derivatives are necessary to be solved. In the following theorem
the form of derivatives approximation is presented together with the approximation
error.
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Theorem 3: Approximation of derivatives

Let f(x) be any function of x and ^ ^■■■■ íirst, second, tliird, etc.
derivatives of function f(a:), and the approxiinate derivatives could be expressed

f(x) 1
-

-^^-3--- ~ ^ {f{x + 2/i) - 2f{x + h) + 2f{x - /i) - f{x - 2h)),
etc.

where for all derivatives the approximation error is proportional to 0 (/i^).
For better precision of approximation other approximate forms exist, e.g. for ap¬

proximation error proportional to O the following equations can be described:

df(x) 1
~

m ^ + /i) - 8f{x - h) f{x - 2/i)),
f ( 1

■■

-J^2~ ~ i-fix + 2/i) + 16/(x + /i) - 30/(a;) + 16/(a; - h) - f{x - 2/i)),
etc.

(12)

2.4 Approximation of derivatives in the Sylvester theorem
for repeated eigenvalues (transformed eigenvalues
method)

The approximation of derivatives (11), (12) could be applied to the Sylvester the¬
orem for repeated eigenvalues (8) and the following theorem could be defined.

Theorem 4 (Svítek’s theorem L): Approximation of P(A) v^ith repeated
eigenvalues of matrix A

If matrix A has /c, all distinct eigenvalues (8) where d eigenvalues are repeated
Sd times and ch eigenvalues Xch are poorly distinct, then the polynomial function
P(A) can be approximated by a set of ch distinct and by a set of t transformed
distinct eignevalues Af (Ai — gi/i,..., Ai -1- gi/i,..., A^ — qdh,... ,Xd + Qdh) with
error proportional at least to 0{h'^) as follows:
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ch ^ / A \ T\ ^ f

P(A) = z Pi^i) ■ n + E E kf.r
i=\ f=l y=^-qf

■p(A/ + 7-/0- ň =

ch d Qť
= Z ^(Ai) ■ Zi + E E ■ P(^f + J-h)- Z,,^

i=l f= l 'i=-qf

(13)

where qj depends on selected approximate form (11), (12), and on the multiplic-
ity of repeated eigenvalue A/, are weight constants of approximation form

k

(11), (12), Zf,^ = n transformed component matrices assigned
to transformed distinct eigenvalues and h is a. selected smáli approximation param-
eter.

Proof: If the Sylvester theorem for repeated eigenvalues (8) is ušed and if the ap¬
proximation is applied according to equation (11) or (12), then the part of equation
(8) assigned to repeated eigenvalue \i can be approximated with error proportional
at least to O^h?) or more (depends on ušed approximate form, e.g. forms (11) or
(12)) as follows:

(-1) Pi\)Adj{A-Xl)
(sí-1)! dA-.-i k

11 (X—Xj)
\ /

(-1)
(s,-l)! £^-PW-z(\) (14)

— k-q. ■ P{\i — Qi • h) • Zi^-q. + ko ■ P{Xi)-

‘Zi^O kq^ • P(Ai + Qi ■ h) • Zi^q.
where Xi-qi-h,..., Aj,..., Xi + qi-h are transformed eigenvalues assigned to Si times
repeated eigenvalue Aj and Zi^-.q.,..., Zí^q, ..., Zi^q. are transformed component
matrices assigned to transformed eigenvalues Xi — qi • /i,..., Aj,..., A^ + qi ■ h.

2.5 Approximation based on modified repeated eigenvalues
(modified eigenvalues method)

The Sylvester’ theorem came out from Lagrange interpolation polynomial [6] with
distinct polynomial roots. The repeated roots in Lagrange polynomial can be
modified and approximated by distinct roots according to Tab. I with a defined
approximation error (it is easy to extend the table for higher root multiplicity).

In čase the parameter h is smáli enough, the approximation error can be
also smáli because of the high power of h. This methodology can be applied
to Sylvester’s theorem and the modified eigenvalues can be ušed instead of re¬

peated ones and then the decomposition can be doně with the help of equation (7).
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modified roots/ repeated roots

(a-2h)

(a-h)

a

(a+h)

(a+2h)

approx. error

{x+afi

0

(x-h(a-h))
0

(x+(a+h))
0

(x+afi

0

{x+{a-h))
(x+a)

(x+(a+h))
0

~h‘^{x+a)

(x+a)^

(rr+(a—2h))
(x+(a-h))
0

(x+(a+h))
(x+(a+2h))

^4h^- —bh?{x+afi

(x+a)^

(x-j-(a—2h))
(x+(a-h))
(x+a)
(x+(a+h))
(x+(a4*2/i))

wAh'^{x+a)— —5/i^(x+a)^

Tab.IModifiedrootsinLagrangepolynomial[6].
Multiplicityoforiginálre¬ peatedeigenvalues

Modifieddistincteigenvalues
A“/i,\h A—/i,A,A-|-h

A^

A—2/1,A-li,A-|-h,A4"2h
A^

A—2/?.,A-h,A,A4h,A-h2h
etc.

etc.

Tab.IIOriginálrepeatedandmodifieddistincteigenvalues.
Cfi Ví

CA
rf- (ti

3

CA

Svítek
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As an example Tab. II describes the multiplicity of originál repeated eigenvalue
and its modification to the distinct ones.

3. The LTI systém decomposition
The LTI dynamical systém decomposition is based on the application of the Sylvester’s
theorems oř its approximation to state-space matrix A (4) and by using the prop-
erty of components matrices to calculate the transformed input, output and state-
space vectors of one-dimensional models.

3.1 The LTI systém decomposition with distinct eigenvalues
of transition matrix

The LTI systém decomposition with distinct eigenvalues could be performed with
the help of the following fundarnental decomposition theorem.

Theorem 5 (Svítek’s theorem II.): Fundarnental decomposition of LTI
dynamical Systems with distinct eigenvalues of transition matrix A

The dynamical m— dimensional LTI dynamical systém described by state-space
model (1) with transition matrix A with distinct eigenvales could be decomposed
into m^one-dimensional LTI models where the component matrices assigned to
transition matrix A (9) are ušed as transformation matrices of statě, input and
and vectors (íilter banks).

Proof: The m-dimensional state-space model (1) with square mxm matrices A, B,
C, could be decomposed with the help of components matrices Zi, Z2,..., Z„^
into the following form:

Z1X71-1-I Z2Xyi-^\ -!-•••“[- —

= XiZ^X-n + \2Z2Xn 4" • • • -f X-mZmXn + Zi ■ B • Un + Z2 ' B • Un + ' ' ' +
T B • Unl/i^Tn -j- y2,n T ' • ‘ T Um^n ~ Zi • yn Z2 • yn T ‘ ‘ T Z,,j • yfi =
= Zi ■ C ■ Xji Z2 • C ■ Xji -l- ■ • • -f Zm • C ■ Xji Z\ ■ D • Ufi -!-••• +
-f- Z,^ • D ■ Ufi

(15)
where form P(A)=A in equation (7) was ušed and the matrix components pro-
’’

m

perty ^i=i (fO) was taking into account. By multiplying the equations (15) by
i=l

component matrix Zj and by taking into account the property Zj • Zj =0 for i / j
and Zj • Zj = Zj for i = j (10) the LTI dynamical systém could be decomposed
into m following sub-systems:

Zj • Xn-j-i — Xj • Zj ■ Xfi 4- Zj • B • Ufi n
yj,n ~ Zj • yfi = Zj • C • Xji -f- Zj • D • Uji

^for non-square matrices B, C, D, the zero elements could be completed as well as in vectors
Un,yn to achieve the form (1)
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with transition value equal to \j. The transformed m-dimensional statě vectors
Zj ■Xnj e {1,2,... , m] were obtained through filtering the statě vector by compo-
nent matrices (component matrices play the role of íilter banks). Each component
of the transformed statě vector Zj ■ Xn could be easily described as a first-order
dynamical model because the transition value Xj is common for all m transformed
states Zj • Xji.

3.2 The LTI systém decomposition with repeated
eigenvalues of transition matrix

The systém with repeated eigenvalues of transition matrix A could not be de-
composed directly according to theorem 5 because of the singularity of component
matrices Zj.

However, the decomposition could be doně by means of approximation forms
either through derivatives approximation (14) of equation (8) (transformed eigen¬
values method) or through the eigenvalues modification (modified eigenvalues
method) of A described in Chapter 2.5. Both approxirnate forms yield to a sim-
ilar set of one-dimensional models like in (16) only eigenvalues, and component
matrices of A are transformed or modified.

In the čase of derivative approximation (14) of equation (8) the approxirnate
precision is doně by a selected approxirnate form and selected parameter h. In
the čase of eigenvalues modification (Chapter 2.5), the approximation precision
depends on approximation errors introduced in Tab. I.

3.3 The reduction of transformed state-space model

Theorem 5 for distinct eigenvalues results in the definition of m m-dimensional
State vectors Zj ■ Xn j G {1, 2,... ,m} (16) with simple transition values Xj. The
transformed state-space model assigned to the originál systém (1) has m x rn statě
values with transformed diagonál transition matrix A. The advantage of the m. x
m state-space representation is that the simple sum of transformed statě vectors
Zj ■ Xn j G {1, 2,..., m) yields directly to the originál statě vector Xn.

The number of transformed statě vectors could be reduced^ in such a way that
in model (16) only one or more statě components will be ušed. On the other hand,
this methodology means that the originál statě vector Xn must be computed as a
linear combination of reduces transformed statě components and not as a simple
sum.

In the čase of repeated eigenvalues of transition matrix A, similar reduction
method could be ušed to decreasing the number of transformed statě components.
As in the former čase, the construction of originál statě vector Xn will be more

complicated (linear combination of transformed States).

^the dimension of the transformed state-space model will be lower than rn x m
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4. Examples
4.1 Evolution systém with distinct eigenvalues of transit ion

matrix

Let US define the LTI evolution systém witli three distinct eigenvalues Ai = 1,
A2 = 2, As = 3 as follows

X\,i
■

0 1 0 ■ ■ri,í-i
■

1 ■

X2,i = 0 0 1 1 3^2,0 = 2

. ^3,2 6 -11 6 X3,i-\
. ^3,0 .

3

where the component matrices assigned to transition matrix could be figured out
through equation (9)

■

3 -2.5 0.5 ■
■

-3 4 -1 ■
■

1 -1.5 0.5 ■
= 3 -2.5 0.5 , ^2 = -6 8 -2 , ^3 = 3 -4.5 1.5

3 -2.5 0.5 -12 16 -4 9 -13.5 4.5

(18)
where the properties of component matrices (10) could be easily proved. Accord-
ing to the fundamental decomposition theorern 5, the following one-dimensional
Systems could be defined as follows

■

'$1,. ■
'

1 00
■

■'ři.i-i ■
‘í>2,i 0 1 0 ,

_ 0 0 1
. 'í>3,i-l .

' ■ ■

3 -2.5 0.5 ■ X\,i
-

■í>2,i = 3 -2.5 0.5 X2,i
3 -2.5 0.5 X3,i

-

■ ■ ■

2 00
■

2 1
= 0 2 0 2 4.2

. ^®3,i . _ 0 0 2 2 4,3 i— 1

■

"$l,i ■ — 3 4 -1 ■ Xl,^
"í>2,i = - 6 8

. 2 X2,i
— 12 16 — zí

_ X3^,

■ ■

3 00 3

"$2,. = 0 3 0 3 $2, i-1
. "í>3,i .

0 0 3
_

3 í^3, i— 1

■

"íl.i ■ 1 -1.5 0. 5 3^1, i
= 3 -4.5 1.5 X2, i

9 -13.5 4.5 X3, i

(19)

(20)

(21)
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It could be easily proved that the sum of one-dimensional statě vectors (19), (20),
(21) coincide in every time interval i with the statě vector of three-dimensional
systém (17), e.g. for 2 = 5

a^i,5
■

0 1 0 ■ 5
3:1,0

r

3:2,5 = 0 0 1 3:2,0

. ^3.5 6 -11 6
. ^3,0 .

0 ■
5 ■

1 '
■

-58

1 2 = -237

6 3 -838

(22)

+

■ ■ ■ ■ ■ ■ ■

1 0 0 '
5

^í*2,5 + ^í^2,5 -f ^*1*2,5 = 0 1 0 ^í^2,0
^4>3,5

. '^^3,5 . _ "<I>3,5 .

0 0 1 ^4>3,0

to 0 01'
■

'í>i,o ■
■

3 0 0 1 5 r

0 2
0 0

0 0
1 0

1

0

0 0 1

T 5

í^2,0

-0.5
-0.5
-0.5

0 3
0 0

+

2 0 0
0 2 0
0 0 2

T 5

+

(23)

-f

3

0
0 0

o o

3 0
-0.5

-1.5

-4.5

-58

-237
-838

4.2 Controlled systém with repeated eigenvalues of transi-
tion matrix (transformed eigenvalues method)

Let US define the LTI control systém with two repeated eigenvalues Ai = 1, A2 = 1
as follows

X2,i

0 1
-1 2

1

X2,i-1
Ul,i
U2,i

a^i,0
X2,0

Let US select the precision parameter h and let us approximate equation (8) ac-
cording to approximate form (11) as follows

= -ÁCLA
A" •

2 - A -1

1 -A
A=1

i^+hr-i-é)
1 ~ h -1

1 -1 - h

1 + h -1

1 — 1 + h

(25)

= (1 + h)" • Zi + (1 - hf • Z2
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The same as in the example in Chapter 4.1, the hrst order models could be defined

í>l,i ■ (1 + h) 0
+

Í>2,í 0 {1 + h) ^U2,i

í>l,i ■ r (i-h) 0
1

0 (l-h) ^í^2,i-l

where the transformed statě and input (control) vectors could be written

'

'^1,. ' - ( M \ — h -1 Xl,i

v 1 -l-h
. ^2,i

^Ul,i f M
'

l-h -1 '2 -3 ■

J v 2/ij 1 -l-h 7 1 U2,i

(^) r-H1+ Xl,i

1

to
to \2hJ 1 -l + /i X2,i

1 + h -1 '2 -3 ■ ^1,1J \2hJ 1 — 1 + h 7 1 U2,i

Xl,i
X2,i

= +
11 toto

to>-*
11

U2,i
+ toto

jÔ
11 =

■

2 -3
7 1 (27)

In Fig. 1 and Fig. 2 the evolution of statě component x\^n according to both
originál (24) and mixture models (26) is shown. The originál time series is pictured
as a continuous curve, the approximation by mixture models is pictured as
in each time interval. The approximation could be easily corrected in every time
interval i in which the originál statě vector Xi is observed according to equation
(27) but for better understanding of approximation error Fig. 1 and Fig. 2 represent
the time evolution of models (24) without any corrections.

In Fig. 3 two approximation forms (11) and (12) are compared for the zero
input (control) vector and for h — 0.01. The figuře pictures the prediction error of
State component x\^i both with four one-dimensional systems and with eight
one-dimensional systems The better the approximation form, the better the
precision and also the more one-dimensional systems must be taken into account.
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Evolution of the reál and approximated LTI systém

Fig. 1 Time evolution of the originál (continuous curve) and approximated LTI
systém (+).

Approximation error for h = 0.01

c
o
o,
6
o

X

o,
D,
<

1 1 1 r 1 1 1 1 1
—

!-

+

- -

V

1- + H1- +

0 2 4 6 8 10 12 14 16 18 20

Time interval

Fig. 2 Time evolution of the approximation error for h=0.01 of the statě
component in Fig. 1.
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Comparison of different approximation forms

c
u
C
O

&
o

X

o
fc
(L>

c
_o
13
S
><
o
;-c
Cl,
O,

1 1 1 1 1 1 4

É

4-

4-

4-
. -f-

-++4-H -++++-h+4-IŤH

P

-+■+++- ■++-H..

0 5 10 15 20 25 30 35 40 45 50

Time interval

Fig. 3 Comparison of different approximation forms (“*” means approximation
by form (11), “+” means approximation by form (12))

4.3 Evolution systém with distinct and repeated eigenvalues
of transition matrix (modified eigenvalues method)

Let US define the LTI evolution systém with two repeated and one distinct eigen¬
values Ai = — A2 = — A3 = — 1 as follows

Xl,i
■

0 1 0 Xl^i— 1 3^1,0
■

-0.1 ■
X2,i
X3,i

.

— 0

-0.5
0

-1.25
1

-2
X2,i-1
X3,i— 1

3^2,0

. ^3,0 _

— 0.1
0.1

The repeated eigenvalues will be modified to Ai == A2 = — | — fi. The
component matrices assigned to the transition matrix with distinct and modified
eigenvalues and parameter h = 0.01 could be figured out through equation (7)

50 148 98
= -24.5 -72.5 -48

12 35.5 23.5
_

■

-50 -152 -102 '
^2 = 25 77 -52

-13 -39 -26

502



Svítek M.: The Decomposition Theory of LTI Systems

^3 =

1 4 4
-1 -4 -4

1 4 4
(29)

According to the fundamental decomposition Theorem 5 the following one-dimensional
Systems could be defined as follows:

■

'$l,i ■

L
■ ■ -

'$2,i
1

w
1

■ ■

"4>2,í =

1

CO
C4

1

-

^^2,i
2í>3,^

■ ■

=

.

■ ■ -

=

^4>3.í

-0.5+ /i 0 0
0 -0.5 + h 0
0 0 -0.5 + h

50 148 98
-24.5 -72.5 -48
12 35.5 23.5

Xl,i
X2,i
X3,i

-0.5 -h 0 0
0 -0.5 -h 0
0 0 -0.5-h

-50 -152
25 77
-13 -39

-102
-52
-26

1

H
1

X2,i
. ^34

-10 0
0 -10
0 0-1

1 4 4

-1 -4 -4
1 4 4

Xl,i
X2,i
X3,i

(30)

24>2,^-l

(31)

(32)

In Figs. 4 and 5 time evolution of the originál (28) and approximate (30), (31),
(32) Systems (its sum) and the approximation error for selected parameter h = 0.01
are presented. It could be easily shown that for suřficiently sinali h the mixture of
one-dimensional models (30), (31), (32) (assigned to distinct and modified eigen-
values) well approximate the originál systém. On the other hand, the method
of transformed eigenvalues (13), (14) enable finding more and more transformed
eigenvalues and so the approximation can be constantly improved by adding new
and new one-dimensional models. This could not be doně in the čase of modified

eigenvalues described in this example.

5. Conclusion

The presented results háve shown the theory of LTI Systems decomposition for dis¬
tinct and repeated eigenvalues of transition matrix A of the state-space model. This
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Reál and approximated LTI systém

Fig. 4 Approximate (“+”) and originál (continues curve) evolution of statě
component x\^ri-

Approximation error for h — 0.01
X 10^

Fig. 5 Approximation error for parameter h=0.01.
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theory vindicates the very known practice of mixtures of low dimensional dynam-
ical niodels to approximate the higher order dynamical systém. In the páper the
direct proof of the LTI dynamical systém decomposition with distinct eigenvalues
of matrix A was presented as a fundamental decomposition theorem. The decom¬
position theory was demonstrated on the three dimensional state-space model in
Chapter 4.1.

For repeated eigenvalues of transition matrix A the two approximation meth-
ods were designed. Firstly, the derivatives in Sylvester’s theorem for repeated
eigenvalues (8) were approximated with the help of approximation forms (11) and
(12) - method of transformed eigenvalues. Secondly, the repeated eigenvalues of A
were replaced by modified distinct eigenvalues according to Tab. II - method of
modified eigenvalues. The experiments háve shown a good approximation stabil¬
ity and precision in the čase of the modified eigenvalues method. The method of
transformed eigenvalues was slightly sensitive to selected parameter h in (13) but
the method enabled using better and better approximation forms (more and more
one-dimensional models) and then the approximation error was sufficiently sinali.
This method also poses the exact approximation performance definition.

In Chapter 3.3 the problém of reduction of the transformed state-space model
versus the reconstruction complexity was identiíied and described. In čase the
reconstruction of originál state-space vector was doně by a linear combination of
the transformed state-space vectors, the dimensionality of the transformed state-
space model could be lower. If the originál state-space vector reconstruction must
be simple (sum of transformed state-space vectors), a high dimensionality of the
transformed state-space model is necessary.

The achieved páper results could be interpreted as a way of time complexity
transformation into state-space complexity (more statě vectors must be observed).
In the páper only LTI Systems were studied but the presented methodology could
be extended to another kind of systems, e.g. non-linear ones, etc.

In the next research steps, the new ways of Identification of matrix eigen¬
values and component matrices tailor-made to unknown transition matrix A will
be found to enable estimating the unknown parameters of one-dimensional models
and mixture parameters directly from the rneasured data [1,9]. The decomposed
one-dimensional models will be controlled and the mixture of control strategies will
be studied [8]. It is expected that the sum or the weighted sum of control strate¬
gies of one-dimensional models will yield to more or less precise control stratégy
of originál systém. This results should be applicable for large scale systems like
transport networks, electricity supply chains, telecommunication networks, etc.
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