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Abstract. In this article, we consider the operator L defined by the differential expression

�(y) = −y′′ + q(x)y, −∞ < x < ∞
in L2(−∞,∞), where q is a complex valued function. Discussing the spectrum, we prove
that L has a finite number of eigenvalues and spectral singularities, if the condition

sup
−∞<x<∞

{
exp

(
ε
√

|x|)|q(x)|} < ∞, ε > 0

holds. Later we investigate the properties of the principal functions corresponding to the
eigenvalues and the spectral singularities.

1. Introduction

Let us consider the non-selfadjoint one dimensional Schrödinger operator L0 de-

fined by the differential expression

�0(y) = −y′′ + q(x)y, 0 � x < ∞
and the boundary condition y(0) = 0 in L2(0,∞), where q is a complex valued

function. The spectral analysis of L0 was started by Naimark [10] in 1960. In
his article he proved that some of the poles of the resolvent’s kernel of L are not

eigenvalues of the operator. Also he showed that those poles (which are called
spectral singularities by Schwartz [15]) are on the continuous spectrum. Moreover

he showed that the spectral singularities play an important role in the discussion of
the spectral analysis of L0, and if the condition∫ ∞

0
|q(x)| exp(εx) dx < ∞, ε > 0
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holds then the eigenvalues and the spectral singularities are of finite number and each

of them is of finite multiplicity. The effect of spectral singularities in the spectral
expansion of the operator L0, in terms of the principal functions, was investigated in
[7]. Some problems related to spectral analysis of differential and some other types

of operators with spectral singularities have been discussed by several authors [1],
[4], [5], [8], [11]–[13].

Now let us consider an operator L defined by the differential expression

�(y) = −y′′ + q(x)y, −∞ < x < ∞

in L2(−∞,∞), where q is a complex valued function. L is called the one dimensional
Schrödinger operator on the whole real axis. Since q is a complex valued function,
the operator L is non-selfadjoint.

The above result of Naimark has been generalized to the operator L by Blashak
[3]. Blashak has proved that the operator L has a finite number of eigenvalues and

spectral singularities, if

(1)
∫ ∞

−∞
|q(x)| exp(ε|x|) dx < ∞, ε > 0

holds.

In the present article, we discuss the discrete spectrum of L and prove that this
operator has a finite number of eigenvalues and spectral singularities and each of
them is of finite multiplicity, under the condition

(2) sup
−∞<x<∞

{
exp(ε

√
|x|)|q(x)|} < ∞, ε > 0.

Afterwards, the properties of the principal functions corresponding to the eigenvalues
and the spectral singularities of L are obtained.

Obviously the condition (2) is weaker than the condition (1). Under the condition
(1) the finiteness of the eigenvalues and the spectral singularities of L is obtained

by finite meromorphic continuation of the resolvent’s kernel from the continuous
spectrum [3]. But under the condition (2) there is no such finite meromorphic con-

tinuation. Hence the method of [3] can’t be used in this case.
In the following, we use the notation

�+ = {λ : λ ∈ � , Im λ > 0}, � + = {λ : λ ∈ � , Im λ � 0}.

Also, σd(L) and σs,s(L) will denote the eigenvalues and the spectral singularities
of L, respectively.
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2. Preliminaries

Let us consider the following differential equation:

(3) −y′′ + q(x)y = λ2y, x ∈ (−∞,∞)

where λ is a complex parameter. For the moment, we will assume that

(4)
∫ ∞

−∞
(1 + |x|)|q(x)| dx < ∞

holds and we introduce the notation

σ+(x) =
∫ ∞

x

|q(t)| dt, σ+1 (x) =
∫ ∞

x

σ+(t) dt,

σ−(x) =
∫ x

−∞
|q(t)| dt, σ−

1 (x) =
∫ x

−∞
σ−(t) dt.

Under the condition (4), the equation (3) has solutions [9]

(5) e+(x, λ) = eiλx +
∫ ∞

x

K+(x, t)eiλt dt

and

(6) e−(x, λ) = e−iλx +
∫ x

−∞
K−(x, t)e−iλt dt

for all λ ∈ � +, where K±(x, t) are differentiable with respect to x and t, and satisfy

the inequalities

(7)
∣∣K±(x, t)

∣∣ � 1
2
σ±

(x+ t

2

)
exp

{
σ±
1 (x)− σ±

1

(x+ t

2

)}
,

(8)
∣∣∣ ∂

∂xi
K±(x1, x2)∓ 14q

(x1 + x2
2

)∣∣∣ � 1
2
σ±
1 (xi)σ±

(x1 + x2
2

)
expσ±

1 (xi).

Therefore the solutions e+(x, λ), e−(x, λ) are analytic in �+ with respect to λ and

continuous on the real axis.

Now let us introduce

α(λ) :=W{e+(x, λ), e−(x, λ)},
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whereW{e+(x, λ), e−(x, λ)} is the Wronskian of the solutions e+(x, λ) and e−(x, λ).

It is obvious that the function α is analytic in �+ and continuous on the real axis.
So the following equalities are satisfied [3], [9]:

α(λ) = −2iλ+O(1), λ ∈ � +, |λ| → ∞,(9)

σd(L) =
{
µ : µ = λ2, λ ∈ �+ , α(λ) = 0

}
,(10)

σs,s(L) =
{
µ : µ = λ2, λ ∈ (−∞,∞), α(λ) = 0}.(11)

Definition 2.1. ([7]) The multiplicity of a zero of α in � + is called the multiplicity
of the corresponding eigenvalue or spectral singularity of L.

We need the following uniqueness theorem obtained from [12]:

Theorem 2.2. ([12]) Let us assume that the function g is analytic in �+ , all of
its derivatives are continuous on the real axis and there exists N > 0 such that

(12) |g(m)(λ)| � cm, m = 0, 1, 2, . . . λ ∈ � +, |λ| < 2N,

and

(13)
∣∣∣
∫ −N

−∞

ln|g(x)|
1 + x2

dx
∣∣∣ < ∞,

∣∣∣
∫ ∞

N

ln|g(x)|
1 + x2

dx
∣∣∣ < ∞

hold. If the set G with Lebesgue measure zero is the set of all zeros of the function

g with infinite multiplicity and if

(14)
∫ h

0
ln F (s) dµ(Gs) = −∞

holds then g(λ) ≡ 0, where F (s) = inf
m

cmsm

m! , m = 0, 1, 2, . . . , µ(Gs) is the Lebesgue

measure of the s–neighborhood of G and h is an arbitrary positive constant.

3. Eigenvalues and spectral singularities

It is clear from (10) and (11) that, in order to investigate the quantitative prop-
erties of the eigenvalues and the spectral singularities of L, we need to discuss the

quantitative properties of the zeros of α in � +.
Let P1 denote the zeros of the function α in �+ and P2 the zeros of the function

α on the real axis.

Lemma 3.1. Under the condition (4)

692



a) The set P1 is bounded, has at most a countable number of elements and its

limit points can lie in a bounded subinterval of the real axis.

b) The set P2 is compact and its Lebesgue measure is zero.

�����. The boundedness of P1 and P2 is obtained from (9). Since α is analytic
in �+ , then the set P1 has at most a countable number of elements. From the

uniqueness of analytic functions and (9), it is deduced that the limit points of P1 can
lie only in a bounded subinterval of the real axis. The closedness and the property

of having Lebesgue measure zero of the set P2 can be obtained from the uniqueness
theorem of the analytic functions due to Privalov [14]. �

From (10), (11) and Lemma 3.1 we have

Remark 3.2. The sets of eigenvalues and spectral singularities of L are bounded,
at most countable and their limit points can lie only in a bounded subinterval of the
positive real axis if the condition (4) holds.

Lemma 3.3. The function α satisfies

(15) α(λ) = −2iλ+
∫ ∞

−∞
q(t) dt+

∫ ∞

0
A(t)eiλt dt,

where

A(t) = K+t (0, t) +K−(0, 0)K+(0, t) +K−
x (0,−t)− K+x (0, t)(16)

− K−
t (0,−t) +K+(0, 0)K−(0,−t) + (K+ ∗ K−

x )(t)− (K+x ∗ K−)(t)

in which (∗) is the convolution operation.
�����. By the definition of the Wronskian of the solutions e+(x, λ), e−(x, λ)

we have

(17) α(λ) = e+(0, λ)e−x (0, λ)− e+x (0, λ)e
−(0, λ).

Substituting the values of e+(0, λ), e+x (0, λ), e−(0, λ) and e−x (0, λ) into (17) we
obtain (15). �

Now let us assume that

(18) sup
−∞<x<∞

{
exp

(
ε
√
|x|)|q(x)|} < ∞, ε > 0

holds. From (7) and (8) we find

(19) |K±(x, t)|, |K±
x (x, t)|, |K±

t (x, t)| � c exp
{
−ε

2

√
|x+ t|
2

}
,
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where c > 0 is a constant, and also we get

(20) |A(t)| � c exp
{
−ε

2

√
|t|
2

}

by (16) and (19). This shows that the function α is analytic in �+ , all of its deriva-
tives are continuous up to the real axis and

(21)
∣∣∣ dmα(λ)
dλm

∣∣∣ � cm, λ ∈ � +, m = 1, 2, . . .

hold where

c1 = 2 + 2
2c

∫ ∞

0
t exp

{
−ε

2

√
t
}
dt,

cm = 2m+1c
∫ ∞

0
tm exp

{
−ε

2

√
t
}
dt, m = 2, 3, . . . ,(22)

in which c > 0 is a constant.
Let us denote the sets of all limit points of P1 and P2 by P3 and P4, respectively,

and the set of all zeros of α with infinite multiplicity in � + by P5. It is obvious from
the uniqueness theorem of the analytic functions that

P3 ⊂ P2, P4 ⊂ P2, P5 ⊂ P2.

Since all derivatives of the function α are continuous up to the real axis, we get

(23) P3 ⊂ P5, P4 ⊂ P5.

Lemma 3.4. P5 = ∅.
�����. It is trivial from Lemma 3.1 and (2.1) that α satisfies the conditions

(12), (13) of Theorem 2.2. Since α(λ) 
≡ 0, (14) yields

(24)
∫ h

0
lnF (s) dµ(P5,s) > −∞

where F (s) = inf
m

cmsm

m! , µ(P5,s) is the Lebesgue measure of the s-neighborhood of

P5 and cm are constants defined by (21) and (22). Now we will obtain the following
estimates for cm:

cm = 2m+1c
∫ ∞

0
tm exp

(
−ε

2

√
t
)
dt � c23m+4ε−2(m+1)(2m+ 2)2m+1m!(25)

= c24m+5ε−2(m+1)mm
(
1 +

1
m

)m

(m+ 1)m! � Bbmmmm!
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where B = c25eε−2and b = 24eε−2. Substituting (25) into the definition of F (s), we
arrive at

F (s) � B inf
m
{bmsmmm} � B exp{−b−1s−1e−1}

or by (24)

(26)
∫ h

0

1
s
dµ(P5,s) < ∞.

The inequality (26) holds for an arbitrary s if and only if µ(P5,s) = 0 or P5 = ∅. �

Lemma 3.5. α has a finite number of zeros with finite multiplicity in � +.

�����. From (23) we get that

(27) P3 = P4 = ∅.

We obtain the finiteness of the sets P1 and P2 by Lemma 3.1 and by (27). Since
P5 = ∅, all of the zeros of the function α have finite multiplicities. �

Summarizing the above arguments we have

Theorem 3.6. The operator L has a finite number of eigenvalues and spectral

singularities and each of them is of finite multiplicity if the condition (18) holds.

4. Principal functions

In this section we assume that (18) holds. Let λ1, . . . , λ� denote the zeros of α in �+
(i.e. λ21, . . . , λ

2
� are the eigenvalues of L) with multiplicities m1, . . . , m�, respectively.

Similarly let λ�+1, . . . , λk be the zeros of α on the real axis (i.e. λ2�+1, . . . , λ
2
k are the

spectral singularities of L) with multiplicities m�+1, . . . , mk, respectively. It is trivial

that

(28)
{ dn

dλn
W

[
e+(x, λ), e−(x, λ)

]}
λ=λj

=
{ dn

dλn
α(λ)

}
λ=λj

= 0

holds for n = 0, 1, . . . , mj − 1, j = 1, 2, . . . , �. If n = 0 we get

(29) e+(x, λj) = a0(λj)e−(x, λj), j = 1, . . . , �.

So a0(λj) 
= 0.
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Theorem 4.1. The formula

(30)
{ ∂n

∂λn
e+(x, λ)

}
λ=λj

=
n∑

i=0

(
n

i

)
an−i

{ ∂i

∂λi
e−(x, λ)

}
λ=λj

holds for n = 0, 1, . . . , mj − 1, j = 1, 2, . . . , �, where the constants a0, a1, . . . , an

depend on λj .

�����. We will proceed by mathematical induction. For n = 0, the proof is

trivial from (29). Let us assume that for 0 < n0 � mj − 2, (30) holds; i.e.

(31)
{ ∂n0

∂λn0
e+(x, λ)

}
λ=λj

=
n0∑
i=0

(
n0
i

)
an0−i

{ ∂i

∂λi
e−(x, λ)

}
λ=λj

.

Now we will prove that (30) holds for n0+1, too. If y(x, λ) is a solution of equation
(3) then ∂n

∂λn y(x, λ) satisfies

(32)
{
− d

2

dx2
+ q(x)−λ2

} ∂n

∂λn
y(x, λ) = 2λn

∂n−1

∂λn−1 y(x, λ) +n(n− 1) ∂n−2

∂λn−2 y(x, λ).

Writing (32) for e+(x, λj) and e−(x, λj) and using (31) we find

{
− d

2

dx2
+ q(x) − λ2j

}
fn0+1(x, λj) = 0

where

fn0+1(x, λj) =
{ ∂n0+1

∂λn0+1
e+(x, λ)

}
λ=λj

−
n0+1∑
i=1

(
n0 + 1

i

)
an0+1−i

{ ∂i

∂λi
e−(x, λ)

}
λ=λj

.

From (28) we have

W
[
fn0+1(x, λj), e

−(x, λj)
]
=

{ dn0+1

dλn0+1
W

[
e+(x, λ), e−(x, λ)

]}
λ=λj

= 0.

Hence there exists a constant an0+1(λj) such that

fn0+1(x, λj) = an0+1(λj)e−(x, λj).

This shows that (32) holds for n = n0 + 1. �
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Let us introduce the functions

Un(x, µj) =




n∑
i=0

(
n

i

)
an−i(λj)

{ ∂i

∂λi
e−(x, λ)

}
λ=λj

, −∞ < x < 0,

{ ∂n

∂λn
e+(x, λ)

}
λ=λj

, 0 � x < ∞

for n = 0, 1, . . . , mj − 1, j = 1, 2, . . . , � where µj = λ2j ; using (5), (6) and (19) we
arrive at

{ ∂n

∂λn
e+(·, λ)

}
λ=λj

∈ L2(0,∞), n = 0, 1, . . . , mj − 1, j = 1, 2, . . . , �,

{ ∂i

∂λi
e−(·, λ)

}
λ=λj

∈ L2(−∞, 0), i = 0, 1, . . . , mj − 1, j = 1, 2, . . . , �

or by (30),

Un(·, µj) ∈ L2(−∞,∞), n = 0, 1, . . . , mj − 1, j = 1, 2, . . . , �.(33)

U0(x, µj), U1(x, µj), . . . , Umj−1(x, µj)

are called the principal functions corresponding to the eigenvalues µj = λ2j , j =

1, 2, . . . , � of L. In the above U0(x, µj) is an eigenfunction; U1(x, µj), . . . , Umj−1
(x, µj) are the associated functions of U0(x, µj), [6].

If µ�+1 = λ2�+1, . . . , µk = λ2k are spectral singularities of L (i.e. λ�+1, . . . , λk are
real zeros of α), then we can find

(34)
{ ∂v

∂λv
e+(x, λ)

}
λ=λp

=
v∑

i=0

(
v

i

)
bv−i(λp)

{ ∂i

∂λi
e−(x, λ)

}
λ=λp

for v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k, in a way similar to Theorem 4.1.
Let us introduce the following functions:

Uv(x, µp) =




v∑
i=0

(
v

i

)
bv−i(λp)

{ ∂i

∂λi
e−(x, λ)

}
λ=λp

, −∞ < x < 0,

{ ∂v

∂λv
e+(x, λ)

}
λ=λp

, 0 � x < ∞

for v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k. It is trivial from (5) and (6) that

{ ∂v

∂λv
e+(·, λ)

}
λ=λp

/∈ L2(0,∞), v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k,

{ ∂i

∂λi
e−(·, λ)

}
λ=λp

/∈ L2(−∞, 0), i = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k
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or by (34),

Uv(·, µp) /∈ L2(−∞,∞), v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k.

Now let us consider the Hilbert spaces

H(−∞, 0;m) =

{
f ;

∫ 0

−∞
(1 + |x|)2m|f(x)|2 dx < ∞

}
,

H(−∞, 0;−m) =

{
f ;

∫ 0

−∞
(1 + |x|)−2m|f(x)|2 dx < ∞

}
,

H(0,∞;m) =
{

f ;
∫ ∞

0
(1 + |x|)2m|f(x)|2 dx < ∞

}
,

H(0,∞;−m) =

{
f ;

∫ ∞

0
(1 + |x|)−2m|f(x)|2 dx < ∞

}
,

H(−∞,∞;m) =
{

f ;
∫ ∞

−∞
(1 + |x|)2m|f(x)|2 dx < ∞

}
,

H(−∞,∞;−m) =

{
f ;

∫ ∞

0
(1 + |x|)−2m|f(x)|2 dx < ∞

}
.

It is evident that

H(−∞, 0; 0) = L2(−∞, 0), H(0,∞; 0) = L2(0,∞), H(−∞,∞; 0) = L2(−∞,∞),
H(−∞, 0;m) � L2(−∞, 0) � H(−∞, 0;−m), m = 1, 2, . . . ,

H(0,∞;m) � L2(0,∞) � H(0,∞;−m), m = 1, 2, . . . ,

H(−∞,∞;m) � L2(−∞,∞) � H(−∞,∞;−m), m = 1, 2, . . . .

Let H ′(−∞, 0;m), H ′(0,∞;m) and H ′(−∞,∞;m) denote the duals of

H(−∞, 0;m), H(0,∞;m) and H(−∞,∞;m),

respectively. Obviously H ′(−∞, 0;m), H ′(0,∞;m) and H ′(−∞,∞;m) are isomor-
phic to H(−∞, 0;−m), H(0,∞;−m) and H(−∞,∞;−m), respectively [2].
Using (5) and (6) we arrive at

{ ∂v

∂λv
e+(·, λ)

}
λ=λp

∈ H(0,∞− (v + 1)), v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k,

{ ∂i

∂λi
e−(·, λ)

}
λ=λp

∈ H(−∞, 0;−(i+ 1)), i = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k,

or by (34)

(35) Uv(·, µp) ∈ H(−∞,∞;−(v + 1)), v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k.
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Let us choose so that

m0 = max{m�+1, m�+2, . . . , mk}.

We will use the notation

H+ = H(−∞,∞;m0 + 1), H− = H(−∞,∞;−(m0 + 1)).

It is trivial that the dual of H+ is isomorphic to H− (H ′
+ ∼ H−) and

H+ � L2(−∞,∞) � H−.

Thus, from (35) we have

Theorem 4.2. Uv(·, µp) ∈ H− for v = 0, 1, . . . , mp − 1, p = �+ 1, �+ 2, . . . , k.

U0(x, µp), U1(x, µp), . . . , Ump−1(x, µp)

are called the principal functions corresponding to the spectral singularities µp = λ2p,

p = �+ 1, �+ 2, . . . , k of L. In the above U0(x, µp) is the generalized eigenfunction,

U1(x, µp), . . . , Ump−1(x, µp) are the generalized associated functions of U0(x, µp), [4].

The spectral expansion in terms of the principal functions of the operator L will

be the subject of another article.
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