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Abstract. In this article, we consider the operator L defined by the differential expression
(y) =—y" +a(x)y, —oo<w<oo

in La(—00,00), where ¢ is a complex valued function. Discussing the spectrum, we prove
that L has a finite number of eigenvalues and spectral singularities, if the condition

sup {exp(a/ﬁﬂq(xﬂ} <oo, €>0

—oo<r<oo

holds. Later we investigate the properties of the principal functions corresponding to the
eigenvalues and the spectral singularities.

1. INTRODUCTION

Let us consider the non-selfadjoint one dimensional Schréodinger operator Lo de-
fined by the differential expression

bo(y) = —y" +q(x)y, 0<z < oo

and the boundary condition y(0) = 0 in L2(0,00), where ¢ is a complex valued
function. The spectral analysis of Ly was started by Naimark [10] in 1960. In
his article he proved that some of the poles of the resolvent’s kernel of L are not
eigenvalues of the operator. Also he showed that those poles (which are called
spectral singularities by Schwartz [15]) are on the continuous spectrum. Moreover
he showed that the spectral singularities play an important role in the discussion of
the spectral analysis of Lo, and if the condition

/ lg(x)| exp(ex) dz < 00, €>0
0
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holds then the eigenvalues and the spectral singularities are of finite number and each
of them is of finite multiplicity. The effect of spectral singularities in the spectral
expansion of the operator Ly, in terms of the principal functions, was investigated in
[7]. Some problems related to spectral analysis of differential and some other types
of operators with spectral singularities have been discussed by several authors [1],
(4], [5], [8], [11]-[13].

Now let us consider an operator L defined by the differential expression

ly) =—y" +q(x)y, —oo<z<oo

in Ly(—00,0), where ¢ is a complex valued function. L is called the one dimensional
Schrédinger operator on the whole real axis. Since ¢ is a complex valued function,
the operator L is non-selfadjoint.

The above result of Naimark has been generalized to the operator L by Blashak
[3]. Blashak has proved that the operator L has a finite number of eigenvalues and
spectral singularities, if

(o]
(1) / lg(z)| exp(elz])dz < 00, € >0
— 00
holds.
In the present article, we discuss the discrete spectrum of L and prove that this
operator has a finite number of eigenvalues and spectral singularities and each of
them is of finite multiplicity, under the condition

(2) sup {exp(m/ﬁﬂq(xﬂ} < oo, €>0.
—oo<x<oo

Afterwards, the properties of the principal functions corresponding to the eigenvalues

and the spectral singularities of L are obtained.

Obviously the condition (2) is weaker than the condition (1). Under the condition
(1) the finiteness of the eigenvalues and the spectral singularities of L is obtained
by finite meromorphic continuation of the resolvent’s kernel from the continuous
spectrum [3]. But under the condition (2) there is no such finite meromorphic con-
tinuation. Hence the method of [3] can’t be used in this case.

In the following, we use the notation

Ci={\: AeCImA>0}, Ty={\: AeCImA>0}

Also, 04(L) and o 4(L) will denote the eigenvalues and the spectral singularities
of L, respectively.
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2. PRELIMINARIES
Let us consider the following differential equation:
(3) —y" +q(z)y =Ny, € (—00,00)

where ) is a complex parameter. For the moment, we will assume that

(4) / " (1 + J2l)la(@)| dz < o0

— 00

holds and we introduce the notation
@)= [l ot @) = [ ot
o (z) = / )] dt, op (2) = / o (1) dt.

— 0 —o0

Under the condition (4), the equation (3) has solutions [9]

(5) et (z,\) = e + / Kt (x,t)e™ dt
and
(6) e (z,\) = e AT 4 / K~ (z,t)e M dt

for all A € T, where K*(x,t) are differentiable with respect to = and ¢, and satisfy
the inequalities

@ 5w 1)| < 5ot (Tat ) exp {oi () — o (T3 ).

0 1 /z1+x 1 T+
) |t 7 1a(F57)| < gt @)ot (B 57 ew ot (@),

Therefore the solutions e™ (z, \), e~ (x, \) are analytic in C; with respect to A and
continuous on the real axis.
Now let us introduce

a(A) == W{et(z,\), e (2, )},
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where W{e™(x, A),e™ (x,\)} is the Wronskian of the solutions et (z, A) and e~ (z, A).
It is obvious that the function « is analytic in C; and continuous on the real axis.
So the following equalities are satisfied [3], [9]:

(9) a(N) = =20+ 0(1), AeCi, [N — o0,
(10) oa(L) = {p: p =N, XeCy,al)) =0},
(11) 0ss(L) = {p: p =N, \€E (—00,00),a(N) = 0}.

Definition 2.1. ([7]) The multiplicity of a zero of a in C. is called the multiplicity
of the corresponding eigenvalue or spectral singularity of L.

We need the following uniqueness theorem obtained from [12]:

Theorem 2.2. ([12]) Let us assume that the function g is analytic in C,., all of
its derivatives are continuous on the real axis and there exists N > 0 such that

(12) 9™\ < em, m=0,1,2,... Ae Ty, |)<2N,
and
N s}
In|g(z ln|g(z
1 | o <o | [,
(13) / D] 0] < o A 4o < o0

hold. If the set G with Lebesgue measure zero is the set of all zeros of the function
g with infinite multiplicity and if

h
(14) /0 In F(s)du(Gs) = —c0

holds then g(\) = 0, where F(s) = inf ”’;n—g,m, m=0,1,2,..., u(Gs) is the Lebesgue
measure of the s—neighborhood of G and h is an arbitrary positive constant.

3. EIGENVALUES AND SPECTRAL SINGULARITIES

It is clear from (10) and (11) that, in order to investigate the quantitative prop-
erties of the eigenvalues and the spectral singularities of L, we need to discuss the
quantitative properties of the zeros of a in C.

Let P; denote the zeros of the function « in C; and P, the zeros of the function
« on the real axis.

Lemma 3.1. Under the condition (4)
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a) The set Py is bounded, has at most a countable number of elements and its
limit points can lie in a bounded subinterval of the real axis.
b) The set P, is compact and its Lebesgue measure is zero.

Proof. The boundedness of P; and P, is obtained from (9). Since « is analytic
in C;, then the set P has at most a countable number of elements. From the
uniqueness of analytic functions and (9), it is deduced that the limit points of P; can
lie only in a bounded subinterval of the real axis. The closedness and the property
of having Lebesgue measure zero of the set P, can be obtained from the uniqueness
theorem of the analytic functions due to Privalov [14]. O

From (10), (11) and Lemma 3.1 we have

Remark 3.2. The sets of eigenvalues and spectral singularities of L are bounded,
at most countable and their limit points can lie only in a bounded subinterval of the
positive real axis if the condition (4) holds.

Lemma 3.3. The function « satisfies

(15) a(\) = —2i\ + /Oo q(t)dt + /Oo A(t)e™ dt,
0

where
(16)  A(t) = K;7(0,t) + K~ (0,0)K7(0,2) + K, (0, —t) — K[ (0,1)

— Ky (0,—t) + K7(0,0)K (0, —t) + (K # K )(t) — (K[« K7)(t)
in which (x) is the convolution operation.

Proof. By the definition of the Wronskian of the solutions e™ (z, \), e~ (z, \)
we have

(17) a(N) = et (0, Ve (0,)) —eF(0,\)e(0,N).
Substituting the values of e*(0,\), ef(0,A), e~ (0,A) and e, (0,) into (17) we
obtain (15). O

Now let us assume that

(18) sup {exp(m/@ﬂq(xﬂ} <oo, £>0

—oo<r <00

holds. From (7) and (8) we find

e [lx+t
(19) (K (0], |KE (2,01, K (2,)] < cexp{ 2/ IZEA1,
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where ¢ > 0 is a constant, and also we get

(20) A < cexp{ 51/}

by (16) and (19). This shows that the function « is analytic in C, all of its deriva-
tives are continuous up to the real axis and

d™a(A _
(21) \Tfn)\<cm, AeCy,m=1,2,...
hold where
c1 = 2+22c/ texp{—%\/f} dt,
0
(22) Cm = 2m+1c/ t™m exp{—gx/f} dt, m=2.3,...,
0

in which ¢ > 0 is a constant.

Let us denote the sets of all limit points of P; and P by Ps and Py, respectively,
and the set of all zeros of o with infinite multiplicity in C, by Ps. It is obvious from
the uniqueness theorem of the analytic functions that

P3 C PQ, P4 C PQ, P5 - PQ.
Since all derivatives of the function « are continuous up to the real axis, we get
(23) Ps C Ps, P, C Ps.

Lemma 3.4. P5 = (.

Proof. It is trivial from Lemma 3.1 and (2.1) that « satisfies the conditions
(12), (13) of Theorem 2.2. Since a(X) Z 0, (14) yields

h
(24) /0 In F(s)dp(Ps,s) > —0

Co s™

(3
m!

where F'(s) = inf wu(Ps ) is the Lebesgue measure of the s-neighborhood of

Ps and ¢, are constants defined by (21) and (22). Now we will obtain the following
estimates for ¢,,:

(25) cm = 2m+lc/ im exp(—%ﬂ) dt < 23mHc2mAD) (9, | 9)2mHl )
0
1\m
= 2 ST mAL) yym (1 + —) (m+ 1)m! < Bb™m™m!
m
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where B = ¢2%ec~2and b = 2%ec 2. Substituting (25) into the definition of F(s), we
arrive at
F(s) < Binf{b™s™m™} < Bexp{—b's 'e '}

or by (24)

h
(26) /0 éd/j,(Pg),s) < 0.

The inequality (26) holds for an arbitrary s if and only if u(Ps ) =0or Ps =0. O

Lemma 3.5. o has a finite number of zeros with finite multiplicity in C,.

Proof. From (23) we get that
(27) Py= P, = 0.

We obtain the finiteness of the sets P; and P» by Lemma 3.1 and by (27). Since
Ps = 0, all of the zeros of the function o have finite multiplicities. O

Summarizing the above arguments we have

Theorem 3.6. The operator L has a finite number of eigenvalues and spectral
singularities and each of them is of finite multiplicity if the condition (18) holds.

4. PRINCIPAL FUNCTIONS

In this section we assume that (18) holds. Let A1, ..., A¢ denote the zeros of « in C.
(ie. A2,..., )\3 are the eigenvalues of L) with multiplicities my, ..., my, respectively.
Similarly let Ag41,..., A\x be the zeros of « on the real axis (i.e. A?_H, ...y A? are the
spectral singularities of L) with multiplicities my11, ..., mg, respectively. It is trivial
that
(28) [Ewleten.e @)} ={Sam) =0
dan dan

A=Xj A=Xj

holds forn =0,1,...,m; —1,j=1,2,...,¢ If n = 0 we get
(29) et (z, M) = ao(\j)e  (x, ), j=1,....0

So ao()\j) 75 0.
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Theorem 4.1. The formula

(30) {%eﬂx, /\)}A:Aj - Xn: (?) an_i{aa)iie_(x, /\)}A:Aj

=0

holds for n = 0,1,...,m; — 1, j = 1,2,...,{, where the constants ao,a1,...,0n,
depend on \;.

Proof. We will proceed by mathematical induction. For n = 0, the proof is
trivial from (29). Let us assume that for 0 < ng < m; — 2, (30) holds; i.e.

(31) {%e*(w,)\)}/\:/\. - i (77;’0) anoi{aa_)iie(x’)\)}x—xj'

J i=0

Now we will prove that (30) holds for ng + 1, too. If y(x, A) is a solution of equation
(3) then %y(x,)\) satisfies

d2 om n—1 n—2

(82) {—— +a(@) =X} 520w, \) = 2y, X) + n(n — 1) sy, ).

Writing (32) for e™(z, \;) and e (z, \;) and using (31) we find

d2
{57 +4@) = X} faona(@A) =0

where

gro+1 no+1 ot
fno+1(x7/\j) = {a)\:ﬁ»l ‘r )\ } o Z < 0+ 1>an0+1_i{ﬁe_(x’)\)}>\_>\ '

From (28) we have

no+1
W fno 1 (2, 7). €7 (2, )] = {ﬁWk*(%A),e*(x,A)]} =0.

A=A
Hence there exists a constant a,,+1(A;) such that
fno-‘rl(x’ /\j) = a"o-‘rl(/\j)e_(x’ )‘j)'

This shows that (32) holds for n = ng + 1. O
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Let us introduce the functions

En: (7) an,i()\j){ o

)4 nc (x,)\)}/\:/\j, —oo <z <0,
Un(xvuj) = Zi%n

— Tt <
{8)\"6 (x,)\)}/\:/\j, 0<z <o

forn =0,1,...,m; =1, j = 1,2,...,£ where y; = A3; using (5), (6) and (19) we

arrive at

o, .
{We (.,/\)} L €La(0,00) n =01 my =1, =120

A= J

9 _ .
{C,We (.,/\)}A:Aj € Loy(—00,0), i=0,1,...,m; —1, j=1,2,....¢

or by (30),

(33) Un(-, pj) € La(—00,00), n=0,1,...,m; — 1, j=1,2,...,L.
UO(xnu’j)?Ul(xnuj)v"'7Um3'71(x7/1'j)

are called the principal functions corresponding to the eigenvalues u; = )\?, j =
1,2,...,¢ of L. In the above Up(z,p;) is an eigenfunction; Ui(x, i), ..., Up,—1
(x, ;) are the associated functions of Uy(z, p;), [6].

If g1 = M) 5.,k = A} are spectral singularities of L (i.e. Agt1,..., A are
real zeros of a), then we can find

P

(34) {%e"‘(w,/\)})\_)\p - :0 (Z) bv—i(/\p){aa;ie_(x,/\)})\:)\

forv=0,1,...,m,—1,p=0+1,042,...,k, in a way similar to Theorem 4.1.
Let us introduce the following functions:

IR,

2 ¢ (ac,/\)}AiA, —oo <z <0,
UU(JJ,/,LP) = =0

{%eJr(x’)\)}A:Ap’ Osw<oo

forv=0,1,...,m,—1,p=¢+1,£+2,... k. It is trivial from (5) and (6) that

o
{mve (")\)})\:Ap ¢ Ly(0,00), v=0,1,...,m,—1, p=L+1, {+2,...,k,

o .
{C,We (-,)\)}A:A ¢ Ly(—00,0), i =0,1,....,my—1, p=L+1, (+2,....k

D
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or by (34),
Uy(, ptp) & La(—00,00), v=0,1,....mp,—1, p=~L+1, £+2,... k.

Now let us consider the Hilbert spaces
0
H(=oc,0:m) = { £ / (U a1 @) do < .

H(—00,0; —m) {f, 1+|x|)_2m|f(x)|2dx<oo},

oo

E

H(0,00;m) 1—|—|x|)2m|f( )|2dx<oo},
H(0,00; —m) f;

(L4 [2) 2| (2) dar < oo},

oo

i 1+|m|)2m|f(w)l2dx<oo},

o\\o\go\\

1
{
= ]
{

Fo [ @t a) )P de < oo}.

H(—00,00; —m)

It is evident that

H(—00,0;0) = La(—00,0), H(0,00;0) = L2(0,00), H(—00,00;0) = La(—00,00),
H(—00,0;m) ; Ly(—00,0) g H(—00,0;—m), m=12,...,
H(0,00;m) G L2(0,00) G H(0,00;—m), m=1,2,...,
H(—00,00;m) G La(—00,00) G H(—00,00;—m), m=1,2,....

Let H'(—00,0;m), H'(0,00;m) and H'(—00,00;m) denote the duals of
H(—00,0;m), H(0,00;m) and H(—o0,00;m),

respectively. Obviously H'(—o0,0;m), H'(0,00;m) and H'(—o0, 00;m) are isomor-
phic to H(—o0,0; —m), H(0,00; —m) and H(—o00, 00; —m), respectively [2].
Using (5) and (6) we arrive at

o
{We (.,,\)}A:Ap € HO,00— (v+1)), v=0,1,....mp—1, p=C+1,0+2,... .k

o . .
{we (.,,\)}A y EH(00, 0+ 1), =01y =1 p= L+ 1,042,k

or by (34)
(35) Uy(-ypp) € H(—00,00; —(v+1)), v=0,1,....mp—1, p=0+1,0+2,... k.
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Let us choose so that

mo = max{mey1, Mey2,..., Mg}

We will use the notation

H, = H(—o0,00;mg + 1), H_ = H(—00,00; —(mg + 1)).
It is trivial that the dual of H, is isomorphic to H_ (H! ~ H_) and

Hy G La(—00,00) G H-.

Thus, from (35) we have

Theorem 4.2. U,(-,up) € H_ forv=0,1,...,m, =1L, p=0+1,0+2,... k.

Uo(xvﬂp)v Ul(xvﬂp)v ) Umpfl(‘rnup)

are called the principal functions corresponding to the spectral singularities i, = )\IZJ,

p=L+1,0+2,...,k of L. In the above Uy(z, ) is the generalized eigenfunction,

Uiz, pip), ..., Um,—1(x, j1p) are the generalized associated functions of Uy (x, pp), [4].

The spectral expansion in terms of the principal functions of the operator L will

be the subject of another article.
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