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Abstract: Simulated annealing construction of shortest (spanning/nonspanning
and closed/open) paths on generál connected graphs is discussed. A brief graph-
theoretical analysis of the problém is given. A theorem has been proved that for
connected graphs the shortest paths are semielementary, that is each edge on the
path is visited at most twice in opposite directions. This observation considerably
reduces the search space. Tasks may be further specified depending on whether
the initial and terminál vertices are given or not. Similarly, in construction of
shortest open paths a subtask is considered when the path must visit a prescribed
subset of graph vertices. Illustrative calculations demonstrate that the proposed
method results for incomplete graphs in the paths that are dosely related to optimal
Solutions.
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1. Introduction

The search for shortest Hamiltonian path in a complete graph with evaluated edges
has become a standard task for operations research [2]. It is still in theory non-
polynomial, but many useful heuristics háve been suggested to find at least a sub-
optimal solution. However, there are some drawbacks in applying most of these
algorithms in practical applications. One of the shortcomings is the requirement
for completeness of the graph, which is usually mended by evaluation of nonexis-
tent edges by sums of the evaluation of edges on the shortest path between two
vertices. Another drawback is the appearance of constraints and multiple goals,
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such as creating shortest paths with necessity to visit some prescribed vertices.
This can be attended to by a proper definition of an objective function; however,
some algorithms do not handle the changed objective function very well.

Simulated annealing [1], [6], [8], [9], [10] has already been ušed many times for
the search of Hamiltonian paths and occasionally for finding the shortest paths
with some specified requirements. Simulated annealing does not need to introduce
nonexisting edges to provide a complete graph and naturally handles an objective
function with multiple goal evaJuation. However, the extent of the search space
of this kind of tasks is tremendous and whatever approach helps to curb it is
welcome. The presented approach reduces the search space by looking only for
semielementary paths (an edge is visited at most twice in opposite directions),
which provides Solutions that are of the same quality as is the quality of Solutions
without restrictions to semielementary paths. The shortest spanning paths, both
dosed and open, and other “shortest” paths with some additional requirements
must be semielementary.

2. A brief outline of simulated annealing
The simulated annealing algorithm [1], [6], [10] is based on the analogy between the
simulated annealing of solids and the problém of solving the large scale optimization
problém. In physics annealing denotes a process in which a solid placed in a heat
bath is heated up by increasing the temperature of the bath to the maximum value
at which all particles of the solid are randomly arranged, followed by a cooling
period with slowly decreasing temperature of the heat bath. All particles arrange
themselves in the low energy statě of the corresponding solid, assuming that the
maximum temperature is sufficiently high and the cooling is carried out sufficiently
slowly. Staxting off at the maximum value of temperature, the cooling phase can
be described as follows: At each temperature T, the solid is allowed to reach
thermal equilibrium, described by the probability of being in a statě i with energy
Ei determined by the Boltzmann distribution

wt {Ei) (1)

where the Boltzmann constant, and the summation runs over all States i of the
solid. As the temperature T decreases, the Boltzmann distribution concentrates
On the State with the lowest energy, and finally, when temperature approaches
zero, only the statě with the minimal energy has a nonzero (unit) probability of
occurrence.

In order to simulate the evolution to thermal equilibrium of a physical sys¬
tém (e.g. a many-particle solid or liquid) for a fixed value of the temperature T,
Metropolis [10] suggested the Monte Carlo method, which generates sequences of
the States of the systém in the following way: Given the current statě of systém
(determined by positions of particles) a smáli random perturbation is generated so
that particles are displaced. If the diíference AE = Eperturbed — Ecurrent between
the perturbed statě and the current statě is negative {Eperturbed < Ecurrent), then

278



Pospíchal J., Kvasnička V.: Simulated annealing construction of shortest...

the current statě is replaced by the new perturbed statě and the process is con-
tinued. In the opposite čase, if AE > 0, then the probability of acceptance of the
perturbed statě, Pr{perturbed ^ current), is given by exp{—AE/kBT))

Pr {perturbed <- current) = min (1, exp {—AE/ksT)) (2)

This acceptance rule of new States is called the Metropolis criterion. Follow-
ing it, the systém eventually evolves into thermal equilibrium, and after a large
number of perturbations, using the acceptance criterion (2), the probability dis-
tribution of States approaches the Boltzmann distribution (1). This form qf the
Monte Carlo method is known in statistical mechanics as the Metropolis algorithm
[10]. In order to formalize the Metropolis algorithm we introduce the following
notation (useful also for our forthcoming discussion on applications of the method
of simulated annealing to optimization of large scale problems): The statě of a
systém is determined by a statě - variable x (in generál, a vector composed of
many reál entries) and an analogue of the energy f{x) (treated as a function of
x). The process of perturbation of the statě x onto another statě x' is represented
by a stochastic function x' = Opertur{x). The stochastic character of this function
consists in random changes of the entries of x onto entries of x'.

The Metropolis algorithm can be ušed for the Computer simulation of the
method of simulated annealing. It can be now viewed as a sequence of Metropolis
algorithms performed for a sequence of properly decreasing values of the temper-
ature and moreover, an output statě from the Metropolis algorithm serves as an
input State for the next Metropolis algorithm. Initially, the temperature is given
by a high value Tmax and the Metropolis algorithm is applied until equilibrium is
achieved (by rmax times, where rmax is the parameter of the Metropolis algorithm).
The temperature is then lowered in steps (e.g. by T ^ aT, where 0 a < 1),
with the systém being allowed to approach equilibrium for each step by generating
a sequence of States in the previously described way. The algorithm is terminated
for some smáli value of temperature Tminy for which virtually no deterioration is
accepted anymore. The finál “frozen” statě is then taken as the resulting solution.

The method of simulated annealing was formulated in a generál way so that
“physical ballast” was removed, though some physical terminology still ušed plays
a role of fruitful heuristics useful for better intuitive understanding of the method.
The main purpose of the simulated annealing is a search for a globál solution of
large-scale optimization problems of the type

Xopť = arg min/(x) (3)
x^D

where f{x) is a reál function determined over the domain D (usually discrete and
finite), and Xopt is a value of variable corresponding to the globál minimum of f{x)
over D. The variable x is considered as a statě of hypothetical physical systém
and function f{x) expresses its “energy”. Then, after the above considerations,
the optimization problém (3) may be successfully approached by the method of
simulated annealing. The parameter “temperature” T plays now the role of a
control parameter of the method.
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3. Graph theory and construction of paths
on graphs

Let G = (F, E) be a connected (undirected) graph [5] without multiedges composed
of vertices from the vertex set V and edges from the edge set E. An edge of G,
incident with vertices v, v' G V, is denoted by an unordered pair [v, v'] G E. The
cardinalities of these two sets 11^1=^ and \E\ = q correspond to the numbers of
vertices and edges, respectively, in G. In our forthcoming considerations we will
consider only connected graphs, i.e. each vertex is reachable from another vertex
by a sequence of edges. A path P = {vi,V2,... ,Vk) of length |F| = fc — 1 on the
graph G is an alternating sequence of fc - 1 edges [ui, V2], [v2,U3],..., [ufc_i, Vk] and
k vertices vi, V2,...,> 0) so that each vertex (except the first and the last) is
incident with the preceding edge, and with the succeeding edge. Vertices from path
P form a vertex subset V (P) C V(G), each vertex from V(P) is visited by path P
at least once. A spanning path visits each vertex of G, i.e. V(P) = V(G). A path is
C2dled dosed if the initial and terminál vertices coincide (ui = v*), in the opposite
čase (i.e. the initial and terminál vertices are different, vi ^ Vk) it is called open.
An elementary path is one in which no edge and no vertex occurs more than once,
except in the čase of starting and terminál vertices in dosed paths. A Hamiltonian
path is an elementary spanning path, i.e. it contains all vertices of the graph and no
edge and no vertex occurs more than once. The concept of Hamiltonian path (dosed
or open) is of great importance in applications of graph algorithms, in particular
in operations research [2]. Unfortunately, in graph theory [5] there does not exist
a theorem that simultaneously specifies necessary and sufficient conditions for the
existence of Hamiltonian paths on the graph. Until now the known theorems only
separately specify sufficient or necessary conditions.

The following three different tasks of construction of shortest paths on graphs
will be considered (see Fig. 1).

(1) Ti, construction of the shortest dosed spanning path.
(2) Construction of spanning shortest paths

(2a) T2^\ initial and terminál vertices are not specified,
(2b) T2^\ the initial vertex is specified and the terminál vertex is not specified,

and

(2c) T2^\ initial and terminál vertices are specified.
(3) Construction of shortest paths, divided into two subtasks:

(3a) initial and terminál vertices are specified (standard task
of algorithmic graph theory (Christofides, 1975),

(3b) , same as above but path contains a set of prescribed vertices.

The first problém that will be considered is to suggest a method of construction
of dosed paths on connected graphs. Let us assign to the graph G = {V, E) its
directed counterpart denoted by G so that its vertex and edge sets are determined
as follows (see Fig. 2)
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A B CD

Fig. 1 Different types of paths on the given graph, heavy dots indicate ini-
tial/terminal vertices: (A) dosed spanning path, (B) open spanning path, (C) open

path, (D) open path visiting prescňbed vertices labeled by encircled vertices.

Fig. 2 A directed graph G may be assigned to a (undirected) graph. G. Each edge
[v, v'] € E{G) is substituted by a pair of directed edges {v, v'), {v', v) € E{G).

v{G) = V{G) (4a)

E{G) = {(v, v'), {v', v)] [v, v'] e E{g)} (46)
Each edge [v, v'] € E{G) is substituted by two directed edges {v, v'), {v', v) G E{G).
A directed path P = {vi,V2, ■ ■ ■ ,Vk) constructed on the directed graph G is con-
sidered as a sequence of A: - 1 directed edges (vi, V2), (^2,1^3), • • •, {vk-i,Vk) Path
P on the directed graph G is called semielementary if none of its directed edges
occurs more than once. Similarly, the same notion can be introduced also for the
undirected graph G. Path P on G is called semielementary if its each edge is visited
at most twice in opposite directions.

The directed graph G ha;s always a dosed spanning semielementary path. This
property important for our forthcoming considerations can be simply proved as
follows (see Fig. 3): Spanning tree of G can be always constructed by removing
the so-called ring closure edges [5] (graph B in Fig. 1). An arbitrary vertex of
this spanning tree may be classified as a root; it is employed as the initial (and
terminál) vertex of the dosed path to be constructed. By starting from the root
and going successively from the left to right hand side through all branches in the
tree all its vertices are subsequently visited (see graph D in Fig. 3). The thus
constructed path may be interpreted with respect to the directed graph G as a
semielementary dosed path, where no directed edge was visited more than once.
To summarize, we háve proved that each connected graph has a dosed spanning
path, where edges are visited at most twice (in opposite directions).
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P=(1,2.13,4.3.1) P=(1.2,3,I.3.2,I) P=(I.2,3,4.3,I)

Fig. 3 A formal outline of the proof that each graph G (A) has a dosed semiele-
mentary spanning path. Initially, by removing from the G ňng closure edges we
get its spanning tree (B), ťhis tree is interpreted as the rooted tree (C) by select-
ing an arbitrary vertex as the root. Then, a dosed spanning path (D) is easily
constructed for the rooted tree so that all vertices are successively visited. The con-
structed dosed spanning path on the rooted tree may be considered also as a dosed
spanning path of the originál graph (E), its length being equal to six. If the dosed
path is randomly constructed, then it may happen that the path is coming to the
initial vertex so that it cannot be extended further to a spanning dosed path (F).
Finally, the graph has a dosed spanning path (G) of shorter length (five) than that

one constructed previously by the spanning rooted tree.

Theorem 1. Each graph has a dosed semielementary spanning path.

Similar considerations can also be ušed to prove that for an arbitrary pair of
vertices of the connected graph G there exists an open semielementary spanning
path so that the vertices of a chosen pair are initial and/or terminál.

•Theorem 2. For arbitrary two vertices of a graph an open semielementary span¬
ning path exists so that the chosen vertices are initial and/or terminál vertices of
this path.

Both these theorems are of great importance for our forthcoming considera¬
tions as they ensure that for each connected graph semielementary spanning paths
exist regardless whether they are dosed or open and for arbitrary initial/terminal
vertices.

The construction of dosed semielementary paths on graph G is carried out by
making use of the so-called extension process performed on the directed graph G.
Let P = {vi,V2,... ,Vk) be a semielementary path on graph G, and Ě be a subset
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of E{G) composed of edges that are not contained in path P

Ě = E{G)\{{vi,V2) ,{V2,V3),...,{Vk-l,Vk)} (5)
Vertices that are candidates for an extension of P by one vertex so that the resulting
path is again semielementary, form the subset

r = G (6)

composed of all vertices that are adjacent to the terminál vertex Vk of path P by
edges outgoing from Vk and that are not ušed in path P. An extension of P is
formally expressed by

P' = Oe.t (P) (7a)
where path P is extended to path P' by a vertex Vk+i = v randomly selected from
subset r,

p = (^^1,1^2,...,^^*) -> P' = {vi,V2,...Vk,Vk+i = v) (76)
If subset r is empty (i.e. F = 0), then the process of extension is inapplicable and
path P is called nonextendible and is dosed.

Theorem 3. Let P be a semielementary path on graph G with set F defined by
(15). (1) If F 0, then P is extendible by P' = Oext{P) or (2) if f = 0, then P is
nonextendible dosed semielementary path (i.e. vi = Vk)-

The proof may be simply doně following the above discussion ensuring the
existence of dosed paths (spanning or not spanning) in graph G and by the fact
that all vertices v G V{G) háve the same in- and out-vaJences, valin{v) = valout{v)-
The only vertex, where one could end up without a possibility to go further through
a new edge is then the starting vertex. The theorem says nothing about the fact
whether the process of extension results in a spanning path or not. Fig. 3 (diagrams
E and F) gives two illustrative examples of paths that are both nonextendible but
only E is spanning while F is not spanning.

Theorem 4. Any path (dosed or open) on a graph can be transformed into a
semielementary path composed of the same vertices and of the same (or shorter)
length as the originál path.

This theorem can be deduced from model transformations displayed in Fig. 4.
For instance, let us consider a path P that visits an edge e twice in the same direc-
tion (see the left hand side graph in diagram A, Fig. 4). Path P can be transformed
into another path P' so that edge e is not visited (see the ňght hand side graph in
diagram A, Fig. 4). This means that the length of P is shorter than the length of
P, |P'| z= |P| — 2d{e), where d{e) is a “length” of edge e. Similar considerations are
applicable also for more complicated cases when path P visits edge e more than
twice in the same direction (see diagrams B and C in Fig. 4). These more com¬
plicated examples are transformed into paths that are semielementary and their
lengths are shorter than the lengths of originál paths.
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VQ' : OM —
A

P P'

C

Fig. 4 Examples of transformations, which modify any nonsemielementary path
going through a pair of adjacent vertices (represented by shaded ellipses) in the
same direction to a shorter path containing all the vertices of the originál path.
Basic transformation is shown on diagram A, whereas diagrams B and C are only
applications of the basic proceduře to more complicated cases. The length of the

new path is shorter than the originál path by the length of two deleted edges.

Theorem 4 ensures that any shortest path (with some possible additionaJ re-
quirements like being Hamiltonian or going through specified vertices) must be
semielementaxy. So when we are looking for a shortest path, we can restrict the
search space to semielementaxy paths only. The use of this theorem considerably
reduces the size of the seaxch space and also the computational time.

According to the above discussion, a construction of the dosed path on graph G
may be carried out so that a dosed path on graph G is constructed. Then, since the
constructed path on G is semielementaxy (each directed edge on the path is visited
at most once), the corresponding path on G is also semielementary, that is it may
contain the same undirected edges at most twice (visited in opposite directions).
The process of construction of a path is initiated by an axbitrarily selected vertex
(formally considered a path). Let us assume that a subpath P = {vi,V2, • ■ ■ ,Vk)
is already constructed, a new path is constructed from P by the above extension
process. This successive extension of the constructed path is terminated either if
the current path is nonextendible (F = 0) or if the path is simultaneously dosed and
composed of all vertices of G. It may happen that the generated path is dosed but
not spanning, in this čase the path should be penalized to an extent proportional to
the number of vertices of G not participating in the path. The objective function
assigned to a dosed path P = {viyV2, • ^ - ,Vk), which is ušed in our simulated
annealing studies is determined as follows

f{P) = k + u{\V{G)\-\V{P)\) (8)
where a; is a smáli positive constant ušed for the penalization of the diflference
between caxdinalities of the vertex sets ^(G) and V{P) (composed of vertices
psirticipating in the path P), in our illustrative calculation we ušed uj = 0.01. In
an ideál čase, if graph G has a Hamiltonian dosed path, then the minimal value of
the objective function (17) is f{Popt = l^^l*

A perturbation of a dosed path P = {vi,V2,... yVk) into another dosed path
P' = {v[yV2,... yv'i^,) is formally expressed by
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P' = Opeříš (P) (9)

This transformation is carried out so that starting from a randomly selected index
k path P is randomly extended until it gets dosed. It is doně by the extension
process described in the text following Theorem 2, which is applied to a subpath
P = {vi,V2,.. ■ ,Vk) in a way fully analogous to the method of construction of
the dosed path discussed above. In order to make the perturbation process more
flexible we introduce the so-called inversion operátor

P = Oinv {P) (10)

where the resulting path P is determined by the inverse order of its entries-vertices
with respect to the originál path P

Vi = Vk-i+i (for i = 1,2,... k) (11)

Applying the inverse operátor Oinv we may say that two types of perturbations
exist; The forward perturbation, P' = Opertur{P), and the backward perturbation,
P — Opertur{Oinv (P))-

A few generál remarks on incorporation of the above described approaches into
the simulated annealing method. The expectation that the method of simulated
annealing could provide a correct optimal solution (i.e. corresponding to the globál
minimum of objective function (8)), is based on an assumption that a dosed span-
ning shortest path on a connected graph is semielementary, see Theorem 4. An
important moment in our implementations of the simulated annealing construction
of shortest paths (dosed or open, and spanning or nonspanning) is the way to se-
lect a proper vertex from subset T, determined by (6), for the extension process
of the current path P. In generál this selection may be carried out randomly, but
such strict randomization of the present method leads usually to implementations
with a very slow convergence. Therefore, the pure random selection of the vertex
from r was changed to a quasirandom selection based on a priority scale of its
vertices. The highest priority was assigned to those vertices that are not contained
in the current path P, the lower priority to vertices that are already contained in
the current path P but edges connecting these vertices with the terminál vertex
háve not been visited by the current path P, and finally, the lowest priority to all
remaining vertices. The quasirandom selection of a vertex from set f is realized
so that vertices with higher priority are “randomly” preferred (an analogy of the
so-called roulette wheel technique of selection of chromosomes for the reproduction
process in genetic algorithms (Goldberg, 1989).

The above theory was designed for the solution of task Ti, where dosed paths
with randomly selected initial vertex are constructed. A similar approach can
be ušed for the solution of tasks of construction of open paths where ini-
tial/terminal vertices are either specified or unspecified. Algorithms 1 and 2 should
be then slightly modified.
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4. Illustrative calculations

The construction of shortest paths of diíFerent types by the method of simulated
annealing is illustrated by model calculations. Two kinds of calculations will be
doně. First, simple highly symmetric connected graph (see Fig. 5) is considered,
for which it is possible to estimate the length of shortest spanning paths. Second
type of model calculations will be carried out for solution of the well-known chess-
game puzzle. The solution presents a sequence of knight moves on a chessboard so
that all its fields are visited just once.

Highly symmetric graph
This graph (see Fig. 5) is composed of 76 vertices and 100 edges. The length of
shortest spanning paths can be simply estimated as follows: First, let us consider
the shortest spanning dosed path, its form may be immediately deduced from
diagrams B and C in Fig. 5. In particular, corner blocks of the path are represented
by diagram B, while the centrál part of path is represented by diagram C (its oval
edges correspond to the corner parts of the path). This means that the whole
dosed spanning paths are composed of five parts (four corner and one centrál), all
of which háve the length 20, therefore the length of a shortest spanning path is
100 = (4 + 1) X 20. Similarly, the shortest open spanning path is composed of four
corner parts (diagram B) and one centrál part (diagram D), the latter also contains
the initial and terminál vertices of the open path. Since the length of the centra!
part is 17, the length of a shortest spanning path is 97 = 4 x 20 + 17. The length
of shortest spanning paths with prescribed initial and/or terminál vertices can be
deduced in an analogous way, it is necessary to consider all possible nonequivalent
positions on the graph that are selected as initial and/or terminál vertices. Out
of these we choose those of the shortest length. Since the number of all possible
nonequivalent combinations is a few dozens, we do not present here a complete
analysis of shortest spanning paths with prescribed initial and/or terminál vertices.
We háve observed that the lengths of all possible types of open spanning paths are
always bounded by 97 <length(P) < 100.

The simulated annealing calculations are performed for baisic parameters spec-
ified as follows

Tmax = 10^ Tmax = 50, Tmin = 0.5, a = 0.95 (12)

This means that the initial temperature Tmax is T = 50, its multiplicative decrease
is specified by a = 0.95 (i.e. the temperature is decreased by 5%), the lowest
temperature Tmin being T = 0.5, and finally, for each fixed temperature T in the
Metropolis algorithm 10^ trials are doně {Vmax is the number of trials). The Boltz-
mann constant is incorporated in the above value of the parameter “temperature”.

Tab. 1 shows the best results from 10 independent calculations obtained for tasks
Ti and T2. The most complicated and time consuming is task T2^\ where short¬
est open spanning paths with specified both initial and terminál vertices are con-
structed. Since in this task both vertices are specified in advance, the method of
path perturbation described in the previous section is probably not very useful.
The main difficulty here is caused by the fact that the perturbation process gen-
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A

C D

Fig. 5 Highly symmetňc graph composed of 76 vertices and 100 edges (diagram
A). Diagrams B to D are ušed for construction of shortest spanning paths that are

either dosed (diagrams B and C) or open (diagrams B and D).

No. Task Path length
1 tW 100

2 'Ti(l)
-*2 97

3 rp(2)-*2 97-100 “

4
CO

97-100 “

“ The length of resulting spanning shortest paths depends
on the selection of initial/terminal path vertices.

Tab. I Best results obtained for different tasks for graph Fig. 5.

erates most frequently paths that are not properly ended by the required terminál
vertex, and therefore should be penalized. Only smáli ratio of rmax events in the
Metropolis algorithm produces paths that are properly ended. This implies that
this vexing feature of the suggested version of simulated annealing for the can
be most likely removed, in generál, by a substantial increase of parameter rmax,
albeit at a price of slow a convergence of simulated annealing.

Knight piece moves on the chessboard
The second illustrative application of simulated annealing approach for con¬

struction of spanning elementary paths concerns the solution of the well-known
chess game puzzle [3], [7], [11] - the task being to find elementary spanning paths
(dosed or open) of knight piece moves so that all chessboard fields are visited just
once. This puzzle can be transformed to our problém of construction of spanning
paths on connected graphs straightforwardly. Each chessboard field is represented
by a graph vertex and two vertices are connected by an edge if the corresponding
fields are achievable by single knight piece move.
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The basic simulated annealing parameters in our calculations were selected as
follows

1'max — 10 ^'1'max — 30, Tmin — 0.1,0 — 0.95 (13)

The proposed simulated annealing approach has been successfully ušed for the con-
struction of spanning (dosed oř open) elementary paths on chessboards of the 6x6,
7x7, and 8x8 type, respectively. We remember the well-known fact [3] that dosed
elementary paths exist only on chessboards of even dimension, that is for 6 x 6 and
8x8, while on chessboard of odd dimension 7x7 there exist only open elementary
spanning paths. Some representative results of our calculations are displayed in
Fig. 6. We see that in all cases the present version of simulated annealing provides
either correct results (i.e. elementary spanning paths are produced) or ones that
are likely dosely related to optimal Solutions (in particular for paths constructed
in the framework of tasks and

Chessboard 6x6

A

Chessboard 7x7

B C

Chessboard 8x8

T(

V \
X X

v. ■X

E

» • • 1 • ^

. \ • i • «

• * \* • ť'

F

Fig. 6 Different paths constructed on chessboard of dimensions 6x6 (diagram A),
7x7 (diagrams B and C), and 8x8 (diagrams D to F). Closed elementary spanning
paths exist on chessboard of even dimensions (see diagrams A and D), while for
chessboard of odd dimension this closed spanning path exists only in nonelementary
form (diagram B). Diagram F represents an open path with prescribed initial and

terminál fields (encircled) that must visit eight prescribed fields (squared).
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5. Discussion

The presented version of simulated annealing offers a simple and effective method
for construction of spanning paths (dosed or open) on connected graphs. The
graph-theoreticaJ analysis of the problém allows us to focus our attention on paths
that are semielementaxy, that is edges of a path can be visited at most twice in the
opposite directions. The formal construction of semielementary paths is consider-
ably simplified by the extension process. The process automatically ensures that
the produced paths are semielementary. A fulfillment of additional conditions that
are required from the resulting paths is simply ensured by penalization included in
the form of objective functions minimized by the simulated annealing approach.

We háve to emphasize that in our two model calculations most difficulties háve
/qX

been encountered in paths constructed in the framework of task T2 \ where open
spanning paths with specified initial and terminál vertices were to be constructed.
Likely, the ušed extension process is not very well equipped for the construction of
open paths of this type, námely a path that should be simultaneously spanning and
terminating at the prescribed vertices. In many cases these two requirements are
“contradictory”, the resulting path is either dosed and spanning or open but not
terminated at the prescribed vertex. The States formed in the process of simulated
annealing most frequently do not satisfy simultaneously both conditions and are
therefore penalized. This fact considerably decreases the effectiveness of the simu¬
lated annealing method; in most part of its performance it works, loosely speaking,
as a “blind” search. The question is how to increase substantially the appearance
of current States if they háve to be simultaneously spanning and terminated at a
required vertex? We are not able to give now a definite answer to this question.
Most probably, its efficient solution requires another approach of construction of
semielementary paths than the one based on the extension process.
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