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Abstract. We consider preservation of exponential stability for the scalar nonoscillatory
linear equation with several delays

ẋ(t) +
m∑

k=1

ak(t)x(hk(t)) = 0, ak(t) > 0

under the addition of new terms and a delay perturbation. We assume that the original
equation has a positive fundamental function; our method is based on Bohl-Perron type
theorems. Explicit stability conditions are obtained.
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1. Introduction

In this paper we consider the scalar differential equation with several variable

delays

(1.1) ẋ(t) +

r
∑

k=1

bk(t)x(gk(t)) = 0, t > t0,

as a perturbation of the equation

(1.2) ẋ(t) +

m
∑

k=1

ak(t)x(hk(t)) = 0, t > t0.

Equation (1.1) is considered for t > t0 > 0 with the initial conditions

(1.3) x(t) = ϕ(t), t < t0, x(t0) = x0, t0 > 0
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under the following assumptions:

(a1) ak(t) are Lebesgue measurable essentially bounded on [0,∞) functions;

(a2) hk(t) are Lebesgue measurable functions,

hk(t) 6 t, sup
t>0

[t − hk(t)] < ∞;

(a3) ϕ : (−∞, t0) → R is a Borel measurable bounded function.

We assume that conditions (a1)–(a3) hold for all equations throughout the paper.

Definition 1. A function x : R → R is called a solution of the problem (1.1),

(1.3) if it is locally absolutely continuous on [t0,∞), satisfies equation (1.1) for almost

all t ∈ [t0,∞) and the equalities (1.3) for t 6 t0.

Definition 2. A solution X(t, s) of the problem ẋ(t) +
m

∑

k=1

ak(t)x(hk(t)) = 0,

t > s > 0, x(t) = 0, t < s, x(s) = 1, is called the fundamental function of (1.1).

In several publications perturbations of delays have been studied. For example, in

[1] the equation with variable delays

(1.4) ẋ(t) =

m
∑

k=1

akx(t − τk − νk(t))

was treated as a perturbation of the autonomous delay equation

(1.5) ẏ(t) =

m
∑

k=1

aky(t − τk).

Lemma 1.1 [1]. Assume that equation (1.5) is asymptotically stable and

(1.6)
m

∑

k=1

|ak| lim sup
t→∞

|νk(t)| <
1

m
∑

k=1

|ak|
∫

∞

0 |v(s)| ds

,

where v(t) is the fundamental solution (v(t) = 0, t < 0, v(0) = 1) of equation (1.5).

Then equation (1.4) is asymptotically stable.

If ak 6 0 and the fundamental solution v(t) is positive, then
m
∑

k=1

|ak|
∫

∞

0
|v(s)| ds =

1 and thus Lemma 1.1 gives an explicit stability condition for the perturbed equation.

Our main method is based on the Bohl-Perron theorem. Previously it was applied

to perturbation problems for impulsive delay differential equations in [2].
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Below we present a solution representation formula for nonhomogeneous equation

(1.1) with Lebesgue measurable right-hand side f(t):

(1.7) ẋ(t) +

m
∑

k=1

ak(t)x(hk(t)) = f(t).

Lemma 1.2 [3], [4]. Suppose conditions (a1)–(a3) hold. Then the solution of

(1.7), (1.3) has the form

(1.8) x(t) = X(t, t0)x0 −

∫ t

t0

X(t, s)

m
∑

k=1

ak(s)ϕ(hk(s)) ds +

∫ t

t0

X(t, s)f(s) ds,

where ϕ(t) = 0, t > t0.

Definition 3. Equation (1.1) is (uniformly) exponentially stable, if there exist

K > 0, λ > 0, such that the fundamental function X(t, s) of (1.1) has the estimate

|X(t, s)| 6 K e−λ(t−s) for t > s > 0.

For linear equations this definition is equivalent to the uniform asymptotic stability

[3]. Under our assumptions the exponential stability does not depend on the values

of the parameters of the equation on any finite interval. Thus all our conditions

should only be satisfied for sufficiently large t.

Denote by L∞[t0,∞) the space of all measurable essentially bounded on [t0,∞)

functions with the sup-norm.

The following result is a Bohl-Perron-like Theorem.

Lemma 1.3 [5], [6]. Suppose for any f ∈ L∞[t0,∞) the solution of the problem

ẋ(t) +

r
∑

k=1

bk(t)x(gk(t)) = f(t), t > t0,(1.9)

x(t) = 0, t 6 t0

is bounded on [t0,∞). Then equation (1.1) is exponentially stable.

We will need the following auxiliary results concerned with nonoscillatory equa-

tions.
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Lemma 1.4 [7]. Assume that ak(t) > 0,
m
∑

k=1

ak(t) > a0 > 0 and the fundamental

function X(t, s) of equation (1.2) is positive. Then equation (1.2) is exponentially

stable. Moreover, there exists t0 > 0 such that

0 6

∫ t

t0

X(t, s)

m
∑

k=1

ak(s) ds 6 1.

The fundamental function is positive if and only if there exists an eventually positive

solution of equation (1.2).

Lemma 1.5 [8]. The fundamental function X(t, s) of equation (1.2) is positive

for t > t0 if ak(t) > 0 and

∫ t

min
k

hk(t)

m
∑

i=1

ai(s) ds 6
1

e
, t > t0.

2. Explicit stability conditions

Theorem 2.1. Assume that ak(t) > 0,
m
∑

k=1

ak(t) > a0 > 0 and the fundamental

function X(t, s) of equation (1.2) is positive. Assume in addition that r > m and

lim sup
t→∞

1
m
∑

k=1

ak(t)

[ m
∑

k=1

|ak(t)−bk(t)|+

m
∑

k=1

|bk(t)|

∣

∣

∣

∣

∫ hk(t)

gk(t)

r
∑

i=1

|bi(s)| ds

∣

∣

∣

∣

+

r
∑

k=m+1

|bk(t)|

]

is less than one. Then equation (1.1) is exponentially stable.

P r o o f. Without loss of generality we can assume that for t > t0 and some

µ ∈ (0, 1) we have

1
m
∑

k=1

ak(t)

[ m
∑

k=1

|ak(t) − bk(t)| +
m

∑

k=1

|bk(t)|

∣

∣

∣

∣

∫ hk(t)

gk(t)

r
∑

i=1

|bi(s)| ds

∣

∣

∣

∣

+
r

∑

k=m+1

|bk(t)|

]

6 µ.

Let us demonstrate that the solution of the non-homogeneous equation with the zero

initial conditions is bounded on [t0,∞) for any f ∈ L∞[t0,∞).
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After transformations equation (1.9) has the form

ẋ(t) +

m
∑

k=1

ak(t)x(hk(t)) −

m
∑

k=1

(ak(t) − bk(t))x(hk(t))

−

m
∑

k=1

bk(t)

∫ hk(t)

gk(t)

ẋ(s) ds +

r
∑

k=m+1

bk(t)x(gk(t)) = f(t).

After substituting ẋ(t) from (1.9) we have

ẋ(t) +

m
∑

k=1

ak(t)x(hk(t)) −

m
∑

k=1

(ak(t) − bk(t))x(hk(t))

+

m
∑

k=1

bk(t)

∫ hk(t)

gk(t)

r
∑

i=1

bi(s)x(gi(s)) ds +

r
∑

k=m+1

bk(t)x(gk(t)) = g(t),

where g(t) := f(t) +
m
∑

k=1

bk(t)
∫ gk(t)

hk(t) f(s) ds. Evidently g ∈ L∞[t0,∞).

Hence a solution of equation (1.9) is also a solution of the equation x + Hx = r,

where

(Hx)(t) =

∫ t

t0

X(t, s)

[

−

m
∑

k=1

(ak(s) − bk(s))x(hk(s))

+
m

∑

k=1

bk(s)

∫ hk(s)

gk(s)

r
∑

i=1

bi(τ)x(gi(τ)) dτ +
r

∑

k=m+1

bk(s)x(gk(s))

]

ds,

r(t) :=

∫ t

t0

X(t, s)g(s) ds ∈ L∞[t0,∞).

By Lemma 1.4 we have

|(Hx)(t)| 6

∫ t

t0

X(t, s)

[ m
∑

k=1

(

|ak(s) − bk(s)|

+

m
∑

k=1

|bk(s)|

∣

∣

∣

∣

∫ hk(s)

gk(s)

r
∑

i=1

|bi(τ)| dτ

∣

∣

∣

∣

+

r
∑

k=m+1

|bk(s)|

)]

ds‖x‖L∞[t0,∞)

6 sup
t>t0

∫ t

t0

X(t, s)
m

∑

k=1

ak(s)µ ds‖x‖L∞[t0,∞) 6 µ‖x‖L∞[t0,∞).

Thus the norm of H in L∞[t0,∞) does not exceed µ < 1, so the inverse (I + H)−1

is a bounded operator and the function x = (I + H)−1r is bounded. By Lemma 1.3

equation (1.1) is exponentially stable. �
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Corollary 1. Assume that ak(t) > 0,
m
∑

k=1

ak(t) > a0 > 0 and the fundamental

function X(t, s) of equation (1.2) is positive. If

(2.1) lim sup
t→∞

m
∑

k=1

ak(t)
m
∑

i=1

ai(t)

∣

∣

∣

∣

∫ hk(t)

gk(t)

m
∑

i=1

ai(s) ds

∣

∣

∣

∣

< 1,

then the equation

(2.2) ẋ(t) +

m
∑

k=1

ak(t)x(gk(t)) = 0

is exponentially stable.

Corollary 2. Assume that ak(t) > 0,
m
∑

k=1

ak(t) > a0 > 0. If (2.1) holds, where

hk(t) > h(t) = t −
1

e sup
t>t0

m
∑

i=1

ai(t)
,

then equation (2.2) is exponentially stable.

P r o o f. For t > t0 we have

∫ t

hk(t)

m
∑

i=1

ai(s) ds 6 sup
t>t0

m
∑

i=1

ai(t) sup
t>t0

(t − hk(t))

6 sup
t>t0

m
∑

i=1

ai(t)
1

e sup
t>t0

m
∑

i=1

ai(t)
=

1

e
.

By Lemma 1.5 the fundamental function X(t, s) of equation (1.2) is positive for

t > t0. Corollary 1 implies this corollary. �

R em a r k 1. If ak(t) ≡ ak > 0 then equality (2.1) has the form

lim sup
t→∞

m
∑

k=1

ak (t − gk(t)) < 1 +
1

e
.

This stability condition was obtained in [1] for piecewise continuous delays.
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Corollary 3. Assume that ak(t) > 0,
m
∑

k=1

ak(t) > a0 > 0 and the fundamental

function X(t, s) of equation (1.2) is positive. If lim sup
t→∞

m
∑

k=1

|ak(t) − bk(t)|
/

m
∑

i=1

ai(t) <

1, then the equation ẋ(t) +
m
∑

k=1

bk(t)x(hk(t)) = 0 is exponentially stable.

Corollary 4. Suppose that there exists a set of indices I ⊂ {1, . . . , m} such that

ak(t) > 0, k ∈ I,
∑

k∈I

ak(t) > a0 > 0, and the equation ẋ(t)+
∑

k∈I

ak(t)x(hk(t)) = 0 has

a positive fundamental function. If lim sup
t→∞

∑

k/∈I

|ak(t)|
/

∑

k∈I

ak(t) < 1, then equation

(1.2) is exponentially stable.

Consider now two autonomous equations

ẋ(t) +

m
∑

k=1

akx(t − δk) = 0,(2.3)

ẋ(t) +

r
∑

k=1

bkx(t − σk) = 0.(2.4)

Corollary 5. Suppose that ak > 0, k = 1, . . . , m, r > m, and the characteristic

equation of (2.3)

(2.5) λ =

m
∑

k=1

akeλδk

has a positive root. If in addition

m
∑

k=1

|ak − bk| +

( m
∑

k=1

|bk(δk − σk)|

)( r
∑

k=1

|bk|

)

+

r
∑

k=m+1

|bk| <

m
∑

k=1

ak,

then equation (2.4) is exponentially stable.

P r o o f. Suppose λ0 > 0 is a positive root of equation (2.5). Then equation

(2.3) has a positive solution x(t) = e−λ0t and the fundamental function of equation

(2.3) is positive. Theorem 2.1 implies this corollary. �

Corollary 6. Suppose that ak > 0, k = 1, . . . , m and the characteristic equation

(2.5) has a positive root. If
m
∑

k=1

ak|δk − σk| < 1, then the equation

(2.6) ẋ(t) +
m

∑

k=1

akx(t − σk) = 0

is exponentially stable.
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Corollary 7. Suppose that ak > 0, k = 1, . . . , m. If
m
∑

k=1

ak

∣

∣

∣
σk −

(

e
m
∑

i=1

ai

)−1∣
∣

∣
< 1,

then equation (2.6) is exponentially stable.

Corollary 8. Suppose that ak > 0 and the characteristic equation (2.5) has a

positive root. If
m
∑

k=1

|ak − bk| <
m
∑

k=1

ak, then the equation ẋ(t) +
m
∑

k=1

bkx(t − δk) = 0

is exponentially stable.

Theorem 2.2. Assume that ak(t) > 0,
m
∑

k=1

ak(t) > a0 > 0 and the fundamental

function X(t, s) of equation (1.2) is positive. Assume in addition that r 6 m and

lim sup
t→∞

1
m
∑

k=1

ak(t)

[ r
∑

k=1

|ak(t)−bk(t)|+

r
∑

k=1

|bk(t)|

∣

∣

∣

∣

∫ hk(t)

gk(t)

r
∑

i=1

|bi(s)| ds

∣

∣

∣

∣

+

m
∑

k=r+1

|ak(t)|

]

is less than one. Then equation (1.1) is exponentially stable.

P r o o f. The proof is similar to the proof of Theorem 2.1 after we rewrite (1.9)

as

ẋ(t) +

m
∑

k=1

ak(t)x(hk(t)) −

r
∑

k=1

(ak(t) − bk(t))x(hk(t))

−
r

∑

k=1

bk(t)

∫ hk(t)

gk(t)

ẋ(s) ds −
m

∑

k=r+1

ak(t)x(hk(t)) = f(t).

�

3. Discussion and open problems

Unlike most papers on this topic, all results of the present paper are obtained

under the assumption that coefficients and delays are measurable and solutions are

absolutely continuous functions.

Let us compare Corollary 1 and Lemma 1.1 from [1] for constant coefficients sat-

isfying
m
∑

k=1

ak = −1, ak 6 0, k = 0, . . . , m. If the comparison autonomous equation

(1.5) has a positive fundamental function, then we obtain sufficient stability condi-

tions for (1.4)

(3.1) lim sup
t→∞

m
∑

k=1

|ak||νk(t)| < 1 and
m

∑

k=1

|ak| lim sup
t→∞

|νk(t)| < 1,
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respectively. Evidently the first condition is better than the second inequality. We

treat equations with variable coefficients and measurable parameters as perturbations

of equations with positive coefficients and positive fundamental functions, while in

[1] vector equations are considered as perturbations of arbitrary stable autonomous

delay equations.

Overall, all stability preservation results of the present paper assume that the

non-perturbed equation has a positive fundamental function. In other words, they

answer the following question: how much can we perturb a nonoscillatory equation

with positive coefficients so that its stability property be preserved? The signs of

the perturbed coefficients can be arbitrary.

Finally, let us list some relevant open problems.

(A) Extend the results to the case when the coefficients of the non-perturbed equa-

tion (1.2) may be positive and negative, and also oscillating.

(B) Consider perturbations of the exponentially stable system of delay equations

with variable coefficients

(3.2) ẋ(t) +

m
∑

k=1

Ak(t)x(hk(t)) = 0.

Is it possible to obtain explicit stability conditions for the perturbed equation

(in terms of delays and coefficients, not the fundamental function of (3.2))?

(C) Consider more general delays, for example, study the equation with a distributed

delay

(3.3) ẋ(t) +

m
∑

k=1

bk(t)x(gk(t)) +

∫ t

h(t)

K(t, s)x(s) ds = 0

as a perturbation of either (1.1) or ẋ(t) +
∫ t

g(t) M(t, s)x(s) ds = 0 and obtain

explicit conditions under which stability is preserved.
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