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1. Introduction

The notion of summability of single sequences with respect to a two valued measure

was introduced by Connor [3], [4] as a very interesting generalization of statistical

convergence (see [9], [10], [21], [26], [30]). The notion of statistical convergence was

further extended to double sequences independently by Moricz [19] and Mursaleen

et al [20]. For more recent developments on double sequences one can consult the

papers [5], [6], [7], [8], [1], [27] where more references can be found. In particular, very

recently the first and third author investigated the summability of double sequences

of real numbers with respect to a two valued measure and made many interesting

observations [7] (see also [1] where the same has been investigated in an asymmetric

metric space). The concept of 2-normed spaces was initially introduced by Gähler

([11], [12]) as a very interesting non-linear extension of the idea of usual normed

This research was completed while the first author was a visiting scholar at Istanbul
Commerce University, Istanbul, Turkey in 2010.
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linear spaces. Some initial studies on this structure can be seen from [11], [12],

[13]. Recently a lot of interesting developments have occurred in 2-normed spaces in

summability theory and related topics (see [14], [15], [25]).

In this article, in a natural way we first unite the approach of [7] with two norm and

introduce the idea of summability of double sequences in 2-normed spaces using a two

valued measure. Then using Orlicz functions, generalized double difference sequences

and a two valued measure µ we introduce µ-statistical convergence of generalized

double difference sequences with respect to an Orlicz function in 2-normed spaces.

In this connection it should be mentioned that notable works involving the Orlicz

function and the modulus function were done in [2], [17], [22], [24], [28]. We introduce

and examine certain new double sequence spaces using the above tools as well as the

2-norm. This approach has not been considered in any context before.

2. Preliminaries

Throughout the paper N denotes the set of all natural numbers, χA represents the

characteristic function of A ⊆ N and R represents the set of all real numbers.
Recall that a set A ⊆ N is said to have the asymptotic density d(A) if

d(A) = lim
n→∞

1

n

n
∑

j=1

χA(j)

exists.

Definition 2.1 ([9], [30]). A sequence {xn}n∈N of real numbers is said to be

statistically convergent to ξ ∈ R if for any ε > 0 we have d(A(ε)) = 0, where

A(ε) = {n ∈ N : |xn − ξ| > ε}.

By the convergence of a double sequence we mean the convergence in Pringsheim’s

sense (see [23]):

A double sequence x = {xij}i,j∈N of real numbers is said to be convergent to ξ ∈ R
if for any ε > 0 there exists Nε ∈ N such that |xij − ξ| < ε whenever i, j > Nε. In

this case we write lim
i,j→∞

xij = ξ.

A double sequence x = {xij}i,j∈N of real numbers is said to be bounded if there

exists a positive real number M such that |xij | < M for all i, j ∈ N. That is,
‖x‖(∞,2) = sup

i,j∈N
|xij | < ∞.

Let K ⊆ N × N and let K(i, j) be the cardinality of the set {(m, n) ∈ K : m 6

i, n 6 j}. If the sequence {K(i, j)/(i · j)}i,j∈N has a limit in Pringsheim’s sense

then we say that K has double natural density, which is denoted by d2(K) =

lim
i,j→∞

K(i, j)/(i · j).
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Definition 2.2 ([19], [20]). A double sequence x = {xij}i,j∈N of real numbers

is said to be statistically convergent to ξ ∈ R if for any ε > 0 we have d2(A(ε)) = 0,

where A(ε) = {(i, j) ∈ N× N : |xij − ξ| > ε}.

A statistically convergent double sequence of elements of a metric space (X, ̺) is

defined essentially in the same way (̺(xij , ξ) > ε instead of |xij − ξ| > ε).

Throughout the paper µ will denote a complete {0, 1} valued finite additive mea-

sure defined on an algebra Γ of subsets of N × N that contains all subsets of N× N
that are contained in the union of a finite number of rows and columns of N×N and
µ(A) = 0 if A is contained in the union of a finite number of rows and columns of

N× N (see [7]).

Definition 2.3 ([7]). A double sequence x = {xij}i,j∈N of real numbers is said

to be µ-statistically convergent to L ∈ R if and only if for any ε > 0, µ({(i, j) ∈

N× N : |xij − L| > ε}) = 0.

Definition 2.4 ([7]). A double sequence x = {xij}i,j∈N of real numbers is said

to be convergent to L ∈ R in µ-density if there exists A ∈ Γ with µ(A) = 1 such that

{xij}(i,j)∈A is convergent to L.

Definition 2.5 ([12]). Let X be a real vector space of dimension d, where

2 6 d < ∞. A 2-norm on X is a function ‖·, ·‖ : X × X → R which satisfies

(i) ‖x, y‖=0 if and only if x and y are linearly dependent;

(ii) ‖x, y‖ = ‖y, x‖;

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R;
(iv) ‖x, y+z‖ 6 ‖x, y‖+‖x, z‖. The ordered pair (X, ‖·, ·‖) is then called a 2-normed

space.

As an example we may take X = R2 being equipped with the 2-norm ‖x, y‖ =

the area of the parallelogram spanned by the vectors x and y, which may be given

explicitly by the formula ‖x, y‖ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2). Recall

that (X, ‖·, ·‖) is a 2-Banach space if every Cauchy sequence in X is convergent to

some x in X. Let (X, ‖·, ·‖) be any 2-normed space and S′′(2 − X) the set of all

double sequences defined over the 2-normed space (X, ‖·, ·‖). Clearly S′′(2 − X) is

a linear space under addition and scalar multiplication.

Recall ([16]) that an Orlicz function M : [0,∞) → [0,∞) is a continuous, convex

and non decreasing function such that M(0) = 0 and M(x) > 0 for x > 0, and

M(x) → ∞ as x → ∞.

Subsequently, the Orlicz function was used to define sequence spaces by Parashar

and Choudhary ([22]) and others (see [2], [28]). An Orlicz function M can always be

represented in the following integral form: M(x) =
∫ x

0
p(t) dt where p is the known
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kernel of M , the right differential for t > 0, p(0) = 0, p(t) > 0 for t > 0, p is non

decreasing and p(t) → ∞ as t → ∞. If convexity of the Orlicz functionM is replaced

byM(x+y) 6 M(x)+M(y) then this function is called the modulus function, which

was presented and discussed by Ruckle ([24]) and Maddox ([17]). Note that if M is

an Orlicz function then M(tx) 6 tM(x) for all t with 0 < t < 1.

3. µ-statistical convergence and convergence in µ-density in

2-normed spaces

Definition 3.1. A double sequence x = {xij}i,j∈N in a 2-normed space (X, ‖·, ·‖)

is said to be convergent to ξ in (X, ‖·, ·‖) if for each ε > 0 and each z ∈ X there

exists nε ∈ N such that ‖xij − ξ, z‖ < ε for all i, j > nε.

Definition 3.2. Let µ be a two valued measure on N × N. A double sequence
{xij}i,j∈N in a 2-normed space (X, ‖·, ·‖) is said to be µ-statistically convergent to

a point x in X if for each pre-assigned ε > 0 and for each z ∈ X , µ(A(z, ε)) = 0

where A(z, ε) = {(i, j) ∈ N× N : ‖xij − x, z‖ > ε}.

If a double sequence {xij}i,j∈N is µ-statistically convergent to a point x in a 2-

normed space (X, ‖·, ·‖) then we write

µ−lim
i,j→∞

‖xij − x, z‖ = 0

or

µ−lim
i,j→∞

‖xij , z‖ = ‖x, z‖.

Here x is called the µ-statistical limit of the sequence {xij}i,j∈N.

Definition 3.3. Let µ be a two valued measure on N × N. A double sequence
{xij}i,j∈N of the points in a 2-normed space (X, ‖·, ·‖) is said to be convergent to

ξ ∈ X in µ-density if there exists a set M ∈ Γ with µ(M) = 1 such that {xij}(i,j)∈M

is convergent to ξ in (X, ‖·, ·‖).

We now give an example of a µ-statistically convergent double sequence in 2-

normed spaces.

Example 3.1. Let µ be a two valued measure on N × N such that there is at
least one A ⊆ N × N with µ(A) = 0 which is not contained in any finite union of

rows and columns of N× N. Define the double sequence {xij}i,j∈N in the 2-normed

space (X, ‖·, ·‖) by

xij =

{

(0, ij) if (i, j) ∈ A,

(0, 0) otherwise.
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Let L = (0, 0) and z = (z1, z2). Then for every ε > 0 and z ∈ X

{(i, j) ∈ N× N : ‖xij − L, z‖ > ε} ⊆ A.

Thus

µ({(i, j) ∈ N× N : ‖xij − L, z‖ > ε}) = 0

for every ε > 0 and z ∈ X . This implies that

µ−lim
i,j→∞

‖xij , z‖ = ‖L, z‖.

But it is noticeable that the double sequence is not convergent to L.

Similarly we can give non-trivial examples of double sequences which are conver-

gent in µ-density in 2-normed spaces.

We next provide a proof of the fact that the µ-statistical limit operation for double

sequences in a 2-normed space (X, ‖·, ·‖) is linear with respect to summation and

scalar multiplication.

Theorem 3.1. Let µ be a two valued measure. For each z ∈ X ,

(i) if µ−lim
i,j→∞

‖xij , z‖ = ‖x, z‖ and µ−lim
i,j→∞

‖yij, z‖ = ‖y, z‖ then

µ−lim
i,j→∞

‖xij + yij , z‖ = ‖x + y, z‖;

(ii) if µ−lim
i,j→∞

‖xij , z‖ = ‖x, z‖ then µ−lim
i,j→∞

‖axij , z‖ = ‖ax, z‖, a ∈ R.

P r o o f. (i) Let ε > 0 be given. Consider the following two sets: A(1
2ε, z) =

{(i, j) ∈ N×N : ‖xij −x, z‖ > 1
2ε} and B(1

2ε, z) = {(i, j) ∈ N×N : ‖yij −y, z‖ > 1
2ε}

for each z ∈ X . Then by hypothesis µ(A(1
2ε, z)) = 0 and µ(B(1

2ε, z)) = 0. Now

{(i, j) ∈ N × N : ‖xij + yij − (x + y), z‖ > ε} ⊆ {(i, j) ∈ N × N : ‖xij − x, z‖ >
1
2ε} ∪ {(i, j) ∈ N×N : ‖yij − y, z‖ > 1

2ε}. Therefore µ({(i, j) ∈ N×N : ‖xij + yij −

(x + y), z‖ > ε}) = 0 and the result follows.

(ii) Let µ−lim
i,j→∞

‖xij , z‖ = ‖x, z‖, a ∈ R, a 6= 0. Now µ({(i, j) ∈ N×N : ‖xij−x, z‖ >

ε/|a|}) = 0 and from the definition of the 2-norm we have

{(i, j) ∈ N× N : ‖axij − ax, z‖ > ε} =
{

(i, j) ∈ N× N : ‖xij − x, z‖ >
ε

|a|

}

and so

µ({(i, j) ∈ N× N : ‖axij − ax, z‖ > ε} = 0.
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Hence

µ−lim
i,j→∞

‖axij , z‖ = ‖ax, z‖

for every z ∈ X .

Similar observations are also true for µ−lim, i.e., the statistical limit operation in

µ-density. �

If u = {u1, u2, u3, . . . , ud} is a basis of the 2-normed space (X, ‖·, ·, ‖), then we

have the following result.

Lemma 3.1. Let µ be a two valued measure. A double sequence {xij}i,j∈N is

µ-statistically convergent to x ∈ X if and only if µ−lim
i,j→∞

‖xij − x, uk‖ = 0 for every

k = 1, 2, 3, . . . , d.

If C2
µ and C∗2

µ denote respectively the sets of all double sequences in a 2-normed

space (X, ‖·, ·‖) which are µ-statistically convergent and convergent in µ-density in

the 2-normed space (X, ‖·, ·‖) then as in [7] we now consider the following condition.

(APO2) (Additive property of null sets)

The measure µ is said to satisfy the condition (APO2) if for every sequence {Ai}i∈N

of mutually disjoint µ-null sets (i.e. µ(Ai) = 0 for all i ∈ N) there exists a countable
family of sets {Bi}i∈N such that Ai∆Bi is included in the union of a finite number

of rows and columns of N×N for every i ∈ N and µ(B) = 0 where B =
⋃

i∈N
Bi (hence

µ(Bi) = 0 for every i ∈ N).

Theorem 3.2. C2
µ = C∗2

µ if f µ satisfies the condition (APO2).

P r o o f. The proof is parallel to the proof of the corresponding theorems in [7]

and is omitted. �

4. New double sequence spaces

Recall that a mapping g : X → R is called a paranorm on X if it satisfies the

following conditions:

(i) g(θ) = 0 where θ is the zero element of the space;

(ii) g(x) = g(−x);

(iii) g(x + y) 6 g(x) + g(y);

(iv) λn → λ (n → ∞) and g(xn − x) → 0 (n → ∞) imply g(λnxn − λx) → 0

(n → ∞) for all x, y ∈ X ([18], see also [25]). The ordered pair (X, g) is called

a paranormed space with respect to the paranorm g.

Now we first define the following sequence space.
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Definition 4.1. Let p = {pij}i,j∈N be a sequence of non-negative real numbers.

l′′(2 − p) =
{

x ∈ S′′(2 − X) :
∑

s,t∈N
‖xst, z‖

pst < ∞, ∀ z ∈ X
}

.

We now state an inequality which will be used throughout our study: If {pij}i,j∈N

is a bounded double sequence of non-negative real numbers and sup
i,j∈N

pij = H and

D = Max{1, 2H−1}, then

|aij + bij |
pij 6 D{|aij |

pij + |bij |
pij}

for all i, j, and aij , bij ∈ C, the set of all complex numbers. Also,

|a|pij 6 Max{1, |a|H}

for all a ∈ C.

Lemma 4.1. The sequence space l′′(2 − p) is a linear space.

P r o o f. The proof is parallel to the proof of Lemma 3.1 in [25] and so is omitted.

�

Theorem 4.1. l′′(2 − p) is a paranormed space with the paranorm defined by

g : l′′(2−p) → R, g(x) =
(

∑

s,t∈N
‖xst, z‖

pst

)1/M

, where {pij}i,j∈N is a bounded double

sequence of non-negative real numbers and sup
i,j∈N

pij = H and M = Max(1, H).

P r o o f. The proof is modelled after the proof of Theorem 3.3 in [25] with

necessary modifications.

(i) g(θ) =
(

∑

s,t∈N
‖θst, z‖

pst

)1/M

= 0.

(ii) g(−x) =
(

∑

s,t∈N
‖−xst, z‖

pst

)1/M

=
(

∑

s,t∈N
|−1|‖xst, z‖

pst

)1/M

= g(x).

(iii) Using the well-known inequalities

g(x + y) =

(

∑

s,t∈N

‖xst + yst, z‖
pst

)1/M

6

(

∑

s,t∈N

(‖xst, z‖
pst/M )M

)1/M

+

(

∑

s,t∈N

(‖yst, z‖
pst/M )M

)1/M

= g(x) + g(y).
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(iv) Let λn → λ as n → ∞ and let g(xn−x) → 0 as n → ∞, where xn = {xn
ij}i,j∈N

and x = {xij}i,j∈N. Then using Minkowski’s inequalities (see [29])

g(λnxn − λx) =

(

∑

s,t∈N

‖λnxn
st − λxst, z‖

pst

)1/M

6 |λn|H/M

(

∑

s,t∈N

‖xn
st − xst, z‖

pst

)1/M

+

(

∑

s,t∈N

|λn − λ|‖xst, z‖
pst

)1/M

.

In this inequality, the first term of the right-hand side tends to zero because

g(xn − x) → 0 as n → ∞. On the other hand, since λn → λ as n → ∞, the

second term also tends to zero by Lemma 5.1. �

Let Λ = {λm}m∈N and υ = {υn}n∈N be non decreasing sequences of positive real

numbers such that each tends to ∞ and

λm+1 6 λm + 1, λ1 = 0

and

υn+1 6 υn + 1, υ1 = 0.

The generalized double de la Valée-Pousin mean is defined by

tmn(x) =
1

λmυn

∑

i∈Jm

∑

j∈Kn

xij

where Jm = [m− λm + 1, m] and Kn = [n− υn + 1, n]. Writing Imn = Jm ×Kn and

λ2
mn = λmυn we can write tmn as

tmn(x) =
1

λ2
mn

∑

(i,j)∈Imn

xij ,

which will be used throughout the paper.

Definition 4.2. Suppose also that as before µ is a two valued measure on N×N
and M is an Orlicz function and (X, ‖·, ·‖) is a 2-normed space. Further, let p =

{pij}i,j∈N be a bounded sequence of positive real numbers. Now we introduce the
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following different types of sequence spaces, for all ε > 0:

Wµ(Λ2, M, ∆m, p, ‖·, ·‖) =

{

x ∈ S′′(2 − X) : µ

(

(i, j) ∈ N× N :

1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆mxst − L

̺
, z

∥

∥

∥

)]pst

> ε

)

= 0,

for some ̺ > 0 and L ∈ X and each z ∈ X

}

,

Wµ
0 (Λ2, M, ∆m, p, ‖·, ·‖) =

{

x ∈ S′′(2 − X) : µ

(

(i, j) ∈ N× N :

1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

> ε

)

= 0,

for some ̺ > 0 and each z ∈ X

}

,

W∞(Λ2, M, ∆m, p, ‖·, ·‖) =

{

x ∈ S′′(2 − X) :

sup
(i,j)∈N×N

1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

6 k,

for some k > 0, for some ̺ > 0 and each z ∈ X

}

,

Wµ
∞

(Λ2, M, ∆m, p, ‖·, ·‖) =

{

x ∈ S′′(2 − X) : ∃ k > 0,

µ

({

(i, j) ∈ N× N :

1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

> k

})

= 0,

for some ̺ > 0 and each z ∈ X

}

,

where Iij = Ji×Kj , Λ
2 = {λmυn}m,n∈N and ∆m denotes the generalizedm-th order

difference, i.e.

∆(x) = {xj+1,k+1 + xjk − xj,k+1 − xj+1,k}j,k∈N

and

∆m(x) = ∆(∆m−1(x)) for m > 1.

We now have
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Theorem 4.2. Wµ(Λ2, M, ∆m, p, ‖·, ·‖), Wµ
0 (Λ2, M, ∆m, p, ‖·, ·‖) and Wµ

∞
(Λ2,

M, ∆m, p, ‖·, ·‖) are linear spaces. Here (X, ‖·, ·‖) is a 2-normed space.

P r o o f. We shall prove the theorem forWµ
0 (Λ2, M, ∆m, p, ‖·, ·‖) while the others

can be proved similarly. Let ε > 0 be given. Assume that x, y ∈ Wµ
0 (Λ2, M, ∆m,

p, ‖·, ·‖) and α, β ∈ R, where x = {xij}i,j∈N and y ∈ {yij}i,j∈N. Further, let z ∈ X .

Then

(4.1) µ

({

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆mxst

̺1
, z

∥

∥

∥

)]pst

> ε

})

= 0

for some ̺1 > 0 and

(4.2) µ

({

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆myst

̺2
, z

∥

∥

∥

)]pst

> ε

})

= 0

for some ̺2 > 0.

Since ‖·, ·‖ is a 2-norm, ∆m is linear, therefore the following inequality holds:

1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆m(αxst + βyst)

|α|̺1 + |β|̺2
, z

∥

∥

∥

)]pst

6 D
1

λ2
ij

∑

(s,t)∈Iij

[ |α|̺1

|α|̺1 + |β|̺2
M

(∥

∥

∥

∆mxst

̺1
, z

∥

∥

∥

)]pst

+ D
1

λ2
ij

∑

(s,t)∈Iij

[ |β|̺2

|α|̺1 + |β|̺2
M

(∥

∥

∥

∆myst

̺2
, z

∥

∥

∥

)]pst

6 DF
1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆mxst

̺1
, z

∥

∥

∥

)]pst

+ DF
1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆myst

̺2
, z

∥

∥

∥

)]pst

,

where F = Max
{

1,
[

|α|̺1/(|α|̺1 + |β|̺2)
]H

,
[

|β|̺2/(|α|̺1 + |β|̺2)
]H}

, and D =

Max{1, 2H−1} as defined before.

From the above inequality we get

{

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆m(αxst + βyst)

|α|̺1 + |β|̺2
, z

∥

∥

∥

)]pst

> ε

}

⊆

{

(i, j) ∈ N× N : DF
1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆mxst

̺1
, z

∥

∥

∥

)]pst

>
ε

2

}

∪

{

(i, j) ∈ N× N : DF
1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆myst

̺2
, z

∥

∥

∥

)]pst

>
ε

2

}

.

Hence (4.1) and (4.2) yield the required result. �
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Theorem 4.3. For any fixed (i, j) ∈ N × N, Wµ
∞

(Λ2, M, ∆m, p, ‖·, ·‖) is a para-

normed space with respect to the paranorm gij : X → R, defined by

gij(x) = inf
z∈X

∑

(s,t)∈Iij

‖xst, z‖

+ inf

{

̺pij/H : ̺ > 0 s.t. sup
(s,t)∈N×N

[

M
(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

6 1, ∀ z ∈ X

}

.

P r o o f. The identities gij(θ) = 0 and gij(−x) = gij(x) are easy to prove. So we

omit them.

(iii) Let us take x = {xij}i,j∈N×N and y = {yij}i,j∈N×N inWµ
∞

(Λ2, M, ∆m, p, ‖·, ·‖).

Let us construct the following sets:

A(x) =

{

̺ > 0: sup
(s,t)∈N×N

[

M
(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

6 1, ∀ z ∈ X

}

and

A(y) =

{

̺ > 0: sup
(s,t)∈N×N

[

M
(
∥

∥

∥

∆myst

̺
, z

∥

∥

∥

)]pst

6 1, ∀ z ∈ X

}

.

Let ̺1 ∈ A(x) and ̺2 ∈ A(y) and ̺0 = ̺1 + ̺2. Then

M
(∥

∥

∥

∆m(xst + yst)

̺0
, z

∥

∥

∥

)

6
̺1

̺1 + ̺2
M

(∥

∥

∥

∆mxst

̺1
, z

∥

∥

∥

)

+
̺2

̺1 + ̺2
M

(∥

∥

∥

∆myst

̺2
, z

∥

∥

∥

)

.

Thus

sup
(s,t)∈N×N

M
(
∥

∥

∥

∆m(xst + yst)

̺0
, z

∥

∥

∥

)

6 1.

Therefore

gij(x + y) 6 inf
z∈X

∑

(s,t)∈Iij

‖xst + yst, z‖

+ inf{(̺1 + ̺2)
pij/H : ̺1 ∈ A(x), ̺2 ∈ A(y)}

6 inf
z∈X

∑

(s,t)∈Iij

‖xst, z‖ + inf{̺
pij/H
1 : ̺1 ∈ A(x)}

+ inf
z∈X

∑

(s,t)∈Iij

‖yst, z‖ + inf{̺
pij/H
2 : ̺2 ∈ A(y)}

= gij(x) + gij(y).
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(iv) Let σm → σ as m → ∞, where σ, σm ∈ C and let gij(x
m −x) → 0 as m → ∞,

where xm = {xm
pq}p,q∈N and x = {xpq}p,q∈N. Let

A(xm) =

{

̺m > 0: sup
s,t∈N

[

M
(∥

∥

∥

∆mxm
st

̺m
, z

∥

∥

∥

)]pst

6 1, ∀ z ∈ X

}

,

A(xm − x) =

{

̺′m > 0: sup
s,t∈N

[

M
(
∥

∥

∥

∆m(xm
st − xst)

̺′m
, z

∥

∥

∥

)]pst

6 1, ∀ z ∈ X

}

.

If ̺m ∈ A(xm) and ̺′m ∈ A(xm − x) then we observe that

M
(∥

∥

∥

∆m(σmxm
st − σxst)

̺m|σm − σ| + ̺′m|σ|
, z

∥

∥

∥

)

6 M
(
∥

∥

∥

∆m(σmxm
st − σxm

st)

̺m|σm − σ| + ̺′m|σ|
, z

∥

∥

∥
+

∥

∥

∥

∆m(σxm
st − σxst)

̺m|σm − σ| + ̺′m|σ|
, z

∥

∥

∥

)

6
|σm − σ|̺m

̺m|σm − σ| + ̺′m|σ|
M

(∥

∥

∥

∆mxm
st

̺m
, z

∥

∥

∥

)

+
|σ|̺′m

̺m|σm − σ| + ̺′m|σ|
M

(∥

∥

∥

∆m(xm
st − xst)

̺′m
, z

∥

∥

∥

)

.

From the above inequality it now readily follows that

[

M
(∥

∥

∥

∆m(σmxm
st − σxst)

̺m|σm − σ| + ̺′m|σ|
, z

∥

∥

∥

)]pst

6 1

and consequently

gij(σ
mxm − σx)

6 inf
z∈X

∑

(s,t)∈Iij

‖σmxm
st − σxst, z‖

+ inf{(̺m|σm − σ| + ̺′m|σ|)pij/H : ̺m ∈ A(xm), ̺′m ∈ A(xm − x)}

6 |σm − σ| inf
z∈X

∑

(s,t)∈Iij

‖xm
st, z‖ + |σ| inf

z∈X

∑

(s,t)∈Iij

‖xm
st − xst, z‖

+ (|σm − σ|)pij/H inf{(̺m)pij/H : ̺m ∈ A(xm)}

+ (|σ|)pij /H inf{(̺′m)pij/H : ̺′m ∈ A(xm − x)}

6 max{|σm − σ|, (|σm − σ|)pij/H}gij(x
m) + max{|σ|, (|σ|)pij /H}gij(x

m − x).

Note that gij(x
m) 6 gij(x) + gij(x

m − x) for all m ∈ N. Hence by our assumption
the right-hand side tends to 0 as m → ∞ and the result follows. This completes the

proof of the theorem. �
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Theorem 4.4. Let M, M1, M2 be Orlicz functions. Then

(i) Wµ
0 (Λ2, M1, ∆

m, p, ‖·, ·‖) ⊆ Wµ
0 (Λ2, MoM1, ∆

m, p, ‖·, ·‖) provided {pij}i,j∈N×N

is such that H0 = inf pij > 0;

(ii) Wµ
0 (Λ2, M1, ∆

m, p, ‖·, ·‖) ∩ Wµ
0 (Λ2, M2, ∆

m, p, ‖·, ·‖) ⊆ Wµ
0 (Λ2, M1 + M2, ∆

m,

p, ‖·, ·‖).

P r o o f. Let ε > 0 be given. Choose ε0 > 0 such that max{εH
0 , εH0

0 } < ε.

Now using the continuity of M choose 0 < δ < 1 such that 0 < t < δ implies that

M(t) < ε0. Let {xij}i,j∈N×N ∈ Wµ
0 (Λ2, M1, ∆

m, p, ‖·, ·‖). Now from the definition

µ(A(δ)) = 0, where

A(δ) =

{

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

> δH

}

.

Thus if (i, j) /∈ A(δ) then

1

λ2
ij

∑

(s,t)∈Iij

[

M1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

< δH

i.e.
∑

(s,t)∈Iij

[

M1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

< λ2
ijδ

H

i.e.
[

M1

(
∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

< δH

for all (s, t) ∈ Iij . Hence
[

M1

(
∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]

< δ

for all (s, t) ∈ Iij .

Hence from the above using the continuity of M we have

M
([

M1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)])

< ε0

for all (s, t) ∈ Iij . This implies that

[

MoM1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

< max{εH0

0 , εH
0 }

for all (s, t) ∈ Iij , i.e.

∑

(s,t)∈Iij

[

MoM1

(
∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

< λ2
ij max{εH0

0 , εH
0 } < λ2

ijε,

821



which again implies that

1

λ2
ij

∑

(s,t)∈Iij

[

MoM1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

< ε.

This shows that

{

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

MoM1

(
∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

> ε

}

⊆ A(δ).

Therefore

µ

({

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

MoM1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

> ε

})

= 0.

Thus

{xij}i,j∈N ∈ Wµ
0 (Λ2, M1, ∆

m, p, ‖·, ·‖).

(ii) Let {xij}i,j∈N ∈ Wµ
0 (Λ2, M1, ∆

m, p, ‖·, ·‖) ∩ Wµ
0 (Λ2, M2, ∆

m, p, ‖·, ·‖). Then

the inequality

1

λ2
ij

[

(M1 + M2)
(
∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

6
D

λ2
ij

[

M1

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

+
D

λ2
ij

[

M2

(∥

∥

∥

∆mxst

̺
, z

∥

∥

∥

)]pst

gives the result. This completes the proof of the theorem. �

Theorem 4.5. Let X(∆m−1), m > 1 stand for Wµ(Λ2, M, ∆m−1, p, ‖·, ·‖)

or Wµ
0 (Λ2, M, ∆m−1, p, ‖·, ·‖) or Wµ

∞
(Λ2, M, ∆m−1, p, ‖·, ·‖). Then X(∆m−1) $

X(∆m). In general X(∆i) $ X(∆m) for all i = 1, 2, 3, . . . , m − 1.

P r o o f. We give the proof for Wµ
0 (Λ2, M, ∆m−1, p, ‖·, ·‖) only. It can be proved

in a similar way for Wµ(Λ2, M, ∆m−1, p, ‖·, ·‖) and Wµ
∞

(Λ2, M, ∆m−1, p, ‖·, ·‖).

Let x = {xij}i,j∈N ∈ Wµ
0 (Λ2, M, ∆m−1, p, ‖·, ·‖). Let also ε > 0 be given. Then

(4.3) µ

({

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆m−1xst

̺
, z

∥

∥

∥

)]pst

> ε

})

= 0
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for some ̺ > 0. Since M is non-decreasing and convex it follows that

1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆mxst

4̺
, z

∥

∥

∥

)]pst

=
1

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆m−1xs+1,t+1−∆m−1xs+1,t−∆m−1xs,t+1+∆m−1xst

4̺
, z

∥

∥

∥

)]pst

6
D2

λ2
ij

∑

(s,t)∈Iij

(

[1

4
M

(∥

∥

∥

∆m−1xs+1,t+1

̺
, z

∥

∥

∥

)]pst

+
[1

4
M

(∥

∥

∥

∆m−1xs+1,t

̺
, z

∥

∥

∥

)]pst

+
[1

4
M

(∥

∥

∥

∆m−1xs,t+1

̺
, z

∥

∥

∥

)]pst

+
[1

4
M

(∥

∥

∥

∆m−1xs,t

̺
, z

∥

∥

∥

)]pst

)

6
D2G

λ2
ij

∑

(s,t)∈Iij

(

[

M
(
∥

∥

∥

∆m−1xs+1,t+1

̺
, z

∥

∥

∥

)]pst

+
[

M
(
∥

∥

∥

∆m−1xs+1,t

̺
, z

∥

∥

∥

)]pst

+
[

M
(∥

∥

∥

∆m−1xs,t+1

̺
, z

∥

∥

∥

)]pst

+
[

M
(∥

∥

∥

∆m−1xs,t

̺
, z

∥

∥

∥

)]pst

)

where G = Max
{

1, (1
4 )H

}

. Hence we have

{

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆mxst

4̺
, z

∥

∥

∥

)]pst

> ε

}

⊆

{

(i, j) ∈ N× N :
D2G

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆m−1xs+1,t+1

̺
, z

∥

∥

∥

)]pst

>
ε

4

}

∪

{

(i, j) ∈ N× N :
D2G

λ2
ij

∑

(s,t)∈Iij

[

M
(
∥

∥

∥

∆m−1xs+1,t

̺
, z

∥

∥

∥

)]pst

>
ε

4

}

∪

{

(i, j) ∈ N× N :
D2G

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆m−1xs,t+1

̺
, z

∥

∥

∥

)]pst

>
ε

4

}

∪

{

(i, j) ∈ N× N :
D2G

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆m−1xs,t

̺
, z

∥

∥

∥

)]pst

>
ε

4

}

.

Using (4.3) we get

µ

({

(i, j) ∈ N× N :
1

λ2
ij

∑

(s,t)∈Iij

[

M
(∥

∥

∥

∆mxst

4̺
, z

∥

∥

∥

)]pst

> ε

})

= 0.

Therefore x = {xij}i,j∈N ∈ Wµ
0 (Λ2, M, ∆m, p, ‖·, ·‖). This completes the proof. �
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