TWO VALUED MEASURE AND SOME NEW DOUBLE SEQUENCE SPACES IN 2-NORMED SPACES

Pratulananda Das, Kolkata, Ekrem Savas, Istanbul, Santanu Bhunia, Diamond Harbour

(Received June 7, 2010)

Abstract

The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in 2-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.

Keywords: convergence, μ-statistical convergence, convergence in μ-density, condition $\left(\mathrm{APO}_{2}\right)$, 2-norm, 2-normed space, paranorm, paranormed space, Orlicz function, sequence space

MSC 2010: 40H05, 40C05

1. Introduction

The notion of summability of single sequences with respect to a two valued measure was introduced by Connor [3], [4] as a very interesting generalization of statistical convergence (see [9], [10], [21], [26], [30]). The notion of statistical convergence was further extended to double sequences independently by Moricz [19] and Mursaleen et al [20]. For more recent developments on double sequences one can consult the papers [5], [6], [7], [8], [1], [27] where more references can be found. In particular, very recently the first and third author investigated the summability of double sequences of real numbers with respect to a two valued measure and made many interesting observations [7] (see also [1] where the same has been investigated in an asymmetric metric space). The concept of 2-normed spaces was initially introduced by Gähler ([11], [12]) as a very interesting non-linear extension of the idea of usual normed

This research was completed while the first author was a visiting scholar at Istanbul Commerce University, Istanbul, Turkey in 2010.
linear spaces. Some initial studies on this structure can be seen from [11], [12], [13]. Recently a lot of interesting developments have occurred in 2-normed spaces in summability theory and related topics (see [14], [15], [25]).

In this article, in a natural way we first unite the approach of [7] with two norm and introduce the idea of summability of double sequences in 2-normed spaces using a two valued measure. Then using Orlicz functions, generalized double difference sequences and a two valued measure μ we introduce μ-statistical convergence of generalized double difference sequences with respect to an Orlicz function in 2-normed spaces. In this connection it should be mentioned that notable works involving the Orlicz function and the modulus function were done in [2], [17], [22], [24], [28]. We introduce and examine certain new double sequence spaces using the above tools as well as the 2-norm. This approach has not been considered in any context before.

2. Preliminaries

Throughout the paper \mathbb{N} denotes the set of all natural numbers, χ_{A} represents the characteristic function of $A \subseteq \mathbb{N}$ and \mathbb{R} represents the set of all real numbers.

Recall that a set $A \subseteq \mathbb{N}$ is said to have the asymptotic density $d(A)$ if

$$
d(A)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{A}(j)
$$

exists.
Definition 2.1 ([9], [30]). A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $\xi \in \mathbb{R}$ if for any $\varepsilon>0$ we have $d(A(\varepsilon))=0$, where $A(\varepsilon)=\left\{n \in \mathbb{N}:\left|x_{n}-\xi\right| \geqslant \varepsilon\right\}$.

By the convergence of a double sequence we mean the convergence in Pringsheim's sense (see [23]):

A double sequence $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ of real numbers is said to be convergent to $\xi \in \mathbb{R}$ if for any $\varepsilon>0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{i j}-\xi\right|<\varepsilon$ whenever $i, j \geqslant N_{\varepsilon}$. In this case we write $\lim _{i, j \rightarrow \infty} x_{i j}=\xi$.

A double sequence $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that $\left|x_{i j}\right|<M$ for all $i, j \in \mathbb{N}$. That is, $\|x\|_{(\infty, 2)}=\sup _{i, j \in \mathbb{N}}\left|x_{i j}\right|<\infty$.

Let $K \subseteq \mathbb{N} \times \mathbb{N}$ and let $K(i, j)$ be the cardinality of the set $\{(m, n) \in K: m \leqslant$ $i, n \leqslant j\}$. If the sequence $\{K(i, j) /(i \cdot j)\}_{i, j \in \mathbb{N}}$ has a limit in Pringsheim's sense then we say that K has double natural density, which is denoted by $d_{2}(K)=$ $\lim _{i, j \rightarrow \infty} K(i, j) /(i \cdot j)$.

Definition 2.2 ([19], [20]). A double sequence $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $\xi \in \mathbb{R}$ if for any $\varepsilon>0$ we have $d_{2}(A(\varepsilon))=0$, where $A(\varepsilon)=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-\xi\right| \geqslant \varepsilon\right\}$.

A statistically convergent double sequence of elements of a metric space (X, ϱ) is defined essentially in the same way $\left(\varrho\left(x_{i j}, \xi\right) \geqslant \varepsilon\right.$ instead of $\left.\left|x_{i j}-\xi\right| \geqslant \varepsilon\right)$.

Throughout the paper μ will denote a complete $\{0,1\}$ valued finite additive measure defined on an algebra Γ of subsets of $\mathbb{N} \times \mathbb{N}$ that contains all subsets of $\mathbb{N} \times \mathbb{N}$ that are contained in the union of a finite number of rows and columns of $\mathbb{N} \times \mathbb{N}$ and $\mu(A)=0$ if A is contained in the union of a finite number of rows and columns of $\mathbb{N} \times \mathbb{N}($ see $[7])$.

Definition 2.3 ([7]). A double sequence $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ of real numbers is said to be μ-statistically convergent to $L \in \mathbb{R}$ if and only if for any $\varepsilon>0, \mu(\{(i, j) \in$ $\left.\left.\mathbb{N} \times \mathbb{N}:\left|x_{i j}-L\right| \geqslant \varepsilon\right\}\right)=0$.

Definition 2.4 ([7]). A double sequence $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in μ-density if there exists $A \in \Gamma$ with $\mu(A)=1$ such that $\left\{x_{i j}\right\}_{(i, j) \in A}$ is convergent to L.

Definition 2.5 ([12]). Let X be a real vector space of dimension d, where $2 \leqslant d<\infty$. A 2 -norm on X is a function $\|\cdot, \cdot\|: X \times X \rightarrow \mathbb{R}$ which satisfies
(i) $\|x, y\|=0$ if and only if x and y are linearly dependent;
(ii) $\|x, y\|=\|y, x\|$;
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|, \alpha \in \mathbb{R}$;
(iv) $\|x, y+z\| \leqslant\|x, y\|+\|x, z\|$. The ordered pair $(X,\|\cdot, \cdot\|)$ is then called a 2-normed space.

As an example we may take $X=\mathbb{R}^{2}$ being equipped with the 2-norm $\|x, y\|=$ the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula $\|x, y\|=\left|x_{1} y_{2}-x_{2} y_{1}\right|, x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$. Recall that $(X,\|\cdot, \cdot\|)$ is a 2 -Banach space if every Cauchy sequence in X is convergent to some x in X. Let $(X,\|\cdot, \cdot\|)$ be any 2 -normed space and $S^{\prime \prime}(2-X)$ the set of all double sequences defined over the 2 -normed space $(X,\|\cdot, \cdot\|)$. Clearly $S^{\prime \prime}(2-X)$ is a linear space under addition and scalar multiplication.

Recall ([16]) that an Orlicz function $M:[0, \infty) \rightarrow[0, \infty)$ is a continuous, convex and non decreasing function such that $M(0)=0$ and $M(x)>0$ for $x>0$, and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Subsequently, the Orlicz function was used to define sequence spaces by Parashar and Choudhary ([22]) and others (see [2], [28]). An Orlicz function M can always be represented in the following integral form: $M(x)=\int_{0}^{x} p(t) \mathrm{d} t$ where p is the known
kernel of M, the right differential for $t \geqslant 0, p(0)=0, p(t)>0$ for $t>0, p$ is non decreasing and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$. If convexity of the Orlicz function M is replaced by $M(x+y) \leqslant M(x)+M(y)$ then this function is called the modulus function, which was presented and discussed by Ruckle ([24]) and Maddox ([17]). Note that if M is an Orlicz function then $M(t x) \leqslant t M(x)$ for all t with $0<t<1$.

3. μ-STATISTICAL CONVERGENCE AND CONVERGENCE IN μ-DENSITY IN 2-NORMED SPACES

Definition 3.1. A double sequence $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ in a 2-normed space $(X,\|\cdot, \cdot\|)$ is said to be convergent to ξ in $(X,\|\cdot, \cdot\|)$ if for each $\varepsilon>0$ and each $z \in X$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that $\left\|x_{i j}-\xi, z\right\|<\varepsilon$ for all $i, j \geqslant n_{\varepsilon}$.

Definition 3.2. Let μ be a two valued measure on $\mathbb{N} \times \mathbb{N}$. A double sequence $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ in a 2-normed space $(X,\|\cdot, \cdot\|)$ is said to be μ-statistically convergent to a point x in X if for each pre-assigned $\varepsilon>0$ and for each $z \in X, \mu(A(z, \varepsilon))=0$ where $A(z, \varepsilon)=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-x, z\right\| \geqslant \varepsilon\right\}$.

If a double sequence $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ is μ-statistically convergent to a point x in a 2 normed space $(X,\|\cdot, \cdot\|)$ then we write

$$
\underset{i, j \rightarrow \infty}{\mu-\lim _{i m}}\left\|x_{i j}-x, z\right\|=0
$$

or

$$
\underset{i, j \rightarrow \infty}{\mu-\lim _{i}}\left\|x_{i j}, z\right\|=\|x, z\| .
$$

Here x is called the μ-statistical limit of the sequence $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$.
Definition 3.3. Let μ be a two valued measure on $\mathbb{N} \times \mathbb{N}$. A double sequence $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ of the points in a 2 -normed space $(X,\|\cdot, \cdot\|)$ is said to be convergent to $\xi \in X$ in μ-density if there exists a set $M \in \Gamma$ with $\mu(M)=1$ such that $\left\{x_{i j}\right\}_{(i, j) \in M}$ is convergent to ξ in $(X,\|\cdot, \cdot\|)$.

We now give an example of a μ-statistically convergent double sequence in 2 normed spaces.

Example 3.1. Let μ be a two valued measure on $\mathbb{N} \times \mathbb{N}$ such that there is at least one $A \subseteq \mathbb{N} \times \mathbb{N}$ with $\mu(A)=0$ which is not contained in any finite union of rows and columns of $\mathbb{N} \times \mathbb{N}$. Define the double sequence $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ in the 2-normed space $(X,\|\cdot, \cdot\|)$ by

$$
x_{i j}= \begin{cases}(0, i j) & \text { if }(i, j) \in A \\ (0,0) & \text { otherwise }\end{cases}
$$

Let $L=(0,0)$ and $z=\left(z_{1}, z_{2}\right)$. Then for every $\varepsilon>0$ and $z \in X$

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-L, z\right\| \geqslant \varepsilon\right\} \subseteq A
$$

Thus

$$
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-L, z\right\| \geqslant \varepsilon\right\}\right)=0
$$

for every $\varepsilon>0$ and $z \in X$. This implies that

$$
\underset{i, j \rightarrow \infty}{\mu-\lim }\left\|x_{i j}, z\right\|=\|L, z\| .
$$

But it is noticeable that the double sequence is not convergent to L.
Similarly we can give non-trivial examples of double sequences which are convergent in μ-density in 2 -normed spaces.

We next provide a proof of the fact that the μ-statistical limit operation for double sequences in a 2 -normed space $(X,\|\cdot, \cdot\|)$ is linear with respect to summation and scalar multiplication.

Theorem 3.1. Let μ be a two valued measure. For each $z \in X$,
(i) if $\underset{i, j \rightarrow \infty}{\mu-\lim }\left\|x_{i j}, z\right\|=\|x, z\|$ and $\underset{i, j \rightarrow \infty}{\mu-\lim }\left\|y_{i j}, z\right\|=\|y, z\|$ then

$$
\underset{i, j \rightarrow \infty}{\mu-\lim _{i j}}\left\|x_{i j}+y_{i j}, z\right\|=\|x+y, z\| ;
$$

(ii) if $\underset{i, j \rightarrow \infty}{\mu-\lim }\left\|x_{i j}, z\right\|=\|x, z\|$ then $\underset{i, j \rightarrow \infty}{\mu-\lim }\left\|a x_{i j}, z\right\|=\|a x, z\|, a \in \mathbb{R}$.

Proof. (i) Let $\varepsilon>0$ be given. Consider the following two sets: $A\left(\frac{1}{2} \varepsilon, z\right)=$ $\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-x, z\right\| \geqslant \frac{1}{2} \varepsilon\right\}$ and $B\left(\frac{1}{2} \varepsilon, z\right)=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|y_{i j}-y, z\right\| \geqslant \frac{1}{2} \varepsilon\right\}$ for each $z \in X$. Then by hypothesis $\mu\left(A\left(\frac{1}{2} \varepsilon, z\right)\right)=0$ and $\mu\left(B\left(\frac{1}{2} \varepsilon, z\right)\right)=0$. Now $\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}+y_{i j}-(x+y), z\right\| \geqslant \varepsilon\right\} \subseteq\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-x, z\right\| \geqslant\right.$ $\left.\frac{1}{2} \varepsilon\right\} \cup\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|y_{i j}-y, z\right\| \geqslant \frac{1}{2} \varepsilon\right\}$. Therefore $\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \| x_{i j}+y_{i j}-\right.\right.$ $(x+y), z \| \geqslant \varepsilon\})=0$ and the result follows.
(ii) Let $\underset{i, j \rightarrow \infty}{ } \lim _{x i j}, z\|=\| x, z \|, a \in \mathbb{R}, a \neq 0$. Now $\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-x, z\right\| \geqslant\right.\right.$ $\varepsilon /|a|\})=0$ and from the definition of the 2-norm we have

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|a x_{i j}-a x, z\right\| \geqslant \varepsilon\right\}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|x_{i j}-x, z\right\| \geqslant \frac{\varepsilon}{|a|}\right\}
$$

and so

$$
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left\|a x_{i j}-a x, z\right\| \geqslant \varepsilon\right\}=0\right.
$$

Hence

$$
\underset{i, j \rightarrow \infty}{\mu-\lim _{n}}\left\|a x_{i j}, z\right\|=\|a x, z\|
$$

for every $z \in X$.
Similar observations are also true for μ-lim, i.e., the statistical limit operation in μ-density.

If $u=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{d}\right\}$ is a basis of the 2 -normed space $(X,\|\cdot, \cdot\|$,$) , then we$ have the following result.

Lemma 3.1. Let μ be a two valued measure. A double sequence $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ is μ-statistically convergent to $x \in X$ if and only if $\underset{i, j \rightarrow \infty}{\mu-\lim }\left\|x_{i j}-x, u_{k}\right\|=0$ for every $k=1,2,3, \ldots, d$.

If C_{μ}^{2} and $C_{\mu}^{* 2}$ denote respectively the sets of all double sequences in a 2-normed space $(X,\|\cdot, \cdot\|)$ which are μ-statistically convergent and convergent in μ-density in the 2 -normed space $(X,\|\cdot, \cdot\|)$ then as in $[7]$ we now consider the following condition.
$\left(\mathrm{APO}_{2}\right)$ (Additive property of null sets)
The measure μ is said to satisfy the condition $\left(\mathrm{APO}_{2}\right)$ if for every sequence $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ of mutually disjoint μ-null sets (i.e. $\mu\left(A_{i}\right)=0$ for all $i \in \mathbb{N}$) there exists a countable family of sets $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ such that $A_{i} \Delta B_{i}$ is included in the union of a finite number of rows and columns of $\mathbb{N} \times \mathbb{N}$ for every $i \in \mathbb{N}$ and $\mu(B)=0$ where $B=\bigcup_{i \in \mathbb{N}} B_{i}$ (hence $\mu\left(B_{i}\right)=0$ for every $\left.i \in \mathbb{N}\right)$.

Theorem 3.2. $C_{\mu}^{2}=C_{\mu}^{* 2}$ iff μ satisfies the condition $\left(\mathrm{APO}_{2}\right)$.
Proof. The proof is parallel to the proof of the corresponding theorems in [7] and is omitted.

4. New double sequence spaces

Recall that a mapping $g: X \rightarrow \mathbb{R}$ is called a paranorm on X if it satisfies the following conditions:
(i) $g(\theta)=0$ where θ is the zero element of the space;
(ii) $g(x)=g(-x)$;
(iii) $g(x+y) \leqslant g(x)+g(y)$;
(iv) $\lambda_{n} \rightarrow \lambda(n \rightarrow \infty)$ and $g\left(x^{n}-x\right) \rightarrow 0(n \rightarrow \infty)$ imply $g\left(\lambda_{n} x^{n}-\lambda x\right) \rightarrow 0$ $(n \rightarrow \infty)$ for all $x, y \in X$ ([18], see also [25]). The ordered pair (X, g) is called a paranormed space with respect to the paranorm g.
Now we first define the following sequence space.

Definition 4.1. Let $p=\left\{p_{i j}\right\}_{i, j \in \mathbb{N}}$ be a sequence of non-negative real numbers. $l^{\prime \prime}(2-p)=\left\{x \in S^{\prime \prime}(2-X): \sum_{s, t \in \mathbb{N}}\left\|x_{s t}, z\right\|^{p_{s t}}<\infty, \forall z \in X\right\}$.

We now state an inequality which will be used throughout our study: If $\left\{p_{i j}\right\}_{i, j \in \mathbb{N}}$ is a bounded double sequence of non-negative real numbers and $\sup _{i, j \in \mathbb{N}} p_{i j}=H$ and $D=\operatorname{Max}\left\{1,2^{H-1}\right\}$, then

$$
\left|a_{i j}+b_{i j}\right|^{p_{i j}} \leqslant D\left\{\left|a_{i j}\right|^{p_{i j}}+\left|b_{i j}\right|^{p_{i j}}\right\}
$$

for all i, j, and $a_{i j}, b_{i j} \in \mathbb{C}$, the set of all complex numbers. Also,

$$
|a|^{p_{i j}} \leqslant \operatorname{Max}\left\{1,|a|^{H}\right\}
$$

for all $a \in \mathbb{C}$.

Lemma 4.1. The sequence space $l^{\prime \prime}(2-p)$ is a linear space.
Proof. The proof is parallel to the proof of Lemma 3.1 in [25] and so is omitted.

Theorem 4.1. $l^{\prime \prime}(2-p)$ is a paranormed space with the paranorm defined by $g: l^{\prime \prime}(2-p) \rightarrow \mathbb{R}, g(x)=\left(\sum_{s, t \in \mathbb{N}}\left\|x_{s t}, z\right\|^{p_{s t}}\right)^{1 / M}$, where $\left\{p_{i j}\right\}_{i, j \in \mathbb{N}}$ is a bounded double sequence of non-negative real numbers and $\sup _{i, j \in \mathbb{N}} p_{i j}=H$ and $M=\operatorname{Max}(1, H)$.

Proof. The proof is modelled after the proof of Theorem 3.3 in [25] with necessary modifications.
(i) $g(\theta)=\left(\sum_{s, t \in \mathbb{N}}\left\|\theta_{s t}, z\right\|^{p_{s t}}\right)^{1 / M}=0$.
(ii) $g(-x)=\left(\sum_{s, t \in \mathbb{N}}\left\|-x_{s t}, z\right\|^{p_{s t}}\right)^{1 / M}=\left(\sum_{s, t \in \mathbb{N}}|-1|\left\|x_{s t}, z\right\|^{p_{s t}}\right)^{1 / M}=g(x)$.
(iii) Using the well-known inequalities

$$
\begin{aligned}
g(x+y) & =\left(\sum_{s, t \in \mathbb{N}}\left\|x_{s t}+y_{s t}, z\right\|^{p_{s t}}\right)^{1 / M} \\
& \leqslant\left(\sum_{s, t \in \mathbb{N}}\left(\left\|x_{s t}, z\right\|^{p_{s t} / M}\right)^{M}\right)^{1 / M}+\left(\sum_{s, t \in \mathbb{N}}\left(\left\|y_{s t}, z\right\|^{p_{s t} / M}\right)^{M}\right)^{1 / M} \\
& =g(x)+g(y)
\end{aligned}
$$

(iv) Let $\lambda^{n} \rightarrow \lambda$ as $n \rightarrow \infty$ and let $g\left(x^{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$, where $x^{n}=\left\{x_{i j}^{n}\right\}_{i, j \in \mathbb{N}}$ and $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$. Then using Minkowski's inequalities (see [29])

$$
\begin{aligned}
g\left(\lambda^{n} x^{n}-\lambda x\right)= & \left(\sum_{s, t \in \mathbb{N}}\left\|\lambda^{n} x_{s t}^{n}-\lambda x_{s t}, z\right\|^{p_{s t}}\right)^{1 / M} \\
\leqslant & \left|\lambda^{n}\right|^{H / M}\left(\sum_{s, t \in \mathbb{N}}\left\|x_{s t}^{n}-x_{s t}, z\right\|^{p_{s t}}\right)^{1 / M} \\
& +\left(\sum_{s, t \in \mathbb{N}}\left|\lambda^{n}-\lambda\right|\left\|x_{s t}, z\right\|^{p_{s t}}\right)^{1 / M}
\end{aligned}
$$

In this inequality, the first term of the right-hand side tends to zero because $g\left(x^{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, since $\lambda^{n} \rightarrow \lambda$ as $n \rightarrow \infty$, the second term also tends to zero by Lemma 5.1.

Let $\Lambda=\left\{\lambda_{m}\right\}_{m \in \mathbb{N}}$ and $v=\left\{v_{n}\right\}_{n \in \mathbb{N}}$ be non decreasing sequences of positive real numbers such that each tends to ∞ and

$$
\lambda_{m+1} \leqslant \lambda_{m}+1, \quad \lambda_{1}=0
$$

and

$$
v_{n+1} \leqslant v_{n}+1, \quad v_{1}=0
$$

The generalized double de la Valée-Pousin mean is defined by

$$
t_{m n}(x)=\frac{1}{\lambda_{m} v_{n}} \sum_{i \in J_{m}} \sum_{j \in K_{n}} x_{i j}
$$

where $J_{m}=\left[m-\lambda_{m}+1, m\right]$ and $K_{n}=\left[n-v_{n}+1, n\right]$. Writing $I_{m n}=J_{m} \times K_{n}$ and $\lambda_{m n}^{2}=\lambda_{m} v_{n}$ we can write $t_{m n}$ as

$$
t_{m n}(x)=\frac{1}{\lambda_{m n}^{2}} \sum_{(i, j) \in I_{m n}} x_{i j}
$$

which will be used throughout the paper.
Definition 4.2. Suppose also that as before μ is a two valued measure on $\mathbb{N} \times \mathbb{N}$ and M is an Orlicz function and $(X,\|\cdot, \cdot\|)$ is a 2-normed space. Further, let $p=$ $\left\{p_{i j}\right\}_{i, j \in \mathbb{N}}$ be a bounded sequence of positive real numbers. Now we introduce the
following different types of sequence spaces, for all $\varepsilon>0$:

$$
\begin{aligned}
W^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)= & \left\{x \in S^{\prime \prime}(2-X): \mu((i, j) \in \mathbb{N} \times \mathbb{N}:\right. \\
& \left.\frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}-L}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right)=0, \\
& \text { for some } \varrho>0 \text { and } L \in X \text { and each } z \in X\}, \\
W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)= & \left\{x \in S^{\prime \prime}(2-X): \mu((i, j) \in \mathbb{N} \times \mathbb{N}:\right. \\
& \left.\frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right)=0, \\
& \text { for some } \varrho>0 \text { and each } z \in X\}, \\
W_{\infty}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)= & \left\{x \in S^{\prime \prime}(2-X):\right. \\
& \sup _{(i, j) \in \mathbb{N} \times \mathbb{N}} \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \leqslant k,
\end{aligned}
$$

for some $k>0$, for some $\varrho>0$ and each $z \in X\}$,

$$
W_{\infty}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)=\left\{x \in S^{\prime \prime}(2-X): \exists k>0,\right.
$$

$$
\mu(\{(i, j) \in \mathbb{N} \times \mathbb{N}
$$

$$
\left.\left.\frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant k\right\}\right)=0
$$

$$
\text { for some } \varrho>0 \text { and each } z \in X\}
$$

where $I_{i j}=J_{i} \times K_{j}, \Lambda^{2}=\left\{\lambda_{m} v_{n}\right\}_{m, n \in \mathbb{N}}$ and Δ^{m} denotes the generalized m-th order difference, i.e.

$$
\Delta(x)=\left\{x_{j+1, k+1}+x_{j k}-x_{j, k+1}-x_{j+1, k}\right\}_{j, k \in \mathbb{N}}
$$

and

$$
\Delta^{m}(x)=\Delta\left(\Delta^{m-1}(x)\right) \quad \text { for } m>1
$$

We now have

Theorem 4.2. $W^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right), W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)$ and $W_{\infty}^{\mu}\left(\Lambda^{2}\right.$, $\left.M, \Delta^{m}, p,\|\cdot, \cdot\|\right)$ are linear spaces. Here $(X,\|\cdot, \cdot\|)$ is a 2-normed space.

Proof. We shall prove the theorem for $W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)$ while the others can be proved similarly. Let $\varepsilon>0$ be given. Assume that $x, y \in W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}\right.$, $p,\|\cdot, \cdot\|)$ and $\alpha, \beta \in \mathbb{R}$, where $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}}$ and $y \in\left\{y_{i j}\right\}_{i, j \in \mathbb{N}}$. Further, let $z \in X$. Then

$$
\begin{equation*}
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho_{1}}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\}\right)=0 \tag{4.1}
\end{equation*}
$$

for some $\varrho_{1}>0$ and

$$
\begin{equation*}
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} y_{s t}}{\varrho_{2}}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\}\right)=0 \tag{4.2}
\end{equation*}
$$

for some $\varrho_{2}>0$.
Since $\|\cdot, \cdot\|$ is a 2 -norm, Δ^{m} is linear, therefore the following inequality holds:

$$
\begin{aligned}
& \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m}\left(\alpha x_{s t}+\beta y_{s t}\right)}{|\alpha| \varrho_{1}+|\beta| \varrho_{2}}, z\right\|\right)\right]^{p_{s t}} \\
& \leqslant D \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[\frac{|\alpha| \varrho_{1}}{|\alpha| \varrho_{1}+|\beta| \varrho_{2}} M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho_{1}}, z\right\|\right)\right]^{p_{s t}} \\
& \quad+D \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[\frac{|\beta| \varrho_{2}}{|\alpha| \varrho_{1}+|\beta| \varrho_{2}} M\left(\left\|\frac{\Delta^{m} y_{s t}}{\varrho_{2}}, z\right\|\right)\right]^{p_{s t}} \\
& \leqslant D F \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho_{1}}, z\right\|\right)\right]^{p_{s t}}+D F \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} y_{s t}}{\varrho_{2}}, z\right\|\right)\right]^{p_{s t}}
\end{aligned}
$$

where $F=\operatorname{Max}\left\{1,\left[|\alpha| \varrho_{1} /\left(|\alpha| \varrho_{1}+|\beta| \varrho_{2}\right)\right]^{H},\left[|\beta| \varrho_{2} /\left(|\alpha| \varrho_{1}+|\beta| \varrho_{2}\right)\right]^{H}\right\}$, and $D=$ $\operatorname{Max}\left\{1,2^{H-1}\right\}$ as defined before.

From the above inequality we get

$$
\begin{aligned}
\{(i, j) \in & \left.\mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m}\left(\alpha x_{s t}+\beta y_{s t}\right)}{|\alpha| \varrho_{1}+|\beta| \varrho_{2}}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\} \\
\subseteq & \left\{(i, j) \in \mathbb{N} \times \mathbb{N}: D F \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho_{1}}, z\right\|\right)\right]^{p_{s t}} \geqslant \frac{\varepsilon}{2}\right\} \\
& \cup\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: D F \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} y_{s t}}{\varrho_{2}}, z\right\|\right)\right]^{p_{s t}} \geqslant \frac{\varepsilon}{2}\right\} .
\end{aligned}
$$

Hence (4.1) and (4.2) yield the required result.

Theorem 4.3. For any fixed $(i, j) \in \mathbb{N} \times \mathbb{N}, W_{\infty}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)$ is a paranormed space with respect to the paranorm $g_{i j}: X \rightarrow \mathbb{R}$, defined by

$$
\begin{aligned}
g_{i j}(x)= & \inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|x_{s t}, z\right\| \\
& +\inf \left\{\varrho^{p_{i j} / H}: \varrho>0 \text { s.t. } \sup _{(s, t) \in \mathbb{N} \times \mathbb{N}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \leqslant 1, \forall z \in X\right\} .
\end{aligned}
$$

Proof. The identities $g_{i j}(\theta)=0$ and $g_{i j}(-x)=g_{i j}(x)$ are easy to prove. So we omit them.
(iii) Let us take $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N} \times \mathbb{N}}$ and $y=\left\{y_{i j}\right\}_{i, j \in \mathbb{N} \times \mathbb{N}}$ in $W_{\infty}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)$. Let us construct the following sets:

$$
A(x)=\left\{\varrho>0: \sup _{(s, t) \in \mathbb{N} \times \mathbb{N}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \leqslant 1, \forall z \in X\right\}
$$

and

$$
A(y)=\left\{\varrho>0: \sup _{(s, t) \in \mathbb{N} \times \mathbb{N}}\left[M\left(\left\|\frac{\Delta^{m} y_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \leqslant 1, \forall z \in X\right\} .
$$

Let $\varrho_{1} \in A(x)$ and $\varrho_{2} \in A(y)$ and $\varrho_{0}=\varrho_{1}+\varrho_{2}$. Then

$$
\begin{aligned}
M & \left(\left\|\frac{\Delta^{m}\left(x_{s t}+y_{s t}\right)}{\varrho_{0}}, z\right\|\right) \\
& \leqslant \frac{\varrho_{1}}{\varrho_{1}+\varrho_{2}} M\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho_{1}}, z\right\|\right)+\frac{\varrho_{2}}{\varrho_{1}+\varrho_{2}} M\left(\left\|\frac{\Delta^{m} y_{s t}}{\varrho_{2}}, z\right\|\right) .
\end{aligned}
$$

Thus

$$
\sup _{(s, t) \in \mathbb{N} \times \mathbb{N}} M\left(\left\|\frac{\Delta^{m}\left(x_{s t}+y_{s t}\right)}{\varrho_{0}}, z\right\|\right) \leqslant 1 .
$$

Therefore

$$
\begin{aligned}
g_{i j}(x+y) \leqslant & \inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|x_{s t}+y_{s t}, z\right\| \\
& +\inf \left\{\left(\varrho_{1}+\varrho_{2}\right)^{p_{i j} / H}: \varrho_{1} \in A(x), \varrho_{2} \in A(y)\right\} \\
\leqslant & \inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|x_{s t}, z\right\|+\inf \left\{\varrho_{1}^{p_{i j} / H}: \varrho_{1} \in A(x)\right\} \\
& +\inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|y_{s t}, z\right\|+\inf \left\{\varrho_{2}^{p_{i j} / H}: \varrho_{2} \in A(y)\right\} \\
= & g_{i j}(x)+g_{i j}(y) .
\end{aligned}
$$

(iv) Let $\sigma^{m} \rightarrow \sigma$ as $m \rightarrow \infty$, where $\sigma, \sigma^{m} \in \mathbb{C}$ and let $g_{i j}\left(x^{m}-x\right) \rightarrow 0$ as $m \rightarrow \infty$, where $x^{m}=\left\{x_{p q}^{m}\right\}_{p, q \in \mathbb{N}}$ and $x=\left\{x_{p q}\right\}_{p, q \in \mathbb{N}}$. Let

$$
\begin{aligned}
A\left(x^{m}\right) & =\left\{\varrho_{m}>0: \sup _{s, t \in \mathbb{N}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}^{m}}{\varrho_{m}}, z\right\|\right)\right]^{p_{s t}} \leqslant 1, \forall z \in X\right\}, \\
A\left(x^{m}-x\right) & =\left\{\varrho_{m}^{\prime}>0: \sup _{s, t \in \mathbb{N}}\left[M\left(\left\|\frac{\Delta^{m}\left(x_{s t}^{m}-x_{s t}\right)}{\varrho_{m}^{\prime}}, z\right\|\right)\right]^{p_{s t}} \leqslant 1, \forall z \in X\right\} .
\end{aligned}
$$

If $\varrho_{m} \in A\left(x^{m}\right)$ and $\varrho_{m}^{\prime} \in A\left(x^{m}-x\right)$ then we observe that

$$
\begin{aligned}
M & \left(\left\|\frac{\Delta^{m}\left(\sigma^{m} x_{s t}^{m}-\sigma x_{s t}\right)}{\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|}, z\right\|\right) \\
\leqslant & M\left(\left\|\frac{\Delta^{m}\left(\sigma^{m} x_{s t}^{m}-\sigma x_{s t}^{m}\right)}{\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|}, z\right\|+\left\|\frac{\Delta^{m}\left(\sigma x_{s t}^{m}-\sigma x_{s t}\right)}{\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|}, z\right\|\right) \\
\leqslant & \frac{\left|\sigma^{m}-\sigma\right| \varrho_{m}}{\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|} M\left(\left\|\frac{\Delta^{m} x_{s t}^{m}}{\varrho_{m}}, z\right\|\right) \\
& \quad+\frac{|\sigma| \varrho_{m}^{\prime}}{\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|} M\left(\left\|\frac{\Delta^{m}\left(x_{s t}^{m}-x_{s t}\right)}{\varrho_{m}^{\prime}}, z\right\|\right) .
\end{aligned}
$$

From the above inequality it now readily follows that

$$
\left[M\left(\left\|\frac{\Delta^{m}\left(\sigma^{m} x_{s t}^{m}-\sigma x_{s t}\right)}{\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|}, z\right\|\right)\right]^{p_{s t}} \leqslant 1
$$

and consequently

$$
\begin{aligned}
& g_{i j}\left(\sigma^{m} x^{m}-\sigma x\right) \\
& \leqslant \inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|\sigma^{m} x_{s t}^{m}-\sigma x_{s t}, z\right\| \\
&+\inf \left\{\left(\varrho_{m}\left|\sigma^{m}-\sigma\right|+\varrho_{m}^{\prime}|\sigma|\right)^{p_{i j} / H}: \varrho_{m} \in A\left(x^{m}\right), \varrho_{m}^{\prime} \in A\left(x^{m}-x\right)\right\} \\
& \leqslant\left|\sigma^{m}-\sigma\right| \inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|x_{s t}^{m}, z\right\|+|\sigma| \inf _{z \in X} \sum_{(s, t) \in I_{i j}}\left\|x_{s t}^{m}-x_{s t}, z\right\| \\
&+\left(\left|\sigma^{m}-\sigma\right|\right)^{p_{i j} / H} \inf \left\{\left(\varrho_{m}\right)^{p_{i j} / H}: \varrho_{m} \in A\left(x^{m}\right)\right\} \\
&+(|\sigma|)^{p_{i j} / H} \inf \left\{\left(\varrho_{m}^{\prime}\right)^{p_{i j} / H}: \varrho_{m}^{\prime} \in A\left(x^{m}-x\right)\right\} \\
& \leqslant \max \left\{\left|\sigma^{m}-\sigma\right|,\left(\left|\sigma^{m}-\sigma\right|\right)^{p_{i j} / H}\right\} g_{i j}\left(x^{m}\right)+\max \left\{|\sigma|,(|\sigma|)^{p_{i j} / H}\right\} g_{i j}\left(x^{m}-x\right) .
\end{aligned}
$$

Note that $g_{i j}\left(x^{m}\right) \leqslant g_{i j}(x)+g_{i j}\left(x^{m}-x\right)$ for all $m \in \mathbb{N}$. Hence by our assumption the right-hand side tends to 0 as $m \rightarrow \infty$ and the result follows. This completes the proof of the theorem.

Theorem 4.4. Let M, M_{1}, M_{2} be Orlicz functions. Then
(i) $W_{0}^{\mu}\left(\Lambda^{2}, M_{1}, \Delta^{m}, p,\|\cdot, \cdot\|\right) \subseteq W_{0}^{\mu}\left(\Lambda^{2}, M o M_{1}, \Delta^{m}, p,\|\cdot, \cdot\|\right)$ provided $\left\{p_{i j}\right\}_{i, j \in \mathbb{N} \times \mathbb{N}}$ is such that $H_{0}=\inf p_{i j}>0$;
(ii) $W_{0}^{\mu}\left(\Lambda^{2}, M_{1}, \Delta^{m}, p,\|\cdot, \cdot\|\right) \cap W_{0}^{\mu}\left(\Lambda^{2}, M_{2}, \Delta^{m}, p,\|\cdot, \cdot\|\right) \subseteq W_{0}^{\mu}\left(\Lambda^{2}, M_{1}+M_{2}, \Delta^{m}\right.$, $p,\|\cdot, \cdot\|)$.

Proof. Let $\varepsilon>0$ be given. Choose $\varepsilon_{0}>0$ such that $\max \left\{\varepsilon_{0}^{H}, \varepsilon_{0}^{H_{0}}\right\}<\varepsilon$. Now using the continuity of M choose $0<\delta<1$ such that $0<t<\delta$ implies that $M(t)<\varepsilon_{0}$. Let $\left\{x_{i j}\right\}_{i, j \in \mathbb{N} \times \mathbb{N}} \in W_{0}^{\mu}\left(\Lambda^{2}, M_{1}, \Delta^{m}, p,\|\cdot, \cdot\|\right)$. Now from the definition $\mu(A(\delta))=0$, where

$$
A(\delta)=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \delta^{H}\right\}
$$

Thus if $(i, j) \notin A(\delta)$ then

$$
\frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}<\delta^{H}
$$

i.e.

$$
\sum_{(s, t) \in I_{i j}}\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}<\lambda_{i j}^{2} \delta^{H}
$$

i.e.

$$
\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}<\delta^{H}
$$

for all $(s, t) \in I_{i j}$. Hence

$$
\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]<\delta
$$

for all $(s, t) \in I_{i j}$.
Hence from the above using the continuity of M we have

$$
M\left(\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]\right)<\varepsilon_{0}
$$

for all $(s, t) \in I_{i j}$. This implies that

$$
\left[\operatorname{MoM}_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}<\max \left\{\varepsilon_{0}^{H_{0}}, \varepsilon_{0}^{H}\right\}
$$

for all $(s, t) \in I_{i j}$, i.e.

$$
\sum_{(s, t) \in I_{i j}}\left[M o M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}<\lambda_{i j}^{2} \max \left\{\varepsilon_{0}^{H_{0}}, \varepsilon_{0}^{H}\right\}<\lambda_{i j}^{2} \varepsilon,
$$

which again implies that

$$
\frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M o M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}<\varepsilon
$$

This shows that

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M o M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\} \subseteq A(\delta)
$$

Therefore

$$
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M o M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\}\right)=0
$$

Thus

$$
\left\{x_{i j}\right\}_{i, j \in \mathbb{N}} \in W_{0}^{\mu}\left(\Lambda^{2}, M_{1}, \Delta^{m}, p,\|\cdot, \cdot\|\right) .
$$

(ii) Let $\left\{x_{i j}\right\}_{i, j \in \mathbb{N}} \in W_{0}^{\mu}\left(\Lambda^{2}, M_{1}, \Delta^{m}, p,\|\cdot, \cdot\|\right) \cap W_{0}^{\mu}\left(\Lambda^{2}, M_{2}, \Delta^{m}, p,\|\cdot, \cdot\|\right)$. Then the inequality

$$
\begin{aligned}
& \frac{1}{\lambda_{i j}^{2}}\left[\left(M_{1}+M_{2}\right)\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \\
& \quad \leqslant \frac{D}{\lambda_{i j}^{2}}\left[M_{1}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}+\frac{D}{\lambda_{i j}^{2}}\left[M_{2}\left(\left\|\frac{\Delta^{m} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}
\end{aligned}
$$

gives the result. This completes the proof of the theorem.

Theorem 4.5. Let $X\left(\Delta^{m-1}\right), m \geqslant 1$ stand for $W^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$ or $W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$ or $W_{\infty}^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$. Then $X\left(\Delta^{m-1}\right) \varsubsetneqq$ $X\left(\Delta^{m}\right)$. In general $X\left(\Delta^{i}\right) \varsubsetneqq X\left(\Delta^{m}\right)$ for all $i=1,2,3, \ldots, m-1$.

Proof. We give the proof for $W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$ only. It can be proved in a similar way for $W^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$ and $W_{\infty}^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$.

Let $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}} \in W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m-1}, p,\|\cdot, \cdot\|\right)$. Let also $\varepsilon>0$ be given. Then

$$
\begin{equation*}
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m-1} x_{s t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\}\right)=0 \tag{4.3}
\end{equation*}
$$

for some $\varrho>0$. Since M is non-decreasing and convex it follows that

$$
\begin{aligned}
& \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{4 \varrho}, z\right\|\right)\right]^{p_{s t}} \\
&= \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t+1}-\Delta^{m-1} x_{s+1, t}-\Delta^{m-1} x_{s, t+1}+\Delta^{m-1} x_{s t}}{4 \varrho}, z\right\|\right)\right]^{p_{s t}} \\
& \leqslant \frac{D^{2}}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left(\left[\frac{1}{4} M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t+1}}{\varrho}, z\right\|\right)\right]^{p_{s t}}+\left[\frac{1}{4} M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}\right. \\
&\left.\quad+\left[\frac{1}{4} M\left(\left\|\frac{\Delta^{m-1} x_{s, t+1}}{\varrho}, z\right\|\right)\right]^{p_{s t}}+\left[\frac{1}{4} M\left(\left\|\frac{\Delta^{m-1} x_{s, t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}\right) \\
& \leqslant \frac{D^{2} G}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left(\left[M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t+1}}{\varrho}, z\right\|\right)\right]^{p_{s t}}+\left[M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}\right. \\
&\left.\quad+\left[M\left(\left\|\frac{\Delta^{m-1} x_{s, t+1}}{\varrho}, z\right\|\right)\right]^{p_{s t}}+\left[M\left(\left\|\frac{\Delta^{m-1} x_{s, t}}{\varrho}, z\right\|\right)\right]^{p_{s t}}\right)
\end{aligned}
$$

where $G=\operatorname{Max}\left\{1,\left(\frac{1}{4}\right)^{H}\right\}$. Hence we have

$$
\begin{aligned}
\{(i, j) & \left.\in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{4 \varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\} \\
\subseteq & \left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{D^{2} G}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t+1}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \frac{\varepsilon}{4}\right\} \\
& \cup\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{D^{2} G}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m-1} x_{s+1, t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \frac{\varepsilon}{4}\right\} \\
& \cup\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{D^{2} G}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m-1} x_{s, t+1}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \frac{\varepsilon}{4}\right\} \\
& \cup\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{D^{2} G}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m-1} x_{s, t}}{\varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \frac{\varepsilon}{4}\right\} .
\end{aligned}
$$

Using (4.3) we get

$$
\mu\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \frac{1}{\lambda_{i j}^{2}} \sum_{(s, t) \in I_{i j}}\left[M\left(\left\|\frac{\Delta^{m} x_{s t}}{4 \varrho}, z\right\|\right)\right]^{p_{s t}} \geqslant \varepsilon\right\}\right)=0
$$

Therefore $x=\left\{x_{i j}\right\}_{i, j \in \mathbb{N}} \in W_{0}^{\mu}\left(\Lambda^{2}, M, \Delta^{m}, p,\|\cdot, \cdot\|\right)$. This completes the proof.

References

[1] S. Bhunia, P. Das: Two valued measure and summability of double sequences in asymmetric context. Acta Math. Hung. 130 (2011), 167-187.
zbl
[2] R. Colak, M. Et, E. Malkowsky: Strongly almost (w, λ)-summable sequences defined by Orlicz functions. Hokkaido Math. J. 34 (2005), 265-276.
[3] J. Connor: Two valued measures and summability. Analysis 10 (1990), 373-385.
[4] J. Connor: R-type summability methods, Cauchy criteria, P-sets and statistical convergence. Proc. Am. Math. Soc. 115 (1992), 319-327.
zbl
[5] P. Das, P. Malik: On the statistical and I variation of double sequences. Real Anal. Exch. 33 (2008), 351-363.
zbl
[6] P. Das, P. Kostyrko, W. Wilczyński, P. Malik: I and I^{*}-convergence of double sequences. Math. Slovaca 58 (2008), 605-620.
zbl
[7] P. Das, S. Bhunia: Two valued measure and summability of double sequences. Czechoslovak Math. J. 59(134) (2009), 1141-1155.
[8] P. Das, P. Malik, E. Savaş: On statistical limit points of double sequences. Appl. Math. Comput. 215 (2009), 1030-1034.
[9] H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[10] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301-313.
[11] S. Gähler: 2-metrische Räume und ihre topologische Struktur. Math. Nachr. 26 (1963), 115-148. (In German.)
[12] S. Gähler: 2-normed spaces. Math. Nachr. 28 (1964), 1-43.
[13] S. Gähler, A. H. Siddiqi, S. C. Gupta: Contributions to non-Archimedean functional analysis. Math. Nachr. 69 (1975), 162-171.
zbl
[14] M. Gürdal, S. Pehlivan: Statistical convergence in 2-normed spaces. Southeast Asian Bull. Math. 33 (2009), 257-264.
zbl
[15] M. Gürdal, A. Sahiner, I. Açik: Approximation theory in 2-Banach spaces. Nolinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1654-1661.
[16] M. A. Krasnosel'skij, Y. B. Rutiskij: Convex Functions and Orlicz Spaces. P. Noordhoff Ltd., Groningen, 1961.
[17] I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166.
zbl
[18] I. J. Maddox: Elements of Functional Analysis. Cambridge University Press, Cambridge, 1970.
[19] F. Móricz: Statistical convergence of multiple sequences. Arch. Math. 81 (2003), 82-89. zb
[20] Mursaleen, O. H. H. Edely: Statistical convergence of double sequences. J. Math. Anal. Appl. 288 (2003), 223-231.
zbl
[21] F. Nuray, W. H. Ruckle: Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245 (2000), 513-527.
zbl
[22] S. D. Parashar, B. Choudhary: Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 25 (1994), 419-428.
zbl
[23] A. Pringsheim: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53 (1900), 289-321. (In German.)
[24] W. H. Ruckle: FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math. 25 (1973), 973-978.
[25] A. Sahiner, M. Gürdal, S. Saltan, H. Gunawan: Ideal convergence in 2-normed spaces. Taiwanese J. Math. 11 (2007), 1477-1484.
[26] T. Šalát: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
[27] E. Savaş, Mursaleen: On statistically convergent double sequences of fuzzy numbers. Inf. Sci. 162 (2004), 183-192.
[28] E. Savaş, R. F. Patterson: An Orlicz extension of some new sequences spaces. Rend. Ist. Mat. Univ. Trieste 37 (2005), 145-154.
zbl
[29] E. Savaş, B. E. Rhoades: Double absolute summability factor theorems and applications. Nonlinear Anal., Theory Methods Appl. 69 (2008), 189-200.
zbl
[30] I. J. Schoenberg: The integrability of certain functions and related summability methods. Am. Math. Mon. 66 (1959), 361-375, 562-563.

Authors' addresses: P. D as, Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India, e-mail: pratulananda@yahoo.co.in; E. Savas, Istanbul Ticaret University, Department of Mathematics, U̇sküdar-Istanbul, Turkey, e-mail: ekremsavas@yahoo.com; S. Bhunia, Department of Mathematics, F. C. College, Diamond Harbour, South 24 Prgs, 743331, West Bengal, India, e-mail: santo-812004@yahoo.co.in.

