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1. INTRODUCTION

The notion of summability of single sequences with respect to a two valued measure
was introduced by Connor [3], [4] as a very interesting generalization of statistical
convergence (see [9], [10], [21], [26], [30]). The notion of statistical convergence was
further extended to double sequences independently by Moricz [19] and Mursaleen
et al [20]. For more recent developments on double sequences one can consult the
papers [5], [6], [7], [8], [1], [27] where more references can be found. In particular, very
recently the first and third author investigated the summability of double sequences
of real numbers with respect to a two valued measure and made many interesting
observations [7] (see also [1] where the same has been investigated in an asymmetric
metric space). The concept of 2-normed spaces was initially introduced by Giihler
([11], [12]) as a very interesting non-linear extension of the idea of usual normed

This research was completed while the first author was a visiting scholar at Istanbul
Commerce University, Istanbul, Turkey in 2010.
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linear spaces. Some initial studies on this structure can be seen from [11], [12],
[13]. Recently a lot of interesting developments have occurred in 2-normed spaces in
summability theory and related topics (see [14], [15], [25]).

In this article, in a natural way we first unite the approach of [7] with two norm and
introduce the idea of summability of double sequences in 2-normed spaces using a two
valued measure. Then using Orlicz functions, generalized double difference sequences
and a two valued measure p we introduce p-statistical convergence of generalized
double difference sequences with respect to an Orlicz function in 2-normed spaces.
In this connection it should be mentioned that notable works involving the Orlicz
function and the modulus function were done in [2], [17], [22], [24], [28]. We introduce
and examine certain new double sequence spaces using the above tools as well as the
2-norm. This approach has not been considered in any context before.

2. PRELIMINARIES

Throughout the paper N denotes the set of all natural numbers, x 4 represents the
characteristic function of A C N and R represents the set of all real numbers.
Recall that a set A C N is said to have the asymptotic density d(A) if

S
d(A) = lim ~3  xa(j)
j=1

exists.

Definition 2.1 (][9], [30]). A sequence {x,}nen of real numbers is said to be
statistically convergent to & € R if for any ¢ > 0 we have d(A(e)) = 0, where
A(e) ={n eN: |z, — & > ¢}.

By the convergence of a double sequence we mean the convergence in Pringsheim’s
sense (see [23]):

A double sequence z = {x;; }i jen of real numbers is said to be convergent to £ € R
if for any € > 0 there exists N, € N such that |z;; — | < ¢ whenever ¢,j > N.. In
this case we write lim z;; =¢&.

1,j—00

A double sequence x = {x;; }; jen of real numbers is said to be bounded if there
exists a positive real number M such that |z;;| < M for all 4,5 € N. That is,

[/l (00,2) = sup |i5] < 0.
ije
Let K C N x N and let K(i,j) be the cardinality of the set {(m,n) € K: m <

i,n < j}. If the sequence {K(i,7)/(i - j)}ijen has a limit in Pringsheim’s sense
then we say that K has double natural density, which is denoted by do(K) =
Jim KG5.)/ ).
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Definition 2.2 ([19], [20]). A double sequence & = {x;;}; jen of real numbers
is said to be statistically convergent to £ € R if for any € > 0 we have d3(A4(e)) =0,
where A(e) = {(i,7) e N xN: |z;; — & > €}

A statistically convergent double sequence of elements of a metric space (X, p) is
defined essentially in the same way (9(z;;,&) > € instead of |z;; — £| > ¢€).

Throughout the paper p will denote a complete {0, 1} valued finite additive mea-
sure defined on an algebra I' of subsets of N x N that contains all subsets of N x N
that are contained in the union of a finite number of rows and columns of N x N and
#(A) = 0 if A is contained in the union of a finite number of rows and columns of
N x N (see [7]).

Definition 2.3 ([7]). A double sequence z = {z;;}; jen of real numbers is said
to be p-statistically convergent to L € R if and only if for any ¢ > 0, pu({(,j) €
N x N: |£L'”—L|2€}):0

Definition 2.4 ([7]). A double sequence x = {x;;}; jen of real numbers is said
to be convergent to L € R in p-density if there exists A € " with p(A) = 1 such that
{®ij}i,j)ea is convergent to L.

Definition 2.5 ([12]).  Let X be a real vector space of dimension d, where
2 <d<o00. A 2norm on X is a function |-, -||: X x X — R which satisfies

(i) ||z, y||=0 if and only if x and y are linearly dependent;
(i) 12,9l = s 2l

(i) oz, yll = oz, ll, a € R

(iv) |lz,y+2| < ||z, y||+ ||z, z||. The ordered pair (X, |-, -||) is then called a 2-normed
space.

As an example we may take X = R? being equipped with the 2-norm ||z, y|| =
the area of the parallelogram spanned by the vectors x and y, which may be given
explicitly by the formula ||z, y|| = |z1y2 — z2y1|, = (z1,22), y = (y1,y2). Recall
that (X,]-,||) is a 2-Banach space if every Cauchy sequence in X is convergent to
some z in X. Let (X, |-,-]|) be any 2-normed space and S”(2 — X) the set of all
double sequences defined over the 2-normed space (X, ||-,-||). Clearly S”(2 — X) is
a linear space under addition and scalar multiplication.

Recall ([16]) that an Orlicz function M: [0,00) — [0,00) is a continuous, convex
and non decreasing function such that M(0) = 0 and M(xz) > 0 for x > 0, and
M(z) — o0 as x — 0.

Subsequently, the Orlicz function was used to define sequence spaces by Parashar
and Choudhary ([22]) and others (see [2], [28]). An Orlicz function M can always be
represented in the following integral form: M (x) = fom p(t) dt where p is the known
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kernel of M, the right differential for ¢ > 0, p(0) = 0, p(¢t) > 0 for ¢ > 0, p is non
decreasing and p(t) — oo ast — oco. If convexity of the Orlicz function M is replaced
by M(x+y) < M(xz)+ M (y) then this function is called the modulus function, which
was presented and discussed by Ruckle ([24]) and Maddox ([17]). Note that if M is
an Orlicz function then M (tx) < tM(x) for all ¢t with 0 < ¢ < 1.

3. W-STATISTICAL CONVERGENCE AND CONVERGENCE IN p-DENSITY IN
2-NORMED SPACES

Definition 3.1. A double sequence x = {z;; }i jen in a 2-normed space (X, |-, -||)
is said to be convergent to £ in (X,||-,-]|) if for each € > 0 and each z € X there
exists n. € N such that ||z;; — £, 2| < e for all 4, > n..

Definition 3.2. Let p be a two valued measure on N x N. A double sequence
{zij}ijen in a 2-normed space (X, |-,||) is said to be p-statistically convergent to
a point = in X if for each pre-assigned ¢ > 0 and for each z € X, u(A(z,¢)) =0
where A(z,e) = {(i,j) € N xN: ||z;; —x, 2| > €}

If a double sequence {z;;}; jen is p-statistically convergent to a point z in a 2-
normed space (X, ||-,-||) then we write

p—lim ||z — 2, 2] = 0
1,j—00

or
ptim iy, 2 = [l 2|

1,]— 00

Here x is called the p-statistical limit of the sequence {z;;}i jen-

Definition 3.3. Let p be a two valued measure on N x N. A double sequence
{zi;}i,jen of the points in a 2-normed space (X, ||-,-||) is said to be convergent to
£ € X in p-density if there exists a set M € I' with u(M) = 1 such that {x;;}q j)em
is convergent to £ in (X, ||, -[|)-

We now give an example of a p-statistically convergent double sequence in 2-
normed spaces.

Example 3.1. Let p be a two valued measure on N x N such that there is at
least one A C N x N with p(A) = 0 which is not contained in any finite union of
rows and columns of N x N. Define the double sequence {z;;}; jen in the 2-normed
space (X, |-, -[) by

{ (0,35) it (i,5) € 4,
(El‘j =

(0,0) otherwise.
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Let L = (0,0) and z = (21, 22). Then for every € > 0 and z € X
{(i,§) e N X N: |jaz; — L, z|| > e} C A.

Thus
({2, 5) €N XN |lzg; — L, z[| > €}) =0

for every € > 0 and z € X. This implies that

p—tim 5,2 = |12, 2]
i,j—00

But it is noticeable that the double sequence is not convergent to L.

Similarly we can give non-trivial examples of double sequences which are conver-
gent in p-density in 2-normed spaces.

We next provide a proof of the fact that the p-statistical limit operation for double
sequences in a 2-normed space (X, ||-,-||) is linear with respect to summation and
scalar multiplication.

Theorem 3.1. Let i1 be a two valued measure. For each z € X,

(i) if p—lim [[zij, z[| = ||, z|| and p—lim |lys;, 2| = [ly, z|| then

1,j—00 1,j—00

p=lim [z + yij, 2l = l|lz +y, 2[];

1,j—00

(ii) if p—lim ||zs5, 2| = ||z, || then p—lim ||az,j, z|| = ||laz, z||, a € R.
1,j—00 1,j—00

Proof. (i) Let € > 0 be given. Consider the following two sets: A(3e,2) =
{(i,§) e NXN: ||aj; —z, z]| > %5} and B(%E,Z) ={(4,7) e NxN: |ly;; —y, 2| > %5}
for each z € X. Then by hypothesis ;(A(1e,2)) = 0 and u(B(ie,2)) = 0. Now
{(,5) € NXN: lzg; +yij — (@ +y), 2zl = e} €{@E,)) € NXN: gy —2,2] >
1e}U{(i,j) € NxN: |ly;j —y,z|| > 3¢} Therefore u({(4,5) € N x N: ||z +yi; —
(x +19),2|| = €}) =0 and the result follows.

(i) Let p—lim ||zi5, z|| = ||z, 2|, a € R, a # 0. Now pu({(i,7) € NxN: ||lzz5—z, 2| >

i,j—00
¢/|al}) = 0 and from the definition of the 2-norm we have

9
{(,) €N X N: Jlazi; — az, 2] > e} = {(1.7) € N x N: Jlzi — 2,2 > = }

al

and so
p({(i,j) e N xN: |laz;; —ax,z| > e} = 0.
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Hence
p—tim [laz, 2| = laz, 2]

i,j—00
for every z € X.

Similar observations are also true for y—lim, i.e., the statistical limit operation in
p-density. O

If u = {u1,uz,us,...,uq}t is a basis of the 2-normed space (X, |-, ||), then we
have the following result.

Lemma 3.1. Let ;1 be a two valued measure. A double sequence {x;;}; jen is

p-statistically convergent to x € X if and only if p—lim||z;; — @, ukl| = 0 for every
k=1,2 3, ..., 4d BITee

If Cﬁ and C;2 denote respectively the sets of all double sequences in a 2-normed
space (X, ||-,-||) which are p-statistically convergent and convergent in p-density in
the 2-normed space (X, ||, -||) then as in [7] we now consider the following condition.

(APO3) (Additive property of null sets)

The measure (4 is said to satisfy the condition (APO,) if for every sequence {4, }ien
of mutually disjoint p-null sets (i.e. u(A;) = 0 for all ¢ € N) there exists a countable
family of sets {B;}ien such that A;AB; is included in the union of a finite number
of rows and columns of N x N for every ¢ € N and p(B) = 0 where B = |J B; (hence
w(B;) = 0 for every i € N). ien

Theorem 3.2. C7, = Ci? if f i satisfies the condition (APOy).

Proof. The proof is parallel to the proof of the corresponding theorems in [7]
and is omitted. (]

4. NEW DOUBLE SEQUENCE SPACES

Recall that a mapping g: X — R is called a paranorm on X if it satisfies the
following conditions:
(i) g(#) =0 where 0 is the zero element of the space;

(i) 9(e) = g(~2);

(iii) g(z+y) < g(@) +9(y);

(iv) Ap. = A (n — o0) and g(z™ —z) — 0 (n — o0) imply g(Apz™ — Azx) — 0
(n — o0) for all z,y € X ([18], see also [25]). The ordered pair (X, g) is called
a paranormed space with respect to the paranorm g.

Now we first define the following sequence space.
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Definition 4.1. Let p = {p;;}i jen be a sequence of non-negative real numbers.
U'2-p)={zes"2-X): ¥ |auz|P* <o, VzeX}.

s,teN

We now state an inequality which will be used throughout our study: If {p;;}: jen
is a bounded double sequence of non-negative real numbers and sup p;; = H and
i,jEN
D = Max{1,27-1}  then

|aij + bij|"7 < D{ai;

P9+ by

Pij }

for all ¢, j, and a5, b;; € C, the set of all complex numbers. Also,

alP¥ < Max{1, |a|H}
for all a € C.

Lemma 4.1. The sequence space l" (2 — p) is a linear space.

Proof. The proofis parallel to the proof of Lemma 3.1 in [25] and so is omitted.
O

Theorem 4.1. I"”(2 — p) is a paranormed space with the paranorm defined by

g: 1"2=p) = R, g(@) = (% Jlws 2
s,teN
sequence of non-negative real numbers and sup p;; = H and M = Max(1, H).
i,jEN

1/M
pbf) , where {p;; } jen is a bounded double

Proof. The proof is modelled after the proof of Theorem 3.3 in [25] with
necessary modifications.

050 = (£ lowsle) ™ =0

) = (5 Il 2lr) ™ = g,

s, teN

() g(~2) = ( X |-z, 2

s,teN
(iii) Using the well-known inequalities

1M
gz +y) = <Z st + Yst, 2 p“)
s,teN

(3 (s ps“M)M)l/M (X s

s,teN s,teN
=g(x) + g(y).

N

1/M
pst/M)M>
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(iv) Let A" — Xasn — oo and let g(z" —x) — 0 asn — oo, where 2" = {z }; jen
and = {z;;}: jen. Then using Minkowski’s inequalities (see [29])

1/M
pst>

g(A\"z™ — \z) = < Z [A"2T, — Azgr, 2

s,teN

1/M
< |>\n|H/M ( Z |27, — 24, 2 pst)
s, teN
1/M
+ (Z A" = Al 2 ) .
s,teN

In this inequality, the first term of the right-hand side tends to zero because

g9(x
second term also tends to zero by Lemma 5.1. O

" —z) — 0 as n — oco. On the other hand, since \* — A as n — oo, the

Let A = { A} men and v = {vy, }nen be non decreasing sequences of positive real
numbers such that each tends to co and

A1 KA +1, A =0

and
Upt1 SUp+1, v =0.
The generalized double de la Valée-Pousin mean is defined by

2. 2wy

" i€ Jm jEKR

tmn(x) =

1
A U

where J,, = [m — A, +1,m] and K,, = [n — v, + 1, n]. Writing I,,,, = Jp, X K, and

2 _ .
A = AUy, We can write ¢, as

1
tmn(x) = )\2— Z Tij,

M (4,5)ELmn

which will be used throughout the paper.

Definition 4.2. Suppose also that as before i is a two valued measure on N x N
and M is an Orlicz function and (X, ||-,-||) is a 2-normed space. Further, let p =
{pij}i,jeN be a bounded sequence of positive real numbers. Now we introduce the
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following different types of sequence spaces, for all ¢ > 0:
WH(AZ, M, A™ p, ||-,-]|) = {a: es"(2-X): ,u((i,j) e N x N:

L o O Ce e S

(s,t)el;j;

forsomeQ>0andL€XandeachzeX},
W (A2 M, A™ p, ||-,-]]) = {a: €S"(2-X): ,u((i,j) e N x N:

b (e ) 5 ) <o

(s,t)el;j;

for some p > 0 and each z € X},
W 02,20, 8%, ) = { € 5702~ 5):

w S (|

i,7)ENXN Ajj
(i,) W (s,t)EL;

k,

N

for some k > 0, for some ¢ > 0 and each z € X},
WA (20,6 1o f) = o € 872 - X): 380,

u<{(i,j)€NxN:

1 Am’xgt DPst

_ ‘ > —

w 2 (7)) 2 k) =0

(s,t)el;j;

for some p > 0 and each z € X},

where I;; = J; x Kj, A = {\,Un }m.nen and A™ denotes the generalized m-th order

difference, i.e.
A(x) = {Zj11,k+1 + Tjk — Tjk+1 — Tjt1,k}j ken
and

A™(z) = A(A™ H(z))  for m > 1.

We now have
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Theorem 4.2. WH(A2, M,A™ p, |-, -||), W(AZ, M, A™ p,|-,-||) and WK (A2,
M,A™ p,||-,-||) are linear spaces. Here (X, ||-,-||) is a 2-normed space.

Proof. Weshall prove the theorem for W' (A2, M, A™ p, ||-,-||) while the others
can be proved similarly. Let £ > 0 be given. Assume that z,y € W}'(A%, M, A™,
P, |- -ll) and @, 8 € R, where = {z;;}; jen and y € {yi;}i jen. Further, let z € X.
Then

(4.1) u({(i,j) e N x N: ALQ S {M(HAthzHﬂp 25}) —0

Y (s,t)Els;

for some p; > 0 and
(4.2) u({(i,j) ENXN: o 3 {M(HA ytz‘mp > e}) =0
” (s,t)EL;

for some g2 > 0.
Since ||, || is a 2-norm, A™ is linear, therefore the following inequality holds:

5 e )

)EI lalo1 + |6 02

Ay st
D)\_2 Z [|a|g|1a—||—g|16|ggM(H glxt’ZH)r

Y (s,t)ELj

w5 3 e (5

<ord ¥ [ (e Vs V(e t i

v (s,t)el;; K (s,t)Eli

H H
where F = Max{1, [|alo1/(a]o1 + |8l02)] ™, [|Bloz/(lalor + |l2)] "}, and D =
Max{1,27~1} as defined before.

From the above inequality we get

fienemnn & 5 (|2l s

U (s,t)€l;

g{(i,j)eNxN:DF)\l | (HA = H)r>%}

ij (s t)el;

\

.. Amyst Pst e
o{aenn: prg 3 (R L)) 5 5
(s,t)€li;
Hence (4.1) and (4.2) yield the required result. O
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Theorem 4.3. For any fixed (i,7) € N x N, WK (A2, M, A™ p,|-,-||) is a para-
normed space with respect to the paranorm g;;: X — R, defined by

gij(@) = inf 37 a2

(s,t)elij

Am s Dst
+inf{0”"’-"/H: 0>0st.  sup [M(H xtz‘m <1, vzeX}.
(s,t) ENXN 0

Proof. The identities g;;(#) =0 and g¢;;(—z) = gi;(x) are easy to prove. So we
omit them.

(ii) Let us take z = {2 }i jenxn and y = {yi }ijenxn in WE (A2, M, A™, p, ||, ]).
Let us construct the following sets:

Ax) = {g >0: sup [M(HAZQM,ZH)F“ <1, Vze X}

(s,t)eENXN

and

A(y):{g>0: sup [M(H#,z“)}pﬁgl, VZEX}.

(s,t)ENXN

Let 01 € A(x) and g2 € A(y) and 09 = 01 + 02. Then

M(HW%H)

, 2 , 2 .
91 +Q2 91 + 02 02

Am S S
sup v (|| AR ) <,
(s,t)ENXN Q0

Thus

Therefore

gie+y) < i >0 llza +yers 2]
(s,t)€li;

+inf{(o1 + 02)P/H: 9, € A(z), 02 € A(y)}

inf . oM 01 €A
JQX(ﬂZH o, 2l + int{el ™ 01 € Afe)}

+inf D [yl +inf{eb? 7 00 € A(y)
(s,t)el;;
= gij(z) + 95 (y).

N
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(iv) Let 0™ — ¢ as m — oo, where 0,0™ € C and let g;;(2™ —x) — 0 as m — oo,
where 2™ = {z}} }p gen and @ = {Zpg }p gen. Let

A(z™) = {gm > 0: sup [M(HAZsz,zH)rﬁ <1, Vze X},
m

s,teN

Ax™ —x) = {g'm > 0: sup [M(HM,ZH)TM <1, Vze X}.

s, teN Om

If o, € A(2™) and g}, € A(xz™ — ) then we observe that

M(H s B |
leam - Ul + Qm|0'|

m m
(HA o™zl —oxll) H H A™(oxl} — oxst) H)

omlo™ — ol + o}, lo]’ omlo™ — o+ op,lol’

< a1
oml|o™ — ol + g}, |0] om

(25 )

om|o™ — ol + o}, |0 Om

From the above inequality it now readily follows that

(el ) <

Qm|0'm - U| + Qm|0|

and consequently

gij(c™a™ — ox)

< inf D7 flomel — 0w, 2|
(s,t)ETi;

+ inf{(om|o™ — o| + o, |o|)Pii/H . 0, € A(z™), o), € A(z™ — x)}

<lo™ —of inf > lzse, 21l + lol inf D 2l — e, 2|
(s,t)el;; (s,t)ELij

+(lo™ = o) int (0" o € A™))
+(lol)s M inf{ ()" g € Ala™ — )}
< max{jo™ = al. (1o = o)/ ygi; ™) + max{ o], (75 g, (@™ ~ ).

Note that g;;(z™) < gi;(x) + gi; (™ — x) for all m € N. Hence by our assumption
the right-hand side tends to 0 as m — oo and the result follows. This completes the
proof of the theorem. O
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Theorem 4.4. Let M, My, Ms be Orlicz functions. Then
(i) WE(A2, My, A™,p, ||, -|]) € WE'(A2, MoMy, A™,p, ||-,-||) provided {pi;}i jenxn
is such that Hy = inf p;; > 0;
(ii) Wéi(A2,M1, Amvpa ”a H) N Wéi(A2aM2vAmapv ”7 ”) - WSL(A27M1 + M2a Amv
b, HaH)

Proof. Let e > 0 be given. Choose g9 > 0 such that max{ef,l°} < e.
Now using the continuity of M choose 0 < & < 1 such that 0 < ¢t < ¢ implies that
M(t) < eo. Let {zi;j}ijensxn € WE (A2 My, A™,p,|-,-]|). Now from the definition
w(A(d)) =0, where

s -{enensn g & pa(|AE )] 50}

i (s,t)EL; @

Thus if (i,7) ¢ A(J) then

5 () <o

U (st ¢
ie.
Am . Pst
> (|2 )] <
(s,t)el;j; @
ie.

for all (s,t) € I;;. Hence

for all (s,t) € L.
Hence from the above using the continuity of M we have

M (|25 )] <=0

for all (s,t) € I;;. This implies that

Amxst

0

[M0M1<H ,zH)rSt <max{5(€[°,6{){}

for all (s,t) € I;j, i.e.

A", Dst
Z [M0M1<H a t,zH)} ‘< A?j max{e’0, ell} < A?ja,
o
(s,t)EL
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which again implies that

s 3 [aroan (|55 <

” (s,t)ELL;

This shows that

{(z’,j)eN x N: %2 3 [M0M1<HA st zH)r 25} C A(5).

i (s,t)eli;
Therefore
u({(i,j) €N xN: )\L? 3 {MoMl(HMZ“,zH)r“ > e}) —0.
Y (st)El;
Thus

{xij}i,jEN S W(ﬁji(A27Mla Am/7pa ||a H)

(i) Let {zi;}ijen € WE(AZ My, A™, p, |- -||) N WL (A2, Ma, A™, p, ||, ||). Then
the inequality

s (o - (| =574 )]

<155 )]+ s (552

J

A

gives the result. This completes the proof of the theorem. O

Theorem 4.5. Let X(A™ 1Y), m > 1 stand for WH*(A2, M,A™ 1 p, |-,
or WU (A2, M, A™ L p, [l |l) or Wi (A2, M, A"V p,[l).  Then X(A™1) C
X(A™). Tn general X(AY) G X(A™) for all i = 1,2,3,..,m — 1.

Proof. We give the proof for W}'(A2, M, A™ 1 p ||-,-||) only. It can be proved
in a similar way for W# (A2, M, A™ "L p ||-,-||) and WL (A2, M, A™ L p, ||, -]])-
Let @ = {x;j}i jen € W{'(A2, M,A™ 1 p ||-,-]|). Let also € > 0 be given. Then

(4.3) u({(i,j) €N x N: Aiz 3 {M(HM_TMZH)T) > a}) ~0

Y (s,t)€l;
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for some p > 0. Since M is non-decreasing and convex it follows that

(vt i

" (st)El;

1 Y A" g A e A g AT
YA Z [ (‘ 4o
Y (st)El;;

-

: N A ! E N st
B 5 ([ ] [
+EMO%,Z\DJ%&MWTM)J’“)

< X (e )+ (e

U (si)ely e e

+ [ (H ~Ses H)er[M(HMTl:“ZH)r)

where G = Max{1, (3)7}. Hence we have

{epensn g 5 (|52 ))" e

“ (s,t)EIU

2G Amilstrl t+1 Pst €
C S Nk L el > Z
c{apenn: 58 S (| )" 5
Kl (Gf)EIn
o emnn: ZE 5 (oA s e
2] 0 s Z 7
U (st)EILJ
Am_lxg t+1 Dst €
o 5 €
U{(z,])ENxN — Z [M( S ,z‘)} /4}
” (s,t)€li;
D2G Amflxst 1Pst I
\j e = et > b
U{@,])eNxN 2 (A )] 4}
Y (s,t)EL;

Using (4.3) we get

u({(i,j)eNxN: /\% 3 [M(”%,z”)}p5t25}):0.

Y (s,t)ely;

Therefore = {z;;}i jen € W{'(A%, M, A™, p, |-, ||). This completes the proof.
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