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Abstract. For a graph property P and a graph G, we define the domination subdivision
number with respect to the property P to be the minimum number of edges that must
be subdivided (where each edge in G can be subdivided at most once) in order to change
the domination number with respect to the property P . In this paper we obtain upper
bounds in terms of maximum degree and orientable/non-orientable genus for the domina-
tion subdivision number with respect to an induced-hereditary property, total domination
subdivision number, bondage number with respect to an induced-hereditary property, and
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1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple

edges. We denote the vertex set and the edge set of a graph G by V (G) and E(G),

respectively. For a vertex x of G, N(x) denotes the set of all neighbors of x in

G, N [x] = N(x) ∪ {x} and the degree of x is deg(x) = |N(x)|. The maximum

and minimum degrees of vertices in the graph G are denoted by ∆(G) and δ(G)

respectively. The subgraph induced by S ⊆ V (G) is denoted by 〈S, G〉. For a graph

G, let x ∈ X ⊆ V (G). A vertex y ∈ V (G) is a private neighbor of x with respect to

X if N [y] ∩ X = {x}. The private neighbor set of x with respect to X is pn[x, X ] =

{y : N [y] ∩ X = {x}}. A perfect matching M in G is a set of independent edges

in G such that every vertex of G is incident to an edge of M . For every edge

e = xy ∈ E(G) we define ξ(e) = |N(x) ∪ N(y)| = deg(x) + deg(y) − |N(x) ∩ N(y)|

and let ξ(G) = min{ξ(e) : e ∈ E(G)}.
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A surface is a connected compact Hausdorff space which is locally homeomorphic

to an open disc in the plane. If a surface Σ is obtained from the sphere by adding

some number g > 0 of handles or some number g > 0 of crosscaps, Σ is said to

be, respectively, orientable of genus g = g(Σ) or non-orientable of genus g = g(Σ).

We shall follow the usual convention of denoting the surface of orientable genus g

or non-orientable genus g, respectively, by Sg or by Ng. Any topological surface is

homeomorphically equivalent either to Sh (h > 0), or to Nk (k > 1). For example,

S1, N1, N2 are the torus, the projective plane, and the Klein bottle, respectively.

A graph G is embeddable on a topological surface S if it admits a drawing on the

surface with no crossing edges. Such a drawing of G on the surface S is called an

embedding of G on S. An embedding of a graph G on an orientable surface or

non-orientable surface Σ is minimal if G cannot be embedded on any orientable or

non-orientable surface Σ′ with g(Σ′) < g(Σ) or g(Σ′) < g(Σ), respectively. Graph G

is said to have orientable genus g (non-orientable genus g) if G minimally embeds on

a surface of orientable genus g (non-orientable genus g). An embedding of a graph

G on a surface Σ is said to be 2-cell if every face of the embedding is homeomorphic

to a disc. The set of faces of a particular embedding of G on S is denoted by F (G).

If every face of a graph embedding is three-sided, then the embedding is triangular.

In a quadrilateral embedding, every face is four-sided.

A Roman dominating function (RDF) on a graph G is defined in [19], [22] as

a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which

f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a RDF

is the value f(V (G)) =
∑

u∈V (G)

f(u). The Roman domination number, γR(G), of G is

the minimum weight of a RDF on G. Following Jafari Rad and Volkmann [11], the

Roman bondage number bR(G) of a graph G with maximum degree at least two is

the cardinality of a smallest set of edges E1 ⊆ E(G) for which γR(G−E1) > γR(G).

Let I denote the set of all mutually nonisomorphic graphs. A graph property is

any non-empty subset of I. We say that a graph G has the property P whenever

there exists a graph H ∈ P which is isomorphic to G. For example, we list some

graph properties:

⊲ O = {H ∈ I : H is totally disconnected};

⊲ C = {H ∈ I : H is connected};

⊲ M = {H ∈ I : H has a perfect matching };

⊲ T = {H ∈ I : δ(H) > 1 }.

A graph property P is called: (a) induced-hereditary, if from the fact that a graph

G has property P , it follows that all induced subgraphs of G also belong to P , and

(b) nondegenerate if O ⊆ P . Any set S ⊆ V (G) such that the induced subgraph

〈S, G〉 possesses the property P is called a P-set. A set of vertices D ⊆ V (G) is
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a dominating set of G if every vertex not in D is adjacent to a vertex in D. The

domination number with respect to the property P , denoted by γP(G), is the smallest

cardinality of a dominating P-set of G. A dominating P-set of G with cardinality

γP(G) is called a γP(G)-set. If a property P is nondegenerate, then every maximal

independent set is a P-set and thus γP(G) exists. Note that γI(G) and γT (G)

are well known as the domination number γ(G) and the total domination number

γt(G), respectively. The concept of domination with respect to any property P was

introduced by Goddard et al. [7] and has been studied, for example, in [15], [20], [21]

and elsewhere.

For every graph G with at least one edge and every nondegenerate property P , the

plus bondage number with respect to the property P , denoted b+
P(G), is the cardinality

of a smallest set of edges U ⊆ E(G) such that γP(G−U) > γP (G). This concept was

introduced by the present author in [21]. Since γP(G−E(G)) = |V (G)| > γP(G) for

every graph G with at least one edge and every nondegenerate property P , it follows

that b+
P(G) always exists.

For every graph G with ∆(G) > 2 and for each property P ⊆ I, we define the dom-

ination (minus domination, plus domination, respectively) subdivision number with

respect to the property P , denoted sd6=
γP

(G) (sd−
γP

(G), sd+
γP

(G)) to be the minimum

number of edges that must be subdivided (where each edge in G can be subdivided at

most once) in order to change (decrease, increase, respectively) γP (G). The following

special cases for sd+
γP

(G) have been investigated up to now: (a) sd+
γI

(G)—the domi-

nation subdivision number defined by Velammal [25] (note that sd6=
γI

(G) = sd+
γI

(G)),

(b) sd+
γT

(G)—the total domination subdivision number introduced by Haynes et

al. in [8], (c) sd+
γM

(G)—the paired domination subdivision number introduced by

Favaron et al. in [5], and (d) sd+
γC

(G)—the connected domination subdivision num-

ber introduced by Favaron et al. in [4].

The rest of the paper is organized as follows. In Section 2 we begin the investigation

of sd6=
γP

(G) in case when P ⊆ I is induced-hereditary and closed under union with

K1 graph property. We show that sd6=
γP

(G) is well defined whenever ∆(G) > 2 and

we present upper bounds for sd6=
γP

(G) in terms of degrees. In Section 3 for graphs

with nonnegative Euler characteristic we obtain tight upper bounds for ξ(G) in terms

of maximum degree. In Section 4 we find upper bounds in terms of orientable/non-

orientable genus and maximum degree for sd6=
γP

(G), sd+
γT

(G), bR(G) and b+
P(G).
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2. Domination subdivision numbers

Note that each induced-hereditary and closed under union withK1 property P ⊆ I

is, clearly, nondegenerate and hence γP(G) exists. For a graphG and a set U ⊆ E(G),

by S(G, U) we denote the graph obtained from G by subdividing all edges belonging

to U .

Theorem 2.1. Let H be an induced-hereditary and closed under union with K1

graph property. Let G be a graph which contains an edge uv such that deg(u) > 2,

deg(v) > 2 and let F ⊆ E(G) be the union of the set of all edges incident to v and

the set of all edges joining u to a vertex in N(u) − N [v]. Then there is a set U ( F

with γH(S(G, U)) < γH(S(G, F )). In particular (Favaron et al. [3] when H = I),

sd6=
γH

(G) 6 ξ(uv) − 1.

P r o o f. We denote shortly G1 = S(G, F ). Let N(v, G) = {u = z0, z1, . . . , zp},

p > 1, and let vi ∈ V (G1) be the subdivision vertex for vzi, i = 0, 1, . . . , p. Let

N(u, G) − N(v, G) = {v = w0, w1, . . . , wq}, q > 0, u0 = v0 and if q > 1, then let

ui ∈ V (G1) be the subdivision vertex for uwi, i = 1, . . . , q. Among all γH(G1)-sets

let D1 be the one which contains a minimum number of subdivision vertices. Denote

by S the set of all subdivision vertices which belong to D1. First assume S is empty.

Then v ∈ D1. If u ∈ D1, then D1−{v} is a dominating H-set of a graph G′ obtained

from G by subdividing all edges joining u to a vertex in N(u) − N [v] (it is possible

that G′ = G). If u 6∈ D1, then there is zi ∈ D1 with ziu ∈ E(G). But then D1 −{v}

is a dominating H-set of G (H is induced-hereditary). So, assume S is not empty.

Case 1 : S = {v0}. If u, v 6∈ D1, then all neighbors of u and v in G, except for u

and v, are in D1; this implies D1 − {v0} is a dominating H-set of G. If exactly one

of u and v is in D1, then D1 −{v0} is a dominating H-set of S(G, F −{uv}). There

are no other possibilities because H is induced-hereditary.

Case 2 : S = {v1}. If z1 6∈ pn[v1, D1], then the set D2 = (D1 − {v1}) ∪ {v} is

a dominating H-set of G1 (H is induced-hereditary and closed under union with K1)

of cardinality at most γH(G1) and D2 contains no subdivision vertices, a contra-

diction. If v ∈ D1, then the set D3 = (D1 − {v1}) ∪ {z1} is a γH(G1)-set without

subdivision vertices, a contradiction. Since v, v0 6∈ D1 it follows that u ∈ D1 and

if p > 2, then z2, . . . , zp ∈ D1. But then the set (D1 − {v1, u}) ∪ {v} is a domi-

nating H-set of a graph G2 defined as follows: (a) G2 = G when p = 1, and (b)

G2 = S(G, {vz2, . . . , vzp}) when p > 2.

Case 3 : At least two subdivision vertices which are adjacent to v are in D1.

Say, without loss of generality, Sv = S ∩ N(v, G1) = {vr, vr+1, . . . , vr+s}, r > 0,

s > 1. Let r 6 i 6 r + s. Then zi 6∈ D1. Moreover, zi 6∈ pn[vi, D1]—otherwise

the set (D1 − {vi}) ∪ {zi} is a γH(G1)-set with fewer subdivision vertices than D1,
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a contradiction. But then the set (D1 − Sv) ∪ {v} is a dominating H-set of a graph

G3 obtained from G1 by deleting Sv and adding vzr, . . . , vzr+s.

Case 4 : S = {v1, u1}. Assume v ∈ D1. This implies z1 ∈ pn[v1, D1] and then

the set (D1 − {v1}) ∪ {z1} is a γH(G1)-set with fewer subdivision vertices than D1,

a contradiction. Hence v 6∈ D1. Now, assume u ∈ D1. But then w1 ∈ pn[u1, D1],

which leads to (D1 − {u1}) ∪ {w1} is a γH(G1)-set with fewer subdivision vertices

than D1, a contradiction. Therefore there is no vertex in D1 which dominates v0,

a contradiction.

Case 5 : S = {u1}. If u ∈ D1, then w1 ∈ pn[u1, D1], which leads to D − {u1}

being a dominating H-set of S(G, F − {uw1}). So, let u 6∈ D1. Hence v ∈ D1.

If w1 6∈ pn[u1, D1], then D1 − {u1} is a dominating H-set of S(G, F − {uw1, uv}).

Assume w1 ∈ pn[u1, D1]. If u 6∈ pn[u1, D1], then (D1 − {u1}) ∪ {w1} is a γH(G1)-

set with fewer subdivision vertices than D1, a contradiction. If u ∈ pn[u1, D1],

then (D1 − {u1, v}) ∪ {u} is a dominating H-set of a graph G4 defined as follows:

(a) G4 = G for q = 1, and (b) G4 = S(G, {uw2, . . . , uwq}) for q > 2.

Case 6 : At least two subdivision vertices which are adjacent to u are in D1.

Say, without loss of generality, Su = S ∩ N(u, G1) = {ur, ur+1, . . . , ur+s} where

0 6 r and s > 1. Let r 6 i 6 s + r. Then wi 6∈ D1. If wi ∈ pn[ui, D1], then

the set (D1 − {ui}) ∪ {wi} is a γH(G1)-set with fewer subdivision vertices than D1,

a contradiction. Thus wi 6∈ pn[ui, D1], i = r, . . . , r + s. If there is no zj ∈ D1, j > 1,

with zju ∈ E(G), then the set (D1 − Su) ∪ {u} is a dominating H-set of a graph

G1, a contradiction. If there is zj ∈ D1, j > 1 with zju ∈ E(G), then D1 − Su

is a dominating H-set of a graph G5 obtained from G1 by deleting Su and adding

uwr, . . . , uwr+s. �

Observation 2.2. Let H be a nondegenerate graph property. If G is a graph

with ∆(G) > 2 and γH(G) = 1, then sd6=
γH

(G) = sd+
γH

(G) = 1.

By Theorem 2.1 and Observation 2.2 it immediately follows that sd6=
γH

(G) is well-

defined for every graph G with ∆(G) > 2 provided H ⊆ I is an induced-hereditary

and closed under union with K1 graph property.

Observation 2.3. Let H be a nondegenerate graph property. Then

(i) γH(Cn) =
⌈

1
3n

⌉

, where n > 3;

(ii) sd6=
γH

(C3k) = sd+
γH

(C3k) = 1, sd6=
γH

(C3k+1) = sd+
γH

(C3k+1) = 3, and

sd6=
γH

(C3k+2) = sd+
γH

(C3k+2) = 2, where k > 1.

By Observation 2.3(ii) it immediately follows that the bound stated in Theorem 2.1

is attainable when G = C3k+1, k > 1.
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Define V
−
H(G) = {v ∈ V (G) : γH(G − v) < γH(G)}. The next results in this

section show that the set V−
H(G) plays an important role in studying the subdivision

numbers with respect to a graph property.

Observation 2.4. Let H be a nondegenerate and closed under union with K1

graph property. Let G be a graph.

(i) [20] V
−
H(G) = {v ∈ V (G) : γH(G − v) = γH(G) − 1}.

(ii) If v ∈ V
−
H(G), then γH(G′) 6 γH(G), where G′ is a graph which results from

subdividing at least one edge incident to v.

P r o o f. (ii) LetM be a γH(G−v)-set. Since v ∈ V
−
H(G),M is not a dominating

H-set of G. Since H is closed under union with K1, M ∪ {v} is a dominating H-set

of both G′ and G. Hence M ∪ {v} is a γH(G)-set and the result follows. �

In special cases where a graph has some structural property we can obtain better

upper bounds for sd6=
γH

(G) than that stated in Theorem 2.1.

Theorem 2.5. Let H be an induced-hereditary and closed under union with K1

graph property. Let G be a graph, v ∈ V (G), deg(v) > 2 and let F ⊆ E(G) consist

of all edges incident to v. Then at least one of the following assertions holds:

(i) there is U ⊆ F with γH(G) 6= γH(S(G, U)) (in particular sd6=
γH

(G) 6 deg(v));

(ii) v ∈ V
−
H(G);

(iii) there exist u ∈ N(v, G)∩V
−
H(G) and a γH(G)-set Du such that N(v, G) ⊆ Du,

v 6∈ D and pn[u, Du] = {u}.

P r o o f. Denote shortly G1 = S(G, F ). Assume (i) does not hold. Hence

γH(G1) = γH(G). Among all γH(G1)-sets let D be the one which contains a mini-

mum number of subdivision vertices. Let all neighbors of v in G be w1, . . . , wr and

let vi ∈ V (G1) be the subdivision vertex for vwi, i = 1, 2, . . . , r. Let S be the set of

all subdivision vertices which belong to D and if S is not empty let S = {v1, . . . , vk}.

If S is empty, then v ∈ D and D−{v} is a dominating H-set of G− v (H is induced-

hereditary). Hence γH(G) = γH(G1) = |D| > 1 + γH(G − v) and by the definition

of V−
H(G) it follows that (ii) holds. Now assume k > 1. We distinguish two cases

according to k.

Case 1 : k = 1. If v ∈ D, then since H is induced-hereditary, w1 ∈ pn[v1, D]. But

then D−{v1} is a dominating H-set of the graph G2 obtained from G1 by deleting v1

and adding vw1, a contradiction. So v 6∈ D which immediately implies w2, . . . , wr ∈

D. If w1 ∈ D, then D−{v1} is a dominating H-set of G2, a contradiction. If w1 6∈ D

and w1 6∈ pn[v1, D], then (D − {v1}) ∪ {v} is a γH(G1)-set without subdivision

vertices—a contradiction. So, let w1 ∈ pn[v1, D]. But then Dw1
= (D−{v1})∪{w1}
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is a γH(G)-set with pn[w1, Dw1
] = {w1}. This implies w1 ∈ V

−
H(G) and then (iii)

holds (with u ≡ w1).

Case 2 : k > 2. By the choice of D it follows that wi 6∈ D for all i = 1, . . . , k

(otherwise D − {vi} would be a dominating H-set of G1, a contradiction). If wi ∈

pn[vi, D] for some i ∈ {1, . . . , k}, then (D − {vi}) ∪ {wi} is a γH(G1)-set with fewer

subdivision vertices thanD, a contradiction. Hence wi 6∈ pn[vi, D] for all i = 1, . . . , k.

But then (D − S) ∪ {v} is a dominating H-set of G1, a contradiction. �

The next two corollaries follow immediately from Theorem 2.5.

Corollary 2.6. Let H be an induced-hereditary and closed under union with K1

graph property. Let G be a graph, v ∈ V (G) and deg(v) > 2. Then there is a subset

U of the set of all edges incident to v with γH(G) 6= γH(S(G, U)) (in particular

sd6=
γH

(G) 6 deg(v)) provided one of the following holds:

(i) v and none of the isolated vertices of the graph 〈N(v), G〉 belong to V
−
H(G);

(ii) v 6∈ V
−
H(G) and 〈N(v), G〉 6∈ H.

Corollary 2.7. Let H be an induced-hereditary and closed under union with

K1 graph property. If a graph G has ∆(G) > 2 and V
−
H(G) = ∅, then sd6=

γH
(G) 6

min{deg(x) : x ∈ V (G) and deg(x) > 2}.

Corollary 2.8. Let H be an induced-hereditary and closed under union with K1

graph property. If a graph G has ∆(G) > 2 and γH(G) < (|V (G)|+∆(G))/(∆(G)+

1), then sd6=
γH

(G) 6 min{deg(x) : x ∈ V (G) and deg(x) > 2}.

P r o o f. Assume x ∈ V
−
H(G). Then |V (G)| 6 (γH(G) − 1)(∆(G) + 1) + 1,

which implies γH(G) > (|V (G)| + ∆(G))/(∆(G) + 1), a contradiction. The result

now follows by Corollary 2.7. �

Corollary 2.9. Let H be an induced-hereditary and closed under union with K1

graph property. Let G be a graph and let 2 6 δ(G) 6 ∆(G) < sd6=
γH

(G). Then

V
−
H(G) is a dominating set of G.

3. Upper bounds for ξ(G)

For 2-cell embeddings, we have the important result known as generalized Euler’s

formula.
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Theorem 3.1 (Thomassen [24]). If G is 2-cell embedded on surface Σ having

genus g or non-orientable genus g and if the embedded G has |V (G)| = p vertices,

|E(G)| = q edges and |F (G)| = f faces, then p− q + f = 2− 2g or p− q + f = 2− g,

respectively.

The following two results are of paramount importance when working with minimal

embeddings. The former is due to J.W.T.Youngs [26] and the latter to Parsons,

Pica, Pisanski and Ventre [18].

Theorem 3.2. Every minimal orientable embedding of a graph G is 2-cell.

Theorem 3.3. Every graph G has a minimal non-orientable embedding which is

2-cell.

The Euler characteristic of a surface is equal to |V (G)| + |F (G)| − |E(G)| for

any graph G that is 2-cell embedded on that surface. The Euclidean plane, the

projective plane, the torus, and the Klein bottle are all the surfaces of nonnegative

Euler characteristic.

Let G be a graph 2-cell embedded on a surface S. For each edge e = xy ∈ E(G)

we define

De = Dxy =
1

d(x)
+

1

d(y)
+

1

r1
e

+
1

r2
e

− 1,

where r1
e is the number of edges on the boundary of a face on one side of e, and r2

e is

the number of edges on the boundary of the face on the other side of e. In case when

an edge e is on the boundary of exactly one face, say f , let r1
e = r2

e = 2re, where re is

the number of edges on the boundary of f . We observe that
∑

e∈E(G)

(1/d(x)+1/d(y)) =

|V (G)| and
∑

e∈E(G)

(1/r1
e + 1/r2

e) = |F (G)|, and therefore

(3.1)
∑

e∈E(G)

De = |V (G)| + |F (G)| − |E(G)|.

Theorem 3.4. Let G be a connected graph and let at least one of g(G) = 0 and

g(G) = 1 hold. Then ξ(G) 6 ∆(G) + 3. Moreover, ξ(G) 6 ∆(G) + 2 provided one of

the following assertions holds:

(P1) ∆(G) 6∈ {3, 4, 5, 6, 7};

(P2) ∆(G) ∈ {6, 7} and every edge e = xy ∈ E(G) with d(x) = 5 and d(y) = ∆(G)

is contained in at most one triangle.

P r o o f. Suppose G is 2-cell embedded on at least one of S0 and N1. Let

e = xy ∈ E(G), d(x) 6 d(y) and r1
e 6 r2

e .
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Case 1 : One of (P1) and (P2) holds. Assume to the contrary that ξ(G) > ∆(G)+3.

Hence ∆(G) > 6. If d(x) 6 3, then d(x) = 3, d(y) = ∆(G) and r1
e > 4; hence

De 6 1
3+ 1

∆(G)+
1
4+ 1

4−1 6 0. If d(x) = 4, then d(y) > ∆(G)−1+|N(x)∩N(y)|, which

implies either r1
e > 4 and d(y) ∈ {∆(G)−1, ∆(G)} or r1

e = 3, r2
e > 4 and d(y) = ∆(G);

hence either De 6 1
4 + 1

∆(G)−1 + 1
4 + 1

4 − 1 < 0 or De 6 1
4 + 1

∆(G) + 1
3 + 1

4 − 1 6 0.

Let d(x) = 5. Then d(y) > ∆(G) − 2 + |N(x) ∩ N(y)|, which leads to 5 6

d(y) ∈ {∆(G) − 2, ∆(G) − 1, ∆(G)}. If d(y) = ∆(G) − 2, then r1
e > 4; hence

De 6 1
5 + 1

∆(G)−2 + 1
4 + 1

4 − 1 < 0. If d(y) = ∆(G) − 1, then r2
e > 4; hence

De 6 1
5+ 1

∆(G)−1+ 1
3+ 1

4−1 < 0. If d(y) = ∆(G), then (a)De 6 1
5+ 1

∆(G)+
1
3+ 1

3−1 < 0

when ∆(G) > 8, and (b) De 6 1
5 + 1

6 + 1
3 + 1

4 − 1 < 0 when ∆(G) ∈ {6, 7}.

Finally, if d(x) > 6, then De 6 1
6 + 1

6 + 1
3 + 1

3 − 1 = 0.

Therefore 1 6 |V (G)| + |F (G)| − |E(G)| =
∑

e∈E(G)

De 6 0, a contradiction.

Case 2 : ∆(G) ∈ {6, 7} and there is an edge e = xy ∈ E(G) with d(x) = 5 and

d(y) = ∆(G) which belongs to at least 2 triangles. Clearly ξ(e) 6 ∆(G) + 3.

Case 3 : ∆(G) = 5. Assume to the contrary that ξ(G) > ∆(G)+4. Then one of the

following conditions holds: (a) d(x) = 4, d(y) = 5 and r1
e > 4, (b) d(x) = d(y) = 5

and r2
e > 4. Hence De < 0 and we obtain a contradiction as in Case 1.

Case 4 : ∆(G) = 4. Assume G is regular. Then G contains a triangle-otherwise

De 6 0 for each edge e ∈ E(G), a contradiction.

Case 5 : ∆(G) 6 3. Obviously ξ(G) 6 ∆(G) + 3. �

The equality ξ(G) = ∆(G) + 3 holds at least for triangle-free cubic planar (pro-

jective) graphs. For example, such graphs are: (a) a prism graph CLn, n > 4, which

is a graph corresponding to the skeleton of an n-prism, and (b) the Petersen graph

which is nonplanar and can be embedded without crossings in the projective plane.

Theorem 3.5. Let G be a connected graph and let at least one of the identities

g(G) = 1 and g(G) = 2 hold. Then ξ(G) 6 ∆(G)+ 4 with equality if and only if one

of the following conditions is valid:

(P3) G is 4-regular without triangles;

(P4) G is 6-regular and no edge of G belongs to at least 3 triangles.

P r o o f. Suppose G is 2-cell embedded on at least one of S1 and N2. Let

e = xy ∈ E(G), d(x) 6 d(y) and r1
e 6 r2

e .

Assume that ξ(G) > ∆(G) + 4. Hence δ(G) > 4. First let d(x) = 4. Then

d(y) = ∆(G) and r1
e > 4, which leads to De 6 1

4 + 1
∆(G) + 1

4 + 1
4 −1 6 0 with equality

when d(x) = d(y) = ∆(G) = 4 and r1
e = r2

e = 4. If d(x) = 5, then either d(y) = ∆(G)

and r2
e > 4, or d(y) = ∆(G)−1 and r1

e > 4; hence either De 6 1
5 + 1

∆(G) +
1
3 + 1

4−1 < 0

or De 6 1
5 + 1

∆(G)−1 + 1
4 + 1

4 − 1 < 0. Now, let d(x) = 6. Then either d(y) = ∆(G)
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and r1
e > 3, r2

e > 3 or d(y) = ∆(G) − 1, r1
e > 3 and r2

e > 4 or d(y) = ∆(G) − 2

and r1
e > 4. Hence either De 6 1

6 + 1
∆(G) + 1

3 + 1
3 − 1 6 0 with equality when

d(x) = d(y) = ∆(G) = 6 and r1
e = r2

e = 3, or De 6 1
6 + 1

∆(G)−1 + 1
3 + 1

4 − 1 < 0

or De 6 1
6 + 1

∆(G)−2 + 1
4 + 1

4 − 1 < 0, respectively. Finally, if d(x) > 7, then

De 6 1
7 + 1

7 + 1
3 + 1

3 − 1 < 0.

Therefore 0 = |V (G)|+ |F (G)|− |E(G)| =
∑

e∈E(G)

De 6 0 with equality if and only

if one of the following conditions is valid:

(a) G is 4-regular and r1
e = r2

e = 4 for each e ∈ E(G);

(b) G is 6-regular and r1
e = r2

e = 3 for each e ∈ E(G).

Thus ξ(G) = ∆(G) + 4 and one of (P3) and (P4) holds.

It remains to note that (i) if (P3) holds, then clearly ξ(G) = ∆(G) + 4, and (ii)

if G is 6-regular, then Theorem 3.1 implies r1
e = r2

e = 3 for each edge e ∈ E(G);

therefore ξ(G) = ∆(G) + 4 when (P4) is satisfied. �

It follows from Theorem 3.1 that a 4-regular graph without triangles has a quadri-

lateral embedding. A classification of 4-regular graphs with quadrilateral emdedding

on the torus and the Klein bottle was given by Altshuler [1] and Nakamoto and

Negami [16], respectively. Theorem 3.1 also implies that a graph with minimum

degree 6 embedded in the torus or the Klein bottle is a 6-regular triangulation.

Altshuler [1] found a characterization of 6-regular toroidal maps and Negami [17]

characterized 6-regular graphs which embed in the Klein bottle.

4. Upper bounds for the domination subdivision

and bondage numbers

We will need the following results.

Theorem 4.1 (Haynes et al. [9]). For any connected graph G with adjacent

vertices u and v, each of them of degree at least two, we have sd+
γT

(G) 6 ξ(uv) − 1.

Theorem 4.2 (Samodivkin [21]). Let H be a nondegenerate and induced-

hereditary graph property. For any connected graph G with adjacent vertices u

and v, b+
H(G) 6 ξ(uv) − 1.

Theorem 4.3 (Jafari Rad and Volkmann [11]). Let G be a graph and xy, yz ∈

E(G). Then bR(G) 6 ξ(xy)+d(z)−3. If xz ∈ E(G), then bR(G) 6 ξ(xy)+d(z)−4.

If ξ(xy) = ξ(G), then by Theorem 4.3 we obtain the next result immediately.
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Corollary 4.4. Let G be a connected graph of order at least 3. Then bR(G) 6

ξ(G)+∆(G)−3. If every edge of G lies in a triangle, then bR(G) 6 ξ(G)+∆(G)−4.

First we concentrate on graphs with nonnegative Euler characteristic. Combining

Theorem 3.4 and Theorem 3.5 with Theorem 2.1 and Theorem 4.1 yields:

Theorem 4.5. Let H be an induced-hereditary and closed under union with K1

graph property and let G be a connected graph with δ(G) > 2. Let at least one

of the equalities g(G) = i and g(G) = 1 + i be valid for some i ∈ {0, 1}. Then

max{sd6=
γH

(G), sd+
γT

(G)} 6 ∆(G) + 2 + i. Moreover: (a) max{sd6=
γH

(G), sd+
γT

(G)} 6

∆(G) + 1 provided i = 0 and one of (P1) and (P2) holds, and (b) max{sd6=
γH

(G),

sd+
γT

(G)} 6 ∆(G) + 2 provided i = 1 and neither (P3) nor (P4) holds.

Combining Theorem 3.4 and Theorem 3.5 with Theorem 4.2 we obtain

Theorem 4.6. LetH be a nondegenerate and induced-hereditary graph property.

Let G be a nontrivial connected graph and let at least one of the equalities g(G) = i

and g(G) = 1 + i be valid for some i ∈ {0, 1}. Then b+
H(G) 6 ∆(G) + 2 + i.

Moreover: (a) b+
H(G) 6 ∆(G) + 1 provided i = 0 and one of (P1) and (P2) holds,

and (b) b+
H(G) 6 ∆(G) + 2 provided i = 1 and neither (P3) nor (P4) holds.

The inequality b+
H(G) 6 ∆(G) + 2 + i stated in Theorem 4.6 was proven by (a)

Kang and Yuan [14] for g(G) = 0 and H = I, (b) Samodivkin [21] when g(G) = 0

and H is additive and induced-hereditary, (c) Carlson and Develin [2] for g(G) = 1

and H = I, and (d) Gagarin and Zverovich [6] for g(G) ∈ {0, 1}, g(G) ∈ {1, 2} and

H = I.

As we already know a 6-regular graph embedded in the torus or the Klein bottle

is a triangulation. Combining Theorem 3.4 and Theorem 3.5 with Corollary 4.4 we

obtain the following result.

Theorem 4.7. Let G be a connected graph of order at least 3 and let at least

one of the equalities g(G) = i and g(G) = 1 + i be valid for some i ∈ {0, 1}. Then

(Jafari Rad and Volkmann [12] when g(G) = 0) bR(G) 6 2∆(G) + i. Moreover:

(a) bR(G) 6 2∆(G) − 1 provided i = 0 and one of (P1) and (P2) holds, and

(b) bR(G) 6 2∆(G) provided i = 1 and (P3) does not hold.

Next we find upper bounds in terms of orientable/non-orientable genus for

sd6=
γP

(G), sd+
γT

(G), bR(G) and b+
P(G). We need the following notation and results.
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Let

h3(x) =

{

2x + 13 for 0 6 x 6 3,

4x + 7 for x > 3,
h4(x) =

{

8 for x = 0,

4x + 5 for x > 1,

k3(x) =











2x + 11 for 1 6 x 6 2,

2x + 9 for 3 6 x 6 5,

2x + 7 for x > 6,

and k4(x) =

{

8 for x = 1,

2x + 5 for x > 2.

Theorem 4.8 (Ivančo [10]). If G is a connected graph of orientable genus g

and minimum degree at least 3, then G contains an edge e = xy such that deg(x) +

deg(y) 6 h3(g). Furthermore, if G does not contain 3-cycles, then deg(x)+deg(y) 6

h4(g). Moreover, all bounds are the best possible.

Theorem 4.9 (Jendrol′ and Tuhársky [13]). If G is a connected graph of mini-

mum degree at least 3 on a nonorientable surface of genus g > 1, then G contains an

edge e = xy such that deg(x) + deg(y) 6 k3(g). Furthermore, if G does not contain

3-cycles, then deg(x) + deg(y) 6 k4(g). Moreover, all bounds are the best possible.

The next theorem follows by combining Theorem 2.1 and Theorem 4.1 with The-

orem 4.8 and Theorem 4.9.

Theorem 4.10. Let H be an induced-hereditary and closed under union with K1

graph property. For a connected graph G of orientable genus g, non-orientable

genus g and minimum degree at least 3, we have max{sd6=
γH

(G), sd+
γT

(G)} 6

min{h3(g), k3(g)} − 1. Furthermore, if G does not contain 3-cycles, then

max{sd6=
γH

(G), sd+
γT

(G)} 6 min{h4(g), k4(g)} − 1.

Corollary 4.4, Theorem 4.8 and Theorem 4.9 together lead to

Theorem 4.11. Let G be a connected graph of minimum degree at least 3,

orientable genus g and non-orientable genus g. Then bR(G) 6 min{h3(g), k3(g)} +

∆(G) − 3. If every edge of G lies in a triangle, then bR(G) 6 min{h3(g), k3(g)} +

∆(G)−4. If G does not contain triangles, then bR(G) 6 min{h4(g), k4(g)}+∆(G)−3.

Gagarin and Zverovich [6] have recently proposed the following conjecture.
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Conjecture 4.12. For a connected graph G of orientable genus g and non-

orientable genus g we have, b(G) 6 min{cg, c
′
g}, where cg and cg are constants

depending, respectively, on the orientable and non-orientable genera of G.

In this connection, combining Theorem 4.2 with Theorem 4.8 and Theorem 4.9

we have the following result.

Theorem 4.13. Let H be a nondegenerate and induced-hereditary graph prop-

erty. For a nontrivial connected graphG of orientable genus g, non-orientable genus g

and minimum degree at least 3 we have b+
H(G) 6 min{h3(g), k3(g)}−1. Furthermore,

if G does not contain 3-cycles, then b+
H(G) 6 min{h4(g), k4(g)} − 1.

The next conjecture in the case provided P = I is the main outstanding conjecture

on ordinary bondage number.

Conjecture 4.14 (Teschner [23] when P = I). Let P be a nondegenerate and

induced-hereditary graph property. Then for any graph G, b+
P(G) 6 1.5∆(G).

Theorem 4.13 gives particular support for this conjecture. Namely, Conjecture 4.14

is true when min{h3(g), k3(g)} − 1 6 1.5∆(G) and δ(G) > 3.

Acknowledgement. The author thanks the anonymous referee for carefully

reading the manuscript and making suggestions that improved the content and pre-

sentation of the paper.

References

[1] A.Altshuler: Construction and enumeration of regular maps on the torus. Discrete Math.
4 (1973), 201–217. zbl MR

[2] K.Carlson, M.Develin: On the bondage number of planar and directed graphs. Discrete
Math. 306 (2006), 820–826. zbl MR

[3] O.Favaron, T.W.Haynes, S. T.Hedetniemi: Domination subdivision numbers in graphs.
Util. Math. 66 (2004), 195–209. zbl MR

[4] O.Favaron, H.Karami, S.M. Sheikholeslami: Connected domination subdivision num-
bers of graphs. Util. Math. 77 (2008), 101–111. zbl MR

[5] O.Favaron, H.Karami, S.M. Sheikholeslami: Paired-domination subdivision numbers
of graphs. Graphs Comb. 25 (2009), 503–512. zbl MR

[6] A.Gagarin, V. Zverovich: Upper bounds for the bondage number of graphs on topolog-
ical surfaces. Discrete Math. (2011), 10.1016/j.disc 2011.10.018.

[7] W.Goddard, T.Haynes, D.Knisley: Hereditary domination and independence parame-
ters. Discuss. Math., Graph Theory. 24 (2004), 239–248. zbl MR

[8] T.W.Haynes, S.T.Hedetniemi, L. C. van der Merwe: Total domination subdivision
numbers. J. Comb. Math. Comb. Comput. 44 (2003), 115–128. zbl MR

[9] T.W.Haynes, M.A.Henning, L. S. Hopkins: Total domination subdivision numbers of
graphs. Discuss. Math., Graph Theory 24 (2004), 457–467. zbl MR

203

http://www.emis.de/MATH-item?0253.05117
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0321797
http://www.emis.de/MATH-item?1122.05045
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2234988
http://www.emis.de/MATH-item?1071.05057
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2106218
http://www.emis.de/MATH-item?1161.05055
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2462631
http://www.emis.de/MATH-item?1216.05102
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2575597
http://www.emis.de/MATH-item?1065.05069
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2120566
http://www.emis.de/MATH-item?1020.05048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1962340
http://www.emis.de/MATH-item?1065.05070
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2120069


[10] J. Ivančo: The weight of a graph. Combinatorics, Graphs and Complexity, Proc. 4th
Czech. Symp., Prachatice/Czech. 1990, Ann. Discrete Math. vol. 51, 1992, pp. 113–116. zbl MR

[11] N. Jafari Rad, L. Volkmann: Roman bondage in graphs. Discuss. Math., Graph Theory
31 (2011), 753–761. zbl MR

[12] N. Jafari Rad, L.Volkmann: On the Roman bondage number of planar graphs. Graphs
Comb. 27 (2011), 531–538. zbl MR

[13] S. Jendrol’, M.Tuhársky: A Kotzig type theorem for non-orientable surfaces. Math. Slo-
vaca 56 (2006), 245–253. zbl MR

[14] L.Kang, J. Yuan: Bondage number of planar graphs. Discrete Math. 222 (2000),
191–198. zbl MR

[15] D.Michalak: Domination, independence and irredundance with respect to additive in-
duced-hereditary properties. Discrete Math. 286 (2004), 141–146. zbl MR

[16] A.Nakamoto, S. Negami: Full-symmetric embeddings of graphs on closed surfaces. Mem.
Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 49 (2000), 1–15. MR

[17] S.Negami: Classification of 6-regular Klein-bottlal graphs. Res. Rep. Inf. Sci. T.I.T.
A-96 (1984).

[18] T.D. Parsons, G. Pica, T. Pisanski, A.G. S.Ventre: Orientably simple graphs. Math.
Slovaca 37 (1987), 391–394. zbl MR

[19] C. S. ReVelle, K. E. Rosing: Defendens imperium romanum: A classical problem in mil-
itary strategy. Am. Math. Mon. 107 (2000), 585–594. zbl MR

[20] V.Samodivkin: Domination with respect to nondegenerate and hereditary properties.
Math. Bohem. 133 (2008), 167–178. zbl MR

[21] V.Samodivkin: Domination with respect to nondegenerate properties: bondage number.
Australas. J. Comb. 45 (2009), 217–226. zbl MR

[22] I. Stewart: Defend the Roman Empire. Sci. Amer. 281 (1999), 136–139.
[23] U.Teschner: A new upper bound for the bondage number of graphs with small domi-

nation number. Australas. J. Comb. 12 (1995), 27–35. zbl MR
[24] C.Thomassen: The Jordan-Schönflies theorem and the classification of surfaces. Am.

Math. Mon. 99 (1992), 116–130. MR zbl
[25] S.Velammal: Studies in Graph Theory: Covering, Independence, Domination and Re-

lated Topics. Ph.D. Thesis, 1997.
[26] J.W.T.Youngs: Minimal imbeddings and the genus of a graph. J. Math. Mech. 12

(1963), 303–315 (In English. Russian original.); translation from Kibernet. Sb., N.
Ser. 7, (1970), 145–159. zbl MR

Author’s address: V l a d im i r S am o d i v k i n, UACEG, Bulgaria, Sofia, “Hristo Smir-
nenski” 1, Postal Code: 1146, e-mail: vlsam fte@uacg.bg.

204

http://www.emis.de/MATH-item?0773.05066
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1206252
http://www.emis.de/MATH-item?pre06077402
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2952241
http://www.emis.de/MATH-item?1235.05105
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2813452
http://www.emis.de/MATH-item?1141.05028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2250077
http://www.emis.de/MATH-item?0961.05055
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1771398
http://www.emis.de/MATH-item?1051.05069
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2084289
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1833214
http://www.emis.de/MATH-item?0643.05027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR916947
http://www.emis.de/MATH-item?1039.90038
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1786232
http://www.emis.de/MATH-item?1199.05269
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2428312
http://www.emis.de/MATH-item?1207.05145
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2554536
http://www.emis.de/MATH-item?0839.05053
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1349195
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1144352
http://www.emis.de/MATH-item?0773.57001
http://www.emis.de/MATH-item?0213.26001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0145512

