UPPER BOUNDS FOR THE DOMINATION SUBDIVISION AND BONDAGE NUMBERS OF GRAPHS ON TOPOLOGICAL SURFACES

Vladimir Samodivkin, Sofia

(Received December 5, 2011)

Abstract

For a graph property \mathcal{P} and a graph G, we define the domination subdivision number with respect to the property \mathcal{P} to be the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to change the domination number with respect to the property \mathcal{P}. In this paper we obtain upper bounds in terms of maximum degree and orientable/non-orientable genus for the domination subdivision number with respect to an induced-hereditary property, total domination subdivision number, bondage number with respect to an induced-hereditary property, and Roman bondage number of a graph on topological surfaces.

Keywords: domination subdivision number, graph property, bondage number, Roman bondage number, induced-hereditary property, orientable genus, non-orientable genus

MSC 2010: 05C69

1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple edges. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. For a vertex x of $G, N(x)$ denotes the set of all neighbors of x in $G, N[x]=N(x) \cup\{x\}$ and the degree of x is $\operatorname{deg}(x)=|N(x)|$. The maximum and minimum degrees of vertices in the graph G are denoted by $\Delta(G)$ and $\delta(G)$ respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G\rangle$. For a graph G, let $x \in X \subseteq V(G)$. A vertex $y \in V(G)$ is a private neighbor of x with respect to X if $N[y] \cap X=\{x\}$. The private neighbor set of x with respect to X is $\mathrm{pn}[x, X]=$ $\{y: N[y] \cap X=\{x\}\}$. A perfect matching M in G is a set of independent edges in G such that every vertex of G is incident to an edge of M. For every edge $e=x y \in E(G)$ we define $\xi(e)=|N(x) \cup N(y)|=\operatorname{deg}(x)+\operatorname{deg}(y)-|N(x) \cap N(y)|$ and let $\xi(G)=\min \{\xi(e): e \in E(G)\}$.

A surface is a connected compact Hausdorff space which is locally homeomorphic to an open disc in the plane. If a surface Σ is obtained from the sphere by adding some number $g \geqslant 0$ of handles or some number $\bar{g}>0$ of crosscaps, Σ is said to be, respectively, orientable of genus $g=g(\Sigma)$ or non-orientable of genus $\bar{g}=\bar{g}(\Sigma)$. We shall follow the usual convention of denoting the surface of orientable genus g or non-orientable genus \bar{g}, respectively, by S_{g} or by $N_{\bar{g}}$. Any topological surface is homeomorphically equivalent either to $S_{h}(h \geqslant 0)$, or to $N_{k}(k \geqslant 1)$. For example, S_{1}, N_{1}, N_{2} are the torus, the projective plane, and the Klein bottle, respectively. A graph G is embeddable on a topological surface S if it admits a drawing on the surface with no crossing edges. Such a drawing of G on the surface S is called an embedding of G on S. An embedding of a graph G on an orientable surface or non-orientable surface Σ is minimal if G cannot be embedded on any orientable or non-orientable surface Σ^{\prime} with $g\left(\Sigma^{\prime}\right)<g(\Sigma)$ or $\bar{g}\left(\Sigma^{\prime}\right)<\bar{g}(\Sigma)$, respectively. Graph G is said to have orientable genus g (non-orientable genus \bar{g}) if G minimally embeds on a surface of orientable genus g (non-orientable genus \bar{g}). An embedding of a graph G on a surface Σ is said to be 2 -cell if every face of the embedding is homeomorphic to a disc. The set of faces of a particular embedding of G on S is denoted by $F(G)$. If every face of a graph embedding is three-sided, then the embedding is triangular. In a quadrilateral embedding, every face is four-sided.

A Roman dominating function (RDF) on a graph G is defined in [19], [22] as a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a RDF is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number, $\gamma_{R}(G)$, of G is the minimum weight of a RDF on G. Following Jafari Rad and Volkmann [11], the Roman bondage number $b_{R}(G)$ of a graph G with maximum degree at least two is the cardinality of a smallest set of edges $E_{1} \subseteq E(G)$ for which $\gamma_{R}\left(G-E_{1}\right)>\gamma_{R}(G)$.

Let \mathcal{I} denote the set of all mutually nonisomorphic graphs. A graph property is any non-empty subset of \mathcal{I}. We say that a graph G has the property \mathcal{P} whenever there exists a graph $H \in \mathcal{P}$ which is isomorphic to G. For example, we list some graph properties:
$\triangleright \mathcal{O}=\{H \in \mathcal{I}: H$ is totally disconnected $\} ;$
$\triangleright \mathcal{C}=\{H \in \mathcal{I}: H$ is connected $\}$;
$\triangleright \mathcal{M}=\{H \in \mathcal{I}: H$ has a perfect matching $\} ;$
$\triangleright \mathcal{T}=\{H \in \mathcal{I}: \delta(H) \geqslant 1\}$.
A graph property \mathcal{P} is called: (a) induced-hereditary, if from the fact that a graph G has property \mathcal{P}, it follows that all induced subgraphs of G also belong to \mathcal{P}, and (b) nondegenerate if $\mathcal{O} \subseteq \mathcal{P}$. Any set $S \subseteq V(G)$ such that the induced subgraph $\langle S, G\rangle$ possesses the property \mathcal{P} is called a \mathcal{P}-set. A set of vertices $D \subseteq V(G)$ is
a dominating set of G if every vertex not in D is adjacent to a vertex in D. The domination number with respect to the property \mathcal{P}, denoted by $\gamma_{\mathcal{P}}(G)$, is the smallest cardinality of a dominating \mathcal{P}-set of G. A dominating \mathcal{P}-set of G with cardinality $\gamma_{\mathcal{P}}(G)$ is called a $\gamma_{\mathcal{P}}(G)$-set. If a property \mathcal{P} is nondegenerate, then every maximal independent set is a \mathcal{P}-set and thus $\gamma_{\mathcal{P}}(G)$ exists. Note that $\gamma_{\mathcal{I}}(G)$ and $\gamma_{\mathcal{T}}(G)$ are well known as the domination number $\gamma(G)$ and the total domination number $\gamma_{t}(G)$, respectively. The concept of domination with respect to any property \mathcal{P} was introduced by Goddard et al. [7] and has been studied, for example, in [15], [20], [21] and elsewhere.

For every graph G with at least one edge and every nondegenerate property \mathcal{P}, the plus bondage number with respect to the property \mathcal{P}, denoted $b_{\mathcal{P}}^{+}(G)$, is the cardinality of a smallest set of edges $U \subseteq E(G)$ such that $\gamma_{\mathcal{P}}(G-U)>\gamma_{\mathcal{P}}(G)$. This concept was introduced by the present author in [21]. Since $\gamma_{\mathcal{P}}(G-E(G))=|V(G)|>\gamma_{\mathcal{P}}(G)$ for every graph G with at least one edge and every nondegenerate property \mathcal{P}, it follows that $b_{\mathcal{P}}^{+}(G)$ always exists.

For every graph G with $\Delta(G) \geqslant 2$ and for each property $\mathcal{P} \subseteq \mathcal{I}$, we define the domination (minus domination, plus domination, respectively) subdivision number with respect to the property \mathcal{P}, denoted $\operatorname{sd}_{\gamma_{\mathcal{p}}}^{\neq}(G)\left(\operatorname{sd}_{\gamma_{\mathcal{P}}}^{-}(G), \operatorname{sd}_{\gamma_{\mathcal{P}}}^{+}(G)\right)$ to be the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to change (decrease, increase, respectively) $\gamma_{\mathcal{P}}(G)$. The following special cases for $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{+}(G)$ have been investigated up to now: (a) $\operatorname{sd}_{\gamma_{\bar{I}}}^{+}(G)$-the domination subdivision number defined by Velammal [25] (note that $\operatorname{sd}_{\gamma_{I}}^{\neq}(G)=\operatorname{sd}_{\gamma_{I}}^{+}(G)$), (b) $\operatorname{sd}_{\gamma_{T}}^{+}(G)$-the total domination subdivision number introduced by Haynes et al. in [8], (c) $\operatorname{sd}_{\gamma \mathcal{M}}^{+}(G)$-the paired domination subdivision number introduced by Favaron et al. in [5], and (d) $\mathrm{sd}_{\gamma \mathcal{C}}^{+}(G)$ - the connected domination subdivision number introduced by Favaron et al. in [4].

The rest of the paper is organized as follows. In Section 2 we begin the investigation of $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$ in case when $\mathcal{P} \subseteq \mathcal{I}$ is induced-hereditary and closed under union with K_{1} graph property. We show that $\mathrm{sd}_{\gamma_{p}}^{\neq}(G)$ is well defined whenever $\Delta(G) \geqslant 2$ and we present upper bounds for $\mathrm{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$ in terms of degrees. In Section 3 for graphs with nonnegative Euler characteristic we obtain tight upper bounds for $\xi(G)$ in terms of maximum degree. In Section 4 we find upper bounds in terms of orientable/nonorientable genus and maximum degree for $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G), b_{R}(G)$ and $b_{\mathcal{P}}^{+}(G)$.

2. Domination subdivision numbers

Note that each induced-hereditary and closed under union with K_{1} property $\mathcal{P} \subseteq \mathcal{I}$ is, clearly, nondegenerate and hence $\gamma_{\mathcal{P}}(G)$ exists. For a graph G and a set $U \subseteq E(G)$, by $S(G, U)$ we denote the graph obtained from G by subdividing all edges belonging to U.

Theorem 2.1. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. Let G be a graph which contains an edge uv such that $\operatorname{deg}(u) \geqslant 2$, $\operatorname{deg}(v) \geqslant 2$ and let $F \subseteq E(G)$ be the union of the set of all edges incident to v and the set of all edges joining u to a vertex in $N(u)-N[v]$. Then there is a set $U \subsetneq F$ with $\gamma_{\mathcal{H}}(S(G, U))<\gamma_{\mathcal{H}}(S(G, F))$. In particular (Favaron et al. [3] when $\left.\mathcal{H}=\mathcal{I}\right)$, $\operatorname{sd}_{\gamma \mathcal{H}}^{\neq}(G) \leqslant \xi(u v)-1$.

Proof. We denote shortly $G_{1}=S(G, F)$. Let $N(v, G)=\left\{u=z_{0}, z_{1}, \ldots, z_{p}\right\}$, $p \geqslant 1$, and let $v_{i} \in V\left(G_{1}\right)$ be the subdivision vertex for $v z_{i}, i=0,1, \ldots, p$. Let $N(u, G)-N(v, G)=\left\{v=w_{0}, w_{1}, \ldots, w_{q}\right\}, q \geqslant 0, u_{0}=v_{0}$ and if $q \geqslant 1$, then let $u_{i} \in V\left(G_{1}\right)$ be the subdivision vertex for $u w_{i}, i=1, \ldots, q$. Among all $\gamma_{\mathcal{H}}\left(G_{1}\right)$-sets let D_{1} be the one which contains a minimum number of subdivision vertices. Denote by S the set of all subdivision vertices which belong to D_{1}. First assume S is empty. Then $v \in D_{1}$. If $u \in D_{1}$, then $D_{1}-\{v\}$ is a dominating \mathcal{H}-set of a graph G^{\prime} obtained from G by subdividing all edges joining u to a vertex in $N(u)-N[v]$ (it is possible that $\left.G^{\prime}=G\right)$. If $u \notin D_{1}$, then there is $z_{i} \in D_{1}$ with $z_{i} u \in E(G)$. But then $D_{1}-\{v\}$ is a dominating \mathcal{H}-set of $G(\mathcal{H}$ is induced-hereditary). So, assume S is not empty.

Case 1: $S=\left\{v_{0}\right\}$. If $u, v \notin D_{1}$, then all neighbors of u and v in G, except for u and v, are in D_{1}; this implies $D_{1}-\left\{v_{0}\right\}$ is a dominating \mathcal{H}-set of G. If exactly one of u and v is in D_{1}, then $D_{1}-\left\{v_{0}\right\}$ is a dominating \mathcal{H}-set of $S(G, F-\{u v\})$. There are no other possibilities because \mathcal{H} is induced-hereditary.

Case 2: $S=\left\{v_{1}\right\}$. If $z_{1} \notin \operatorname{pn}\left[v_{1}, D_{1}\right]$, then the set $D_{2}=\left(D_{1}-\left\{v_{1}\right\}\right) \cup\{v\}$ is a dominating \mathcal{H}-set of $G_{1}\left(\mathcal{H}\right.$ is induced-hereditary and closed under union with $\left.K_{1}\right)$ of cardinality at most $\gamma_{\mathcal{H}}\left(G_{1}\right)$ and D_{2} contains no subdivision vertices, a contradiction. If $v \in D_{1}$, then the set $D_{3}=\left(D_{1}-\left\{v_{1}\right\}\right) \cup\left\{z_{1}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set without subdivision vertices, a contradiction. Since $v, v_{0} \notin D_{1}$ it follows that $u \in D_{1}$ and if $p \geqslant 2$, then $z_{2}, \ldots, z_{p} \in D_{1}$. But then the set $\left(D_{1}-\left\{v_{1}, u\right\}\right) \cup\{v\}$ is a dominating \mathcal{H}-set of a graph G_{2} defined as follows: (a) $G_{2}=G$ when $p=1$, and (b) $G_{2}=S\left(G,\left\{v z_{2}, \ldots, v z_{p}\right\}\right)$ when $p \geqslant 2$.

Case 3: At least two subdivision vertices which are adjacent to v are in D_{1}. Say, without loss of generality, $S_{v}=S \cap N\left(v, G_{1}\right)=\left\{v_{r}, v_{r+1}, \ldots, v_{r+s}\right\}, r \geqslant 0$, $s \geqslant 1$. Let $r \leqslant i \leqslant r+s$. Then $z_{i} \notin D_{1}$. Moreover, $z_{i} \notin \operatorname{pn}\left[v_{i}, D_{1}\right]$-otherwise the set $\left(D_{1}-\left\{v_{i}\right\}\right) \cup\left\{z_{i}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set with fewer subdivision vertices than D_{1},
a contradiction. But then the set $\left(D_{1}-S_{v}\right) \cup\{v\}$ is a dominating \mathcal{H}-set of a graph G_{3} obtained from G_{1} by deleting S_{v} and adding $v z_{r}, \ldots, v z_{r+s}$.

Case 4: $S=\left\{v_{1}, u_{1}\right\}$. Assume $v \in D_{1}$. This implies $z_{1} \in \operatorname{pn}\left[v_{1}, D_{1}\right]$ and then the set $\left(D_{1}-\left\{v_{1}\right\}\right) \cup\left\{z_{1}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set with fewer subdivision vertices than D_{1}, a contradiction. Hence $v \notin D_{1}$. Now, assume $u \in D_{1}$. But then $w_{1} \in \operatorname{pn}\left[u_{1}, D_{1}\right]$, which leads to $\left(D_{1}-\left\{u_{1}\right\}\right) \cup\left\{w_{1}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set with fewer subdivision vertices than D_{1}, a contradiction. Therefore there is no vertex in D_{1} which dominates v_{0}, a contradiction.

Case 5: $S=\left\{u_{1}\right\}$. If $u \in D_{1}$, then $w_{1} \in \operatorname{pn}\left[u_{1}, D_{1}\right]$, which leads to $D-\left\{u_{1}\right\}$ being a dominating \mathcal{H}-set of $S\left(G, F-\left\{u w_{1}\right\}\right)$. So, let $u \notin D_{1}$. Hence $v \in D_{1}$. If $w_{1} \notin \operatorname{pn}\left[u_{1}, D_{1}\right]$, then $D_{1}-\left\{u_{1}\right\}$ is a dominating \mathcal{H}-set of $S\left(G, F-\left\{u w_{1}, u v\right\}\right)$. Assume $w_{1} \in \operatorname{pn}\left[u_{1}, D_{1}\right]$. If $u \notin \operatorname{pn}\left[u_{1}, D_{1}\right]$, then $\left(D_{1}-\left\{u_{1}\right\}\right) \cup\left\{w_{1}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$ set with fewer subdivision vertices than D_{1}, a contradiction. If $u \in \operatorname{pn}\left[u_{1}, D_{1}\right]$, then $\left(D_{1}-\left\{u_{1}, v\right\}\right) \cup\{u\}$ is a dominating \mathcal{H}-set of a graph G_{4} defined as follows: (a) $G_{4}=G$ for $q=1$, and (b) $G_{4}=S\left(G,\left\{u w_{2}, \ldots, u w_{q}\right\}\right)$ for $q \geqslant 2$.

Case 6: At least two subdivision vertices which are adjacent to u are in D_{1}. Say, without loss of generality, $S_{u}=S \cap N\left(u, G_{1}\right)=\left\{u_{r}, u_{r+1}, \ldots, u_{r+s}\right\}$ where $0 \leqslant r$ and $s \geqslant 1$. Let $r \leqslant i \leqslant s+r$. Then $w_{i} \notin D_{1}$. If $w_{i} \in \operatorname{pn}\left[u_{i}, D_{1}\right]$, then the set $\left(D_{1}-\left\{u_{i}\right\}\right) \cup\left\{w_{i}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set with fewer subdivision vertices than D_{1}, a contradiction. Thus $w_{i} \notin \operatorname{pn}\left[u_{i}, D_{1}\right], i=r, \ldots, r+s$. If there is no $z_{j} \in D_{1}, j \geqslant 1$, with $z_{j} u \in E(G)$, then the set $\left(D_{1}-S_{u}\right) \cup\{u\}$ is a dominating \mathcal{H}-set of a graph G_{1}, a contradiction. If there is $z_{j} \in D_{1}, j \geqslant 1$ with $z_{j} u \in E(G)$, then $D_{1}-S_{u}$ is a dominating \mathcal{H}-set of a graph G_{5} obtained from G_{1} by deleting S_{u} and adding $u w_{r}, \ldots, u w_{r+s}$.

Observation 2.2. Let \mathcal{H} be a nondegenerate graph property. If G is a graph with $\Delta(G) \geqslant 2$ and $\gamma_{\mathcal{H}}(G)=1$, then $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G)=s d_{\gamma_{\mathcal{H}}}^{+}(G)=1$.

By Theorem 2.1 and Observation 2.2 it immediately follows that $\mathrm{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G)$ is welldefined for every graph G with $\Delta(G) \geqslant 2$ provided $\mathcal{H} \subseteq \mathcal{I}$ is an induced-hereditary and closed under union with K_{1} graph property.

Observation 2.3. Let \mathcal{H} be a nondegenerate graph property. Then
(i) $\gamma_{\mathcal{H}}\left(C_{n}\right)=\left\lceil\frac{1}{3} n\right\rceil$, where $n \geqslant 3$;
(ii) $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}\left(C_{3 k}\right)=s d_{\gamma_{\mathcal{H}}}^{+}\left(C_{3 k}\right)=1, \operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}\left(C_{3 k+1}\right)=s d_{\gamma_{\mathcal{H}}}^{+}\left(C_{3 k+1}\right)=3$, and $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}\left(C_{3 k+2}\right)=s d_{\gamma_{\mathcal{H}}}^{+}\left(C_{3 k+2}\right)=2$, where $k \geqslant 1$.

By Observation 2.3(ii) it immediately follows that the bound stated in Theorem 2.1 is attainable when $G=C_{3 k+1}, k \geqslant 1$.

Define $\mathbf{V}_{\mathcal{H}}^{-}(G)=\left\{v \in V(G): \gamma_{\mathcal{H}}(G-v)<\gamma_{\mathcal{H}}(G)\right\}$. The next results in this section show that the set $\mathbf{V}_{\mathcal{H}}^{-}(G)$ plays an important role in studying the subdivision numbers with respect to a graph property.

Observation 2.4. Let \mathcal{H} be a nondegenerate and closed under union with K_{1} graph property. Let G be a graph.
(i) $[20] \mathbf{V}_{\mathcal{H}}^{-}(G)=\left\{v \in V(G): \gamma_{\mathcal{H}}(G-v)=\gamma_{\mathcal{H}}(G)-1\right\}$.
(ii) If $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$, then $\gamma_{\mathcal{H}}\left(G^{\prime}\right) \leqslant \gamma_{\mathcal{H}}(G)$, where G^{\prime} is a graph which results from subdividing at least one edge incident to v.

Proof. (ii) Let M be a $\gamma_{\mathcal{H}}(G-v)$-set. Since $v \in \mathbf{V}_{\mathcal{H}}^{-}(G), M$ is not a dominating \mathcal{H}-set of G. Since \mathcal{H} is closed under union with $K_{1}, M \cup\{v\}$ is a dominating \mathcal{H}-set of both G^{\prime} and G. Hence $M \cup\{v\}$ is a $\gamma_{\mathcal{H}}(G)$-set and the result follows.

In special cases where a graph has some structural property we can obtain better upper bounds for $\mathrm{sd}_{\gamma \mathcal{H}}^{\neq}(G)$ than that stated in Theorem 2.1.

Theorem 2.5. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. Let G be a graph, $v \in V(G), \operatorname{deg}(v) \geqslant 2$ and let $F \subseteq E(G)$ consist of all edges incident to v. Then at least one of the following assertions holds:
(i) there is $U \subseteq F$ with $\gamma_{\mathcal{H}}(G) \neq \gamma_{\mathcal{H}}\left(S(G, U)\right.$) (in particular $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) \leqslant \operatorname{deg}(v)$);
(ii) $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$;
(iii) there exist $u \in N(v, G) \cap \mathbf{V}_{\mathcal{H}}^{-}(G)$ and a $\gamma_{\mathcal{H}}(G)$-set D_{u} such that $N(v, G) \subseteq D_{u}$, $v \notin D$ and $\operatorname{pn}\left[u, D_{u}\right]=\{u\}$.

Proof. Denote shortly $G_{1}=S(G, F)$. Assume (i) does not hold. Hence $\gamma_{\mathcal{H}}\left(G_{1}\right)=\gamma_{\mathcal{H}}(G)$. Among all $\gamma_{\mathcal{H}}\left(G_{1}\right)$-sets let D be the one which contains a minimum number of subdivision vertices. Let all neighbors of v in G be w_{1}, \ldots, w_{r} and let $v_{i} \in V\left(G_{1}\right)$ be the subdivision vertex for $v w_{i}, i=1,2, \ldots, r$. Let S be the set of all subdivision vertices which belong to D and if S is not empty let $S=\left\{v_{1}, \ldots, v_{k}\right\}$. If S is empty, then $v \in D$ and $D-\{v\}$ is a dominating \mathcal{H}-set of $G-v(\mathcal{H}$ is inducedhereditary). Hence $\gamma_{\mathcal{H}}(G)=\gamma_{\mathcal{H}}\left(G_{1}\right)=|D| \geqslant 1+\gamma_{\mathcal{H}}(G-v)$ and by the definition of $\mathbf{V}_{\mathcal{H}}^{-}(G)$ it follows that (ii) holds. Now assume $k \geqslant 1$. We distinguish two cases according to k.

Case 1: $k=1$. If $v \in D$, then since \mathcal{H} is induced-hereditary, $w_{1} \in \operatorname{pn}\left[v_{1}, D\right]$. But then $D-\left\{v_{1}\right\}$ is a dominating \mathcal{H}-set of the graph G_{2} obtained from G_{1} by deleting v_{1} and adding $v w_{1}$, a contradiction. So $v \notin D$ which immediately implies $w_{2}, \ldots, w_{r} \in$ D. If $w_{1} \in D$, then $D-\left\{v_{1}\right\}$ is a dominating \mathcal{H}-set of G_{2}, a contradiction. If $w_{1} \notin D$ and $w_{1} \notin \operatorname{pn}\left[v_{1}, D\right]$, then $\left(D-\left\{v_{1}\right\}\right) \cup\{v\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set without subdivision vertices-a contradiction. So, let $w_{1} \in \operatorname{pn}\left[v_{1}, D\right]$. But then $D_{w_{1}}=\left(D-\left\{v_{1}\right\}\right) \cup\left\{w_{1}\right\}$
is a $\gamma_{\mathcal{H}}(G)$-set with $\operatorname{pn}\left[w_{1}, D_{w_{1}}\right]=\left\{w_{1}\right\}$. This implies $w_{1} \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and then (iii) holds (with $u \equiv w_{1}$).

Case 2: $k \geqslant 2$. By the choice of D it follows that $w_{i} \notin D$ for all $i=1, \ldots, k$ (otherwise $D-\left\{v_{i}\right\}$ would be a dominating \mathcal{H}-set of G_{1}, a contradiction). If $w_{i} \in$ $\operatorname{pn}\left[v_{i}, D\right]$ for some $i \in\{1, \ldots, k\}$, then $\left(D-\left\{v_{i}\right\}\right) \cup\left\{w_{i}\right\}$ is a $\gamma_{\mathcal{H}}\left(G_{1}\right)$-set with fewer subdivision vertices than D, a contradiction. Hence $w_{i} \notin \operatorname{pn}\left[v_{i}, D\right]$ for all $i=1, \ldots, k$. But then $(D-S) \cup\{v\}$ is a dominating \mathcal{H}-set of G_{1}, a contradiction.

The next two corollaries follow immediately from Theorem 2.5.

Corollary 2.6. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. Let G be a graph, $v \in V(G)$ and $\operatorname{deg}(v) \geqslant 2$. Then there is a subset U of the set of all edges incident to v with $\gamma_{\mathcal{H}}(G) \neq \gamma_{\mathcal{H}}(S(G, U)$) (in particular $\left.\operatorname{sd}_{\gamma \mathcal{H}}^{\neq}(G) \leqslant \operatorname{deg}(v)\right)$ provided one of the following holds:
(i) v and none of the isolated vertices of the graph $\langle N(v), G\rangle$ belong to $\mathbf{V}_{\mathcal{H}}^{-}(G)$;
(ii) $v \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $\langle N(v), G\rangle \notin \mathcal{H}$.

Corollary 2.7. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. If a graph G has $\Delta(G) \geqslant 2$ and $\mathbf{V}_{\mathcal{H}}^{-}(G)=\emptyset$, then $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) \leqslant$ $\min \{\operatorname{deg}(x): x \in V(G)$ and $\operatorname{deg}(x) \geqslant 2\}$.

Corollary 2.8. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. If a graph G has $\Delta(G) \geqslant 2$ and $\gamma_{\mathcal{H}}(G)<(|V(G)|+\Delta(G)) /(\Delta(G)+$ 1), then $\operatorname{sd}_{\gamma \mathcal{H}}^{\neq}(G) \leqslant \min \{\operatorname{deg}(x): x \in V(G)$ and $\operatorname{deg}(x) \geqslant 2\}$.

Proof. Assume $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$. Then $|V(G)| \leqslant\left(\gamma_{\mathcal{H}}(G)-1\right)(\Delta(G)+1)+1$, which implies $\gamma_{\mathcal{H}}(G) \geqslant(|V(G)|+\Delta(G)) /(\Delta(G)+1)$, a contradiction. The result now follows by Corollary 2.7.

Corollary 2.9. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. Let G be a graph and let $2 \leqslant \delta(G) \leqslant \Delta(G)<\operatorname{sd}_{\gamma \mathcal{H}}^{\neq}(G)$. Then $\mathbf{V}_{\mathcal{H}}^{-}(G)$ is a dominating set of G.

3. UPPER Bounds For $\xi(G)$

For 2-cell embeddings, we have the important result known as generalized Euler's formula.

Theorem 3.1 (Thomassen [24]). If G is 2-cell embedded on surface Σ having genus g or non-orientable genus \bar{g} and if the embedded G has $|V(G)|=p$ vertices, $|E(G)|=q$ edges and $|F(G)|=f$ faces, then $p-q+f=2-2 g$ or $p-q+f=2-\bar{g}$, respectively.

The following two results are of paramount importance when working with minimal embeddings. The former is due to J.W.T. Youngs [26] and the latter to Parsons, Pica, Pisanski and Ventre [18].

Theorem 3.2. Every minimal orientable embedding of a graph G is 2-cell.
Theorem 3.3. Every graph G has a minimal non-orientable embedding which is 2-cell.

The Euler characteristic of a surface is equal to $|V(G)|+|F(G)|-|E(G)|$ for any graph G that is 2 -cell embedded on that surface. The Euclidean plane, the projective plane, the torus, and the Klein bottle are all the surfaces of nonnegative Euler characteristic.

Let G be a graph 2-cell embedded on a surface S. For each edge $e=x y \in E(G)$ we define

$$
D_{e}=D_{x y}=\frac{1}{d(x)}+\frac{1}{d(y)}+\frac{1}{r_{e}^{1}}+\frac{1}{r_{e}^{2}}-1
$$

where r_{e}^{1} is the number of edges on the boundary of a face on one side of e, and r_{e}^{2} is the number of edges on the boundary of the face on the other side of e. In case when an edge e is on the boundary of exactly one face, say f, let $r_{e}^{1}=r_{e}^{2}=2 r_{e}$, where r_{e} is the number of edges on the boundary of f. We observe that $\sum_{e \in E(G)}(1 / d(x)+1 / d(y))=$ $|V(G)|$ and $\sum_{e \in E(G)}\left(1 / r_{e}^{1}+1 / r_{e}^{2}\right)=|F(G)|$, and therefore

$$
\begin{equation*}
\sum_{e \in E(G)} D_{e}=|V(G)|+|F(G)|-|E(G)| \tag{3.1}
\end{equation*}
$$

Theorem 3.4. Let G be a connected graph and let at least one of $g(G)=0$ and $\bar{g}(G)=1$ hold. Then $\xi(G) \leqslant \Delta(G)+3$. Moreover, $\xi(G) \leqslant \Delta(G)+2$ provided one of the following assertions holds:
$\left(\mathrm{P}_{1}\right) \Delta(G) \notin\{3,4,5,6,7\} ;$
$\left(\mathrm{P}_{2}\right) \Delta(G) \in\{6,7\}$ and every edge $e=x y \in E(G)$ with $d(x)=5$ and $d(y)=\Delta(G)$ is contained in at most one triangle.

Proof. Suppose G is 2 -cell embedded on at least one of S_{0} and N_{1}. Let $e=x y \in E(G), d(x) \leqslant d(y)$ and $r_{e}^{1} \leqslant r_{e}^{2}$.

Case 1: One of $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ holds. Assume to the contrary that $\xi(G) \geqslant \Delta(G)+3$. Hence $\Delta(G) \geqslant 6$. If $d(x) \leqslant 3$, then $d(x)=3, d(y)=\Delta(G)$ and $r_{e}^{1} \geqslant 4$; hence $D_{e} \leqslant \frac{1}{3}+\frac{1}{\Delta(G)}+\frac{1}{4}+\frac{1}{4}-1 \leqslant 0$. If $d(x)=4$, then $d(y) \geqslant \Delta(G)-1+|N(x) \cap N(y)|$, which implies either $r_{e}^{1} \geqslant 4$ and $d(y) \in\{\Delta(G)-1, \Delta(G)\}$ or $r_{e}^{1}=3, r_{e}^{2} \geqslant 4$ and $d(y)=\Delta(G)$; hence either $D_{e} \leqslant \frac{1}{4}+\frac{1}{\Delta(G)-1}+\frac{1}{4}+\frac{1}{4}-1<0$ or $D_{e} \leqslant \frac{1}{4}+\frac{1}{\Delta(G)}+\frac{1}{3}+\frac{1}{4}-1 \leqslant 0$.

Let $d(x)=5$. Then $d(y) \geqslant \Delta(G)-2+|N(x) \cap N(y)|$, which leads to $5 \leqslant$ $d(y) \in\{\Delta(G)-2, \Delta(G)-1, \Delta(G)\}$. If $d(y)=\Delta(G)-2$, then $r_{e}^{1} \geqslant 4$; hence $D_{e} \leqslant \frac{1}{5}+\frac{1}{\Delta(G)-2}+\frac{1}{4}+\frac{1}{4}-1<0$. If $d(y)=\Delta(G)-1$, then $r_{e}^{2} \geqslant 4$; hence $D_{e} \leqslant \frac{1}{5}+\frac{1}{\Delta(G)-1}+\frac{1}{3}+\frac{1}{4}-1<0$. If $d(y)=\Delta(G)$, then (a) $D_{e} \leqslant \frac{1}{5}+\frac{1}{\Delta(G)}+\frac{1}{3}+\frac{1}{3}-1<0$ when $\Delta(G) \geqslant 8$, and (b) $D_{e} \leqslant \frac{1}{5}+\frac{1}{6}+\frac{1}{3}+\frac{1}{4}-1<0$ when $\Delta(G) \in\{6,7\}$.

Finally, if $d(x) \geqslant 6$, then $D_{e} \leqslant \frac{1}{6}+\frac{1}{6}+\frac{1}{3}+\frac{1}{3}-1=0$.
Therefore $1 \leqslant|V(G)|+|F(G)|-|E(G)|=\sum_{e \in E(G)} D_{e} \leqslant 0$, a contradiction.
Case 2: $\Delta(G) \in\{6,7\}$ and there is an edge $e=x y \in E(G)$ with $d(x)=5$ and $d(y)=\Delta(G)$ which belongs to at least 2 triangles. Clearly $\xi(e) \leqslant \Delta(G)+3$.

Case 3: $\Delta(G)=5$. Assume to the contrary that $\xi(G) \geqslant \Delta(G)+4$. Then one of the following conditions holds: (a) $d(x)=4, d(y)=5$ and $r_{e}^{1} \geqslant 4$, (b) $d(x)=d(y)=5$ and $r_{e}^{2} \geqslant 4$. Hence $D_{e}<0$ and we obtain a contradiction as in Case 1.

Case 4: $\Delta(G)=4$. Assume G is regular. Then G contains a triangle-otherwise $D_{e} \leqslant 0$ for each edge $e \in E(G)$, a contradiction.

Case 5: $\Delta(G) \leqslant 3$. Obviously $\xi(G) \leqslant \Delta(G)+3$.
The equality $\xi(G)=\Delta(G)+3$ holds at least for triangle-free cubic planar (projective) graphs. For example, such graphs are: (a) a prism graph $C L_{n}, n \geqslant 4$, which is a graph corresponding to the skeleton of an n-prism, and (b) the Petersen graph which is nonplanar and can be embedded without crossings in the projective plane.

Theorem 3.5. Let G be a connected graph and let at least one of the identities $g(G)=1$ and $\bar{g}(G)=2$ hold. Then $\xi(G) \leqslant \Delta(G)+4$ with equality if and only if one of the following conditions is valid:
$\left(\mathrm{P}_{3}\right) G$ is 4-regular without triangles;
$\left(\mathrm{P}_{4}\right) G$ is 6-regular and no edge of G belongs to at least 3 triangles.
Proof. Suppose G is 2-cell embedded on at least one of S_{1} and N_{2}. Let $e=x y \in E(G), d(x) \leqslant d(y)$ and $r_{e}^{1} \leqslant r_{e}^{2}$.

Assume that $\xi(G) \geqslant \Delta(G)+4$. Hence $\delta(G) \geqslant 4$. First let $d(x)=4$. Then $d(y)=\Delta(G)$ and $r_{e}^{1} \geqslant 4$, which leads to $D_{e} \leqslant \frac{1}{4}+\frac{1}{\Delta(G)}+\frac{1}{4}+\frac{1}{4}-1 \leqslant 0$ with equality when $d(x)=d(y)=\Delta(G)=4$ and $r_{e}^{1}=r_{e}^{2}=4$. If $d(x)=5$, then either $d(y)=\Delta(G)$ and $r_{e}^{2} \geqslant 4$, or $d(y)=\Delta(G)-1$ and $r_{e}^{1} \geqslant 4$; hence either $D_{e} \leqslant \frac{1}{5}+\frac{1}{\Delta(G)}+\frac{1}{3}+\frac{1}{4}-1<0$ or $D_{e} \leqslant \frac{1}{5}+\frac{1}{\Delta(G)-1}+\frac{1}{4}+\frac{1}{4}-1<0$. Now, let $d(x)=6$. Then either $d(y)=\Delta(G)$
and $r_{e}^{1} \geqslant 3, r_{e}^{2} \geqslant 3$ or $d(y)=\Delta(G)-1, r_{e}^{1} \geqslant 3$ and $r_{e}^{2} \geqslant 4$ or $d(y)=\Delta(G)-2$ and $r_{e}^{1} \geqslant 4$. Hence either $D_{e} \leqslant \frac{1}{6}+\frac{1}{\Delta(G)}+\frac{1}{3}+\frac{1}{3}-1 \leqslant 0$ with equality when $d(x)=d(y)=\Delta(G)=6$ and $r_{e}^{1}=r_{e}^{2}=3$, or $D_{e} \leqslant \frac{1}{6}+\frac{1}{\Delta(G)-1}+\frac{1}{3}+\frac{1}{4}-1<0$ or $D_{e} \leqslant \frac{1}{6}+\frac{1}{\Delta(G)-2}+\frac{1}{4}+\frac{1}{4}-1<0$, respectively. Finally, if $d(x) \geqslant 7$, then $D_{e} \leqslant \frac{1}{7}+\frac{1}{7}+\frac{1}{3}+\frac{1}{3}-1<0$.

Therefore $0=|V(G)|+|F(G)|-|E(G)|=\sum_{e \in E(G)} D_{e} \leqslant 0$ with equality if and only if one of the following conditions is valid:
(a) G is 4-regular and $r_{e}^{1}=r_{e}^{2}=4$ for each $e \in E(G)$;
(b) G is 6-regular and $r_{e}^{1}=r_{e}^{2}=3$ for each $e \in E(G)$.

Thus $\xi(G)=\Delta(G)+4$ and one of $\left(\mathrm{P}_{3}\right)$ and $\left(\mathrm{P}_{4}\right)$ holds.
It remains to note that (i) if $\left(\mathrm{P}_{3}\right)$ holds, then clearly $\xi(G)=\Delta(G)+4$, and (ii) if G is 6 -regular, then Theorem 3.1 implies $r_{e}^{1}=r_{e}^{2}=3$ for each edge $e \in E(G)$; therefore $\xi(G)=\Delta(G)+4$ when $\left(\mathrm{P}_{4}\right)$ is satisfied.

It follows from Theorem 3.1 that a 4-regular graph without triangles has a quadrilateral embedding. A classification of 4-regular graphs with quadrilateral emdedding on the torus and the Klein bottle was given by Altshuler [1] and Nakamoto and Negami [16], respectively. Theorem 3.1 also implies that a graph with minimum degree 6 embedded in the torus or the Klein bottle is a 6 -regular triangulation. Altshuler [1] found a characterization of 6-regular toroidal maps and Negami [17] characterized 6 -regular graphs which embed in the Klein bottle.

4. Upper bounds for the domination subdivision and bondage numbers

We will need the following results.

Theorem 4.1 (Haynes et al. [9]). For any connected graph G with adjacent vertices u and v, each of them of degree at least two, we have $\operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G) \leqslant \xi(u v)-1$.

Theorem 4.2 (Samodivkin [21]). Let \mathcal{H} be a nondegenerate and inducedhereditary graph property. For any connected graph G with adjacent vertices u and $v, b_{\mathcal{H}}^{+}(G) \leqslant \xi(u v)-1$.

Theorem 4.3 (Jafari Rad and Volkmann [11]). Let G be a graph and $x y, y z \in$ $E(G)$. Then $b_{R}(G) \leqslant \xi(x y)+d(z)-3$. If $x z \in E(G)$, then $b_{R}(G) \leqslant \xi(x y)+d(z)-4$.

If $\xi(x y)=\xi(G)$, then by Theorem 4.3 we obtain the next result immediately.

Corollary 4.4. Let G be a connected graph of order at least 3. Then $b_{R}(G) \leqslant$ $\xi(G)+\Delta(G)-3$. If every edge of G lies in a triangle, then $b_{R}(G) \leqslant \xi(G)+\Delta(G)-4$.

First we concentrate on graphs with nonnegative Euler characteristic. Combining Theorem 3.4 and Theorem 3.5 with Theorem 2.1 and Theorem 4.1 yields:

Theorem 4.5. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property and let G be a connected graph with $\delta(G) \geqslant 2$. Let at least one of the equalities $g(G)=i$ and $\bar{g}(G)=1+i$ be valid for some $i \in\{0,1\}$. Then $\max \left\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\right\} \leqslant \Delta(G)+2+i$. Moreover: (a) $\max \left\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\right\} \leqslant$ $\Delta(G)+1$ provided $i=0$ and one of $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ holds, and $(\mathrm{b}) \max \left\{\operatorname{sd}_{\gamma \mathcal{H}}^{\neq}(G)\right.$, $\left.\operatorname{sd}_{\gamma_{T}}^{+}(G)\right\} \leqslant \Delta(G)+2$ provided $i=1$ and neither $\left(\mathrm{P}_{3}\right)$ nor $\left(\mathrm{P}_{4}\right)$ holds.

Combining Theorem 3.4 and Theorem 3.5 with Theorem 4.2 we obtain

Theorem 4.6. Let \mathcal{H} be a nondegenerate and induced-hereditary graph property. Let G be a nontrivial connected graph and let at least one of the equalities $g(G)=i$ and $\bar{g}(G)=1+i$ be valid for some $i \in\{0,1\}$. Then $b_{\mathcal{H}}^{+}(G) \leqslant \Delta(G)+2+i$. Moreover: (a) $b_{\mathcal{H}}^{+}(G) \leqslant \Delta(G)+1$ provided $i=0$ and one of $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ holds, and (b) $b_{\mathcal{H}}^{+}(G) \leqslant \Delta(G)+2$ provided $i=1$ and neither $\left(\mathrm{P}_{3}\right)$ nor $\left(\mathrm{P}_{4}\right)$ holds.

The inequality $b_{\mathcal{H}}^{+}(G) \leqslant \Delta(G)+2+i$ stated in Theorem 4.6 was proven by (a) Kang and Yuan [14] for $g(G)=0$ and $\mathcal{H}=\mathcal{I}$, (b) Samodivkin [21] when $g(G)=0$ and \mathcal{H} is additive and induced-hereditary, (c) Carlson and Develin [2] for $g(G)=1$ and $\mathcal{H}=\mathcal{I}$, and (d) Gagarin and Zverovich [6] for $g(G) \in\{0,1\}, \bar{g}(G) \in\{1,2\}$ and $\mathcal{H}=\mathcal{I}$.

As we already know a 6 -regular graph embedded in the torus or the Klein bottle is a triangulation. Combining Theorem 3.4 and Theorem 3.5 with Corollary 4.4 we obtain the following result.

Theorem 4.7. Let G be a connected graph of order at least 3 and let at least one of the equalities $g(G)=i$ and $\bar{g}(G)=1+i$ be valid for some $i \in\{0,1\}$. Then (Jafari Rad and Volkmann [12] when $g(G)=0$) $b_{R}(G) \leqslant 2 \Delta(G)+i$. Moreover:
(a) $b_{R}(G) \leqslant 2 \Delta(G)-1$ provided $i=0$ and one of $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ holds, and
(b) $b_{R}(G) \leqslant 2 \Delta(G)$ provided $i=1$ and $\left(\mathrm{P}_{3}\right)$ does not hold.

Next we find upper bounds in terms of orientable/non-orientable genus for $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G), b_{R}(G)$ and $b_{\mathcal{P}}^{+}(G)$. We need the following notation and results.

Let

$$
\begin{aligned}
& h_{3}(x)=\left\{\begin{array}{ll}
2 x+13 & \text { for } 0 \leqslant x \leqslant 3, \\
4 x+7 & \text { for } x \geqslant 3,
\end{array} \quad h_{4}(x)= \begin{cases}8 & \text { for } x=0, \\
4 x+5 & \text { for } x \geqslant 1,\end{cases} \right. \\
& k_{3}(x)=\left\{\begin{array}{ll}
2 x+11 & \text { for } 1 \leqslant x \leqslant 2, \\
2 x+9 & \text { for } 3 \leqslant x \leqslant 5, \\
2 x+7 & \text { for } x \geqslant 6,
\end{array} \quad \text { and } \quad k_{4}(x)= \begin{cases}8 & \text { for } x=1, \\
2 x+5 & \text { for } x \geqslant 2 .\end{cases} \right.
\end{aligned}
$$

Theorem 4.8 (Ivančo [10]). If G is a connected graph of orientable genus g and minimum degree at least 3 , then G contains an edge $e=x y$ such that $\operatorname{deg}(x)+$ $\operatorname{deg}(y) \leqslant h_{3}(g)$. Furthermore, if G does not contain 3-cycles, then $\operatorname{deg}(x)+\operatorname{deg}(y) \leqslant$ $h_{4}(g)$. Moreover, all bounds are the best possible.

Theorem 4.9 (Jendrol' and Tuhársky [13]). If G is a connected graph of minimum degree at least 3 on a nonorientable surface of genus $\bar{g} \geqslant 1$, then G contains an edge $e=x y$ such that $\operatorname{deg}(x)+\operatorname{deg}(y) \leqslant k_{3}(\bar{g})$. Furthermore, if G does not contain 3 -cycles, then $\operatorname{deg}(x)+\operatorname{deg}(y) \leqslant k_{4}(\bar{g})$. Moreover, all bounds are the best possible.

The next theorem follows by combining Theorem 2.1 and Theorem 4.1 with Theorem 4.8 and Theorem 4.9.

Theorem 4.10. Let \mathcal{H} be an induced-hereditary and closed under union with K_{1} graph property. For a connected graph G of orientable genus g, non-orientable genus \bar{g} and minimum degree at least 3, we have $\max \left\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\right\} \leqslant$ $\min \left\{h_{3}(g), k_{3}(\bar{g})\right\}-1$. Furthermore, if G does not contain 3-cycles, then

$$
\max \left\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\right\} \leqslant \min \left\{h_{4}(g), k_{4}(\bar{g})\right\}-1 .
$$

Corollary 4.4, Theorem 4.8 and Theorem 4.9 together lead to

Theorem 4.11. Let G be a connected graph of minimum degree at least 3, orientable genus g and non-orientable genus \bar{g}. Then $b_{R}(G) \leqslant \min \left\{h_{3}(g), k_{3}(\bar{g})\right\}+$ $\Delta(G)-3$. If every edge of G lies in a triangle, then $b_{R}(G) \leqslant \min \left\{h_{3}(g), k_{3}(\bar{g})\right\}+$ $\Delta(G)-4$. If G does not contain triangles, then $b_{R}(G) \leqslant \min \left\{h_{4}(g), k_{4}(\bar{g})\right\}+\Delta(G)-3$.

Gagarin and Zverovich [6] have recently proposed the following conjecture.

Conjecture 4.12. For a connected graph G of orientable genus g and nonorientable genus \bar{g} we have, $b(G) \leqslant \min \left\{c_{g}, c_{\bar{g}}^{\prime}\right\}$, where c_{g} and $c_{\bar{g}}$ are constants depending, respectively, on the orientable and non-orientable genera of G.

In this connection, combining Theorem 4.2 with Theorem 4.8 and Theorem 4.9 we have the following result.

Theorem 4.13. Let \mathcal{H} be a nondegenerate and induced-hereditary graph property. For a nontrivial connected graph G of orientable genus g, non-orientable genus \bar{g} and minimum degree at least 3 we have $b_{\mathcal{H}}^{+}(G) \leqslant \min \left\{h_{3}(g), k_{3}(\bar{g})\right\}-1$. Furthermore, if G does not contain 3-cycles, then $b_{\mathcal{H}}^{+}(G) \leqslant \min \left\{h_{4}(g), k_{4}(\bar{g})\right\}-1$.

The next conjecture in the case provided $\mathcal{P}=\mathcal{I}$ is the main outstanding conjecture on ordinary bondage number.

Conjecture 4.14 (Teschner [23] when $\mathcal{P}=\mathcal{I}$). Let \mathcal{P} be a nondegenerate and induced-hereditary graph property. Then for any graph G, $b_{\mathcal{P}}^{+}(G) \leqslant 1.5 \Delta(G)$.

Theorem 4.13 gives particular support for this conjecture. Namely, Conjecture 4.14 is true when $\min \left\{h_{3}(g), k_{3}(\bar{g})\right\}-1 \leqslant 1.5 \Delta(G)$ and $\delta(G) \geqslant 3$.

Acknowledgement. The author thanks the anonymous referee for carefully reading the manuscript and making suggestions that improved the content and presentation of the paper.

References

[1] A. Altshuler: Construction and enumeration of regular maps on the torus. Discrete Math. 4 (1973), 201-217.

Zbl MR
[2] K. Carlson, M. Develin: On the bondage number of planar and directed graphs. Discrete Math. 306 (2006), 820-826.

Zbl MR
[3] O. Favaron, T. W. Haynes, S. T. Hedetniemi: Domination subdivision numbers in graphs. Util. Math. 66 (2004), 195-209.

Zbl MR
[4] O. Favaron, H. Karami, S. M. Sheikholeslami: Connected domination subdivision numbers of graphs. Util. Math. 77 (2008), 101-111.
zbl MR
[5] O. Favaron, H. Karami, S. M. Sheikholeslami: Paired-domination subdivision numbers of graphs. Graphs Comb. 25 (2009), 503-512.
[6] A. Gagarin, V. Zverovich: Upper bounds for the bondage number of graphs on topological surfaces. Discrete Math. (2011), 10.1016/j.disc 2011.10.018.
[7] W. Goddard, T. Haynes, D. Knisley: Hereditary domination and independence parameters. Discuss. Math., Graph Theory. 24 (2004), 239-248.
[8] T. W. Haynes, S. T. Hedetniemi, L. C.van der Merwe: Total domination subdivision numbers. J. Comb. Math. Comb. Comput. 44 (2003), 115-128.

Zbl MR
[9] T. W. Haynes, M. A. Henning, L.S. Hopkins: Total domination subdivision numbers of graphs. Discuss. Math., Graph Theory 24 (2004), 457-467.

Zbl MR
[10] J. Ivančo: The weight of a graph. Combinatorics, Graphs and Complexity, Proc. 4th Czech. Symp., Prachatice/Czech. 1990, Ann. Discrete Math. vol. 51, 1992, pp. 113-116. zbl MR
[11] N. Jafari Rad, L. Volkmann: Roman bondage in graphs. Discuss. Math., Graph Theory 31 (2011), 753-761.
zbl MR
[12] N. Jafari Rad, L. Volkmann: On the Roman bondage number of planar graphs. Graphs Comb. 27 (2011), 531-538.
zbl MR
[13] S. Jendrol', M. Tuhársky: A Kotzig type theorem for non-orientable surfaces. Math. Slovaca 56 (2006), 245-253.
[14] L. Kang, J. Yuan: Bondage number of planar graphs. Discrete Math. 222 (2000), 191-198.
zbl MR
[15] D. Michalak: Domination, independence and irredundance with respect to additive in-duced-hereditary properties. Discrete Math. 286 (2004), 141-146.
zbl MR
[16] A. Nakamoto, S. Negami: Full-symmetric embeddings of graphs on closed surfaces. Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 49 (2000), 1-15.

MR
[17] S. Negami: Classification of 6-regular Klein-bottlal graphs. Res. Rep. Inf. Sci. T.I.T. A-96 (1984).
[18] T. D. Parsons, G. Pica, T. Pisanski, A. G. S. Ventre: Orientably simple graphs. Math. Slovaca 37 (1987), 391-394.
zbl MR
[19] C.S. ReVelle, K. E. Rosing: Defendens imperium romanum: A classical problem in military strategy. Am. Math. Mon. 107 (2000), 585-594.
zbl MR
[20] V.Samodivkin: Domination with respect to nondegenerate and hereditary properties. Math. Bohem. 133 (2008), 167-178.
zbl MR
[21] V. Samodivkin: Domination with respect to nondegenerate properties: bondage number. Australas. J. Comb. 45 (2009), 217-226.
zbl MR
[22] I. Stewart: Defend the Roman Empire. Sci. Amer. 281 (1999), 136-139.
[23] U. Teschner: A new upper bound for the bondage number of graphs with small domination number. Australas. J. Comb. 12 (1995), 27-35.
zbl MR
[24] C. Thomassen: The Jordan-Schönflies theorem and the classification of surfaces. Am. Math. Mon. 99 (1992), 116-130.

MR zbl
[25] S. Velammal: Studies in Graph Theory: Covering, Independence, Domination and Related Topics. Ph.D. Thesis, 1997.
[26] J. W. T. Youngs: Minimal imbeddings and the genus of a graph. J. Math. Mech. 12 (1963), 303-315 (In English. Russian original.); translation from Kibernet. Sb., N. Ser. 7, (1970), 145-159.
zbl MR

Author's address: Vladimir Samodivkin, UACEG, Bulgaria, Sofia, "Hristo Smirnenski" 1, Postal Code: 1146, e-mail: vlsam_fte@uacg.bg.

