UPPER BOUNDS FOR THE DOMINATION SUBDIVISION AND BONDAGE NUMBERS OF GRAPHS ON TOPOLOGICAL SURFACES

VLADIMIR SAMODIVKIN, Sofia

(Received December 5, 2011)

Abstract. For a graph property \mathcal{P} and a graph G, we define the domination subdivision number with respect to the property \mathcal{P} to be the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to change the domination number with respect to the property \mathcal{P} . In this paper we obtain upper bounds in terms of maximum degree and orientable/non-orientable genus for the domination subdivision number with respect to an induced-hereditary property, total domination subdivision number, bondage number with respect to an induced-hereditary property, and Roman bondage number of a graph on topological surfaces.

Keywords: domination subdivision number, graph property, bondage number, Roman bondage number, induced-hereditary property, orientable genus, non-orientable genus

MSC 2010: 05C69

1. INTRODUCTION

All graphs considered in this article are finite, undirected, without loops or multiple edges. We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. For a vertex x of G, N(x) denotes the set of all neighbors of x in G, $N[x] = N(x) \cup \{x\}$ and the degree of x is $\deg(x) = |N(x)|$. The maximum and minimum degrees of vertices in the graph G are denoted by $\Delta(G)$ and $\delta(G)$ respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. For a graph G, let $x \in X \subseteq V(G)$. A vertex $y \in V(G)$ is a private neighbor of x with respect to X if $N[y] \cap X = \{x\}$. The private neighbor set of x with respect to X is $pn[x, X] = \{y: N[y] \cap X = \{x\}\}$. A perfect matching M in G is a set of independent edges in G such that every vertex of G is incident to an edge of M. For every edge $e = xy \in E(G)$ we define $\xi(e) = |N(x) \cup N(y)| = \deg(x) + \deg(y) - |N(x) \cap N(y)|$ and let $\xi(G) = \min\{\xi(e): e \in E(G)\}$.

A surface is a connected compact Hausdorff space which is locally homeomorphic to an open disc in the plane. If a surface Σ is obtained from the sphere by adding some number $q \ge 0$ of handles or some number $\overline{q} > 0$ of crosscaps, Σ is said to be, respectively, orientable of genus $q = q(\Sigma)$ or non-orientable of genus $\overline{q} = \overline{q}(\Sigma)$. We shall follow the usual convention of denoting the surface of orientable genus gor non-orientable genus \overline{g} , respectively, by S_q or by $N_{\overline{q}}$. Any topological surface is homeomorphically equivalent either to S_h $(h \ge 0)$, or to N_k $(k \ge 1)$. For example, S_1 , N_1 , N_2 are the torus, the projective plane, and the Klein bottle, respectively. A graph G is embeddable on a topological surface S if it admits a drawing on the surface with no crossing edges. Such a drawing of G on the surface S is called an embedding of G on S. An embedding of a graph G on an orientable surface or non-orientable surface Σ is minimal if G cannot be embedded on any orientable or non-orientable surface Σ' with $g(\Sigma') < g(\Sigma)$ or $\overline{g}(\Sigma') < \overline{g}(\Sigma)$, respectively. Graph G is said to have orientable genus q (non-orientable genus \overline{q}) if G minimally embeds on a surface of orientable genus g (non-orientable genus \overline{g}). An embedding of a graph G on a surface Σ is said to be 2-*cell* if every face of the embedding is homeomorphic to a disc. The set of faces of a particular embedding of G on S is denoted by F(G). If every face of a graph embedding is three-sided, then the embedding is *triangular*. In a *quadrilateral embedding*, every face is four-sided.

A Roman dominating function (RDF) on a graph G is defined in [19], [22] as a function $f: V(G) \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number, $\gamma_R(G)$, of G is the minimum weight of a RDF on G. Following Jafari Rad and Volkmann [11], the Roman bondage number $b_R(G)$ of a graph G with maximum degree at least two is the cardinality of a smallest set of edges $E_1 \subseteq E(G)$ for which $\gamma_R(G - E_1) > \gamma_R(G)$.

Let \mathcal{I} denote the set of all mutually nonisomorphic graphs. A graph property is any non-empty subset of \mathcal{I} . We say that a graph G has the property \mathcal{P} whenever there exists a graph $H \in \mathcal{P}$ which is isomorphic to G. For example, we list some graph properties:

- $\triangleright \quad \mathcal{O} = \{ H \in \mathcal{I} : H \text{ is totally disconnected} \};$
- $\triangleright \quad \mathcal{C} = \{ H \in \mathcal{I} \colon H \text{ is connected} \};$
- $\triangleright \mathcal{M} = \{ H \in \mathcal{I} : H \text{ has a perfect matching } \};$
- $\triangleright \quad \mathcal{T} = \{ H \in \mathcal{I} \colon \delta(H) \ge 1 \}.$

A graph property \mathcal{P} is called: (a) *induced-hereditary*, if from the fact that a graph G has property \mathcal{P} , it follows that all induced subgraphs of G also belong to \mathcal{P} , and (b) *nondegenerate* if $\mathcal{O} \subseteq \mathcal{P}$. Any set $S \subseteq V(G)$ such that the induced subgraph $\langle S, G \rangle$ possesses the property \mathcal{P} is called a \mathcal{P} -set. A set of vertices $D \subseteq V(G)$ is

a dominating set of G if every vertex not in D is adjacent to a vertex in D. The domination number with respect to the property \mathcal{P} , denoted by $\gamma_{\mathcal{P}}(G)$, is the smallest cardinality of a dominating \mathcal{P} -set of G. A dominating \mathcal{P} -set of G with cardinality $\gamma_{\mathcal{P}}(G)$ is called a $\gamma_{\mathcal{P}}(G)$ -set. If a property \mathcal{P} is nondegenerate, then every maximal independent set is a \mathcal{P} -set and thus $\gamma_{\mathcal{P}}(G)$ exists. Note that $\gamma_{\mathcal{I}}(G)$ and $\gamma_{\mathcal{I}}(G)$ are well known as the domination number $\gamma(G)$ and the total domination number $\gamma_t(G)$, respectively. The concept of domination with respect to any property \mathcal{P} was introduced by Goddard et al. [7] and has been studied, for example, in [15], [20], [21] and elsewhere.

For every graph G with at least one edge and every nondegenerate property \mathcal{P} , the plus bondage number with respect to the property \mathcal{P} , denoted $b^+_{\mathcal{P}}(G)$, is the cardinality of a smallest set of edges $U \subseteq E(G)$ such that $\gamma_{\mathcal{P}}(G-U) > \gamma_{\mathcal{P}}(G)$. This concept was introduced by the present author in [21]. Since $\gamma_{\mathcal{P}}(G - E(G)) = |V(G)| > \gamma_{\mathcal{P}}(G)$ for every graph G with at least one edge and every nondegenerate property \mathcal{P} , it follows that $b^+_{\mathcal{P}}(G)$ always exists.

For every graph G with $\Delta(G) \ge 2$ and for each property $\mathcal{P} \subseteq \mathcal{I}$, we define the domination (minus domination, plus domination, respectively) subdivision number with respect to the property \mathcal{P} , denoted $\mathrm{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$ ($\mathrm{sd}_{\gamma_{\mathcal{P}}}^{-}(G)$, $\mathrm{sd}_{\gamma_{\mathcal{P}}}^{+}(G)$) to be the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to change (decrease, increase, respectively) $\gamma_{\mathcal{P}}(G)$. The following special cases for $\mathrm{sd}_{\gamma_{\mathcal{P}}}^{+}(G)$ have been investigated up to now: (a) $\mathrm{sd}_{\gamma_{\mathcal{I}}}^{+}(G)$ —the domination subdivision number defined by Velammal [25] (note that $\mathrm{sd}_{\gamma_{\mathcal{I}}}^{+}(G)$ = $\mathrm{sd}_{\gamma_{\mathcal{I}}}^{+}(G)$), (b) $\mathrm{sd}_{\gamma_{\mathcal{I}}}^{+}(G)$ —the total domination subdivision number introduced by Haynes et al. in [8], (c) $\mathrm{sd}_{\gamma_{\mathcal{M}}}^{+}(G)$ —the paired domination subdivision number introduced by Favaron et al. in [5], and (d) $\mathrm{sd}_{\gamma_{\mathcal{C}}}^{+}(G)$ —the connected domination subdivision number introduced by Favaron et al. in [4].

The rest of the paper is organized as follows. In Section 2 we begin the investigation of $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$ in case when $\mathcal{P} \subseteq \mathcal{I}$ is induced-hereditary and closed under union with K_1 graph property. We show that $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$ is well defined whenever $\Delta(G) \ge 2$ and we present upper bounds for $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$ in terms of degrees. In Section 3 for graphs with nonnegative Euler characteristic we obtain tight upper bounds for $\xi(G)$ in terms of maximum degree. In Section 4 we find upper bounds in terms of orientable/nonorientable genus and maximum degree for $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$, $\operatorname{sd}_{\gamma_{\mathcal{T}}}^+(G)$, $b_R(G)$ and $b_{\mathcal{P}}^+(G)$.

2. Domination subdivision numbers

Note that each induced-hereditary and closed under union with K_1 property $\mathcal{P} \subseteq \mathcal{I}$ is, clearly, nondegenerate and hence $\gamma_{\mathcal{P}}(G)$ exists. For a graph G and a set $U \subseteq E(G)$, by S(G, U) we denote the graph obtained from G by subdividing all edges belonging to U.

Theorem 2.1. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. Let G be a graph which contains an edge uv such that $\deg(u) \ge 2$, $\deg(v) \ge 2$ and let $F \subseteq E(G)$ be the union of the set of all edges incident to v and the set of all edges joining u to a vertex in N(u) - N[v]. Then there is a set $U \subsetneq F$ with $\gamma_{\mathcal{H}}(S(G,U)) < \gamma_{\mathcal{H}}(S(G,F))$. In particular (Favaron et al. [3] when $\mathcal{H} = \mathcal{I}$), $\mathrm{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) \le \xi(uv) - 1$.

Proof. We denote shortly $G_1 = S(G, F)$. Let $N(v, G) = \{u = z_0, z_1, \ldots, z_p\}, p \ge 1$, and let $v_i \in V(G_1)$ be the subdivision vertex for $vz_i, i = 0, 1, \ldots, p$. Let $N(u, G) - N(v, G) = \{v = w_0, w_1, \ldots, w_q\}, q \ge 0, u_0 = v_0$ and if $q \ge 1$, then let $u_i \in V(G_1)$ be the subdivision vertex for $uw_i, i = 1, \ldots, q$. Among all $\gamma_{\mathcal{H}}(G_1)$ -sets let D_1 be the one which contains a minimum number of subdivision vertices. Denote by S the set of all subdivision vertices which belong to D_1 . First assume S is empty. Then $v \in D_1$. If $u \in D_1$, then $D_1 - \{v\}$ is a dominating \mathcal{H} -set of a graph G' obtained from G by subdividing all edges joining u to a vertex in N(u) - N[v] (it is possible that G' = G). If $u \notin D_1$, then there is $z_i \in D_1$ with $z_i u \in E(G)$. But then $D_1 - \{v\}$ is a dominating \mathcal{H} -set of G (\mathcal{H} is induced-hereditary). So, assume S is not empty.

Case 1: $S = \{v_0\}$. If $u, v \notin D_1$, then all neighbors of u and v in G, except for u and v, are in D_1 ; this implies $D_1 - \{v_0\}$ is a dominating \mathcal{H} -set of G. If exactly one of u and v is in D_1 , then $D_1 - \{v_0\}$ is a dominating \mathcal{H} -set of $S(G, F - \{uv\})$. There are no other possibilities because \mathcal{H} is induced-hereditary.

Case 2: $S = \{v_1\}$. If $z_1 \notin pn[v_1, D_1]$, then the set $D_2 = (D_1 - \{v_1\}) \cup \{v\}$ is a dominating \mathcal{H} -set of G_1 (\mathcal{H} is induced-hereditary and closed under union with K_1) of cardinality at most $\gamma_{\mathcal{H}}(G_1)$ and D_2 contains no subdivision vertices, a contradiction. If $v \in D_1$, then the set $D_3 = (D_1 - \{v_1\}) \cup \{z_1\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set without subdivision vertices, a contradiction. Since $v, v_0 \notin D_1$ it follows that $u \in D_1$ and if $p \ge 2$, then $z_2, \ldots, z_p \in D_1$. But then the set $(D_1 - \{v_1, u\}) \cup \{v\}$ is a dominating \mathcal{H} -set of a graph G_2 defined as follows: (a) $G_2 = G$ when p = 1, and (b) $G_2 = S(G, \{vz_2, \ldots, vz_p\})$ when $p \ge 2$.

Case 3: At least two subdivision vertices which are adjacent to v are in D_1 . Say, without loss of generality, $S_v = S \cap N(v, G_1) = \{v_r, v_{r+1}, \ldots, v_{r+s}\}, r \ge 0$, $s \ge 1$. Let $r \le i \le r + s$. Then $z_i \notin D_1$. Moreover, $z_i \notin pn[v_i, D_1]$ —otherwise the set $(D_1 - \{v_i\}) \cup \{z_i\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set with fewer subdivision vertices than D_1 , a contradiction. But then the set $(D_1 - S_v) \cup \{v\}$ is a dominating \mathcal{H} -set of a graph G_3 obtained from G_1 by deleting S_v and adding vz_r, \ldots, vz_{r+s} .

Case 4: $S = \{v_1, u_1\}$. Assume $v \in D_1$. This implies $z_1 \in pn[v_1, D_1]$ and then the set $(D_1 - \{v_1\}) \cup \{z_1\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set with fewer subdivision vertices than D_1 , a contradiction. Hence $v \notin D_1$. Now, assume $u \in D_1$. But then $w_1 \in pn[u_1, D_1]$, which leads to $(D_1 - \{u_1\}) \cup \{w_1\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set with fewer subdivision vertices than D_1 , a contradiction. Therefore there is no vertex in D_1 which dominates v_0 , a contradiction.

Case 5: $S = \{u_1\}$. If $u \in D_1$, then $w_1 \in pn[u_1, D_1]$, which leads to $D - \{u_1\}$ being a dominating \mathcal{H} -set of $S(G, F - \{uw_1\})$. So, let $u \notin D_1$. Hence $v \in D_1$. If $w_1 \notin pn[u_1, D_1]$, then $D_1 - \{u_1\}$ is a dominating \mathcal{H} -set of $S(G, F - \{uw_1, uv\})$. Assume $w_1 \in pn[u_1, D_1]$. If $u \notin pn[u_1, D_1]$, then $(D_1 - \{u_1\}) \cup \{w_1\}$ is a $\gamma_{\mathcal{H}}(G_1)$ set with fewer subdivision vertices than D_1 , a contradiction. If $u \in pn[u_1, D_1]$, then $(D_1 - \{u_1, v\}) \cup \{u\}$ is a dominating \mathcal{H} -set of a graph G_4 defined as follows: (a) $G_4 = G$ for q = 1, and (b) $G_4 = S(G, \{uw_2, \ldots, uw_q\})$ for $q \ge 2$.

Case 6: At least two subdivision vertices which are adjacent to u are in D_1 . Say, without loss of generality, $S_u = S \cap N(u, G_1) = \{u_r, u_{r+1}, \ldots, u_{r+s}\}$ where $0 \leq r$ and $s \geq 1$. Let $r \leq i \leq s+r$. Then $w_i \notin D_1$. If $w_i \in pn[u_i, D_1]$, then the set $(D_1 - \{u_i\}) \cup \{w_i\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set with fewer subdivision vertices than D_1 , a contradiction. Thus $w_i \notin pn[u_i, D_1]$, $i = r, \ldots, r+s$. If there is no $z_j \in D_1, j \geq 1$, with $z_j u \in E(G)$, then the set $(D_1 - S_u) \cup \{u\}$ is a dominating \mathcal{H} -set of a graph G_1 , a contradiction. If there is $z_j \in D_1, j \geq 1$ with $z_j u \in E(G)$, then $D_1 - S_u$ is a dominating \mathcal{H} -set of a graph G_5 obtained from G_1 by deleting S_u and adding uw_r, \ldots, uw_{r+s} .

Observation 2.2. Let \mathcal{H} be a nondegenerate graph property. If G is a graph with $\Delta(G) \ge 2$ and $\gamma_{\mathcal{H}}(G) = 1$, then $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) = sd_{\gamma_{\mathcal{H}}}^+(G) = 1$.

By Theorem 2.1 and Observation 2.2 it immediately follows that $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G)$ is welldefined for every graph G with $\Delta(G) \geq 2$ provided $\mathcal{H} \subseteq \mathcal{I}$ is an induced-hereditary and closed under union with K_1 graph property.

Observation 2.3. Let \mathcal{H} be a nondegenerate graph property. Then

- (i) $\gamma_{\mathcal{H}}(C_n) = \left\lceil \frac{1}{3}n \right\rceil$, where $n \ge 3$;
- (ii) $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(C_{3k}) = sd_{\gamma_{\mathcal{H}}}^{+}(C_{3k}) = 1$, $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(C_{3k+1}) = sd_{\gamma_{\mathcal{H}}}^{+}(C_{3k+1}) = 3$, and $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(C_{3k+2}) = sd_{\gamma_{\mathcal{H}}}^{+}(C_{3k+2}) = 2$, where $k \ge 1$.

By Observation 2.3(ii) it immediately follows that the bound stated in Theorem 2.1 is attainable when $G = C_{3k+1}, k \ge 1$.

Define $\mathbf{V}_{\mathcal{H}}^{-}(G) = \{v \in V(G): \gamma_{\mathcal{H}}(G-v) < \gamma_{\mathcal{H}}(G)\}$. The next results in this section show that the set $\mathbf{V}_{\mathcal{H}}^{-}(G)$ plays an important role in studying the subdivision numbers with respect to a graph property.

Observation 2.4. Let \mathcal{H} be a nondegenerate and closed under union with K_1 graph property. Let G be a graph.

- (i) [20] $\mathbf{V}_{\mathcal{H}}^{-}(G) = \{ v \in V(G) \colon \gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G) 1 \}.$
- (ii) If $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$, then $\gamma_{\mathcal{H}}(G') \leq \gamma_{\mathcal{H}}(G)$, where G' is a graph which results from subdividing at least one edge incident to v.

Proof. (ii) Let M be a $\gamma_{\mathcal{H}}(G-v)$ -set. Since $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$, M is not a dominating \mathcal{H} -set of G. Since \mathcal{H} is closed under union with $K_1, M \cup \{v\}$ is a dominating \mathcal{H} -set of both G' and G. Hence $M \cup \{v\}$ is a $\gamma_{\mathcal{H}}(G)$ -set and the result follows. \Box

In special cases where a graph has some structural property we can obtain better upper bounds for $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G)$ than that stated in Theorem 2.1.

Theorem 2.5. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. Let G be a graph, $v \in V(G)$, $\deg(v) \ge 2$ and let $F \subseteq E(G)$ consist of all edges incident to v. Then at least one of the following assertions holds:

- (i) there is $U \subseteq F$ with $\gamma_{\mathcal{H}}(G) \neq \gamma_{\mathcal{H}}(S(G,U))$ (in particular $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) \leq \operatorname{deg}(v)$);
- (ii) $v \in \mathbf{V}^{-}_{\mathcal{H}}(G);$
- (iii) there exist $u \in N(v,G) \cap \mathbf{V}_{\mathcal{H}}(G)$ and a $\gamma_{\mathcal{H}}(G)$ -set D_u such that $N(v,G) \subseteq D_u$, $v \notin D$ and $pn[u, D_u] = \{u\}$.

Proof. Denote shortly $G_1 = S(G, F)$. Assume (i) does not hold. Hence $\gamma_{\mathcal{H}}(G_1) = \gamma_{\mathcal{H}}(G)$. Among all $\gamma_{\mathcal{H}}(G_1)$ -sets let D be the one which contains a minimum number of subdivision vertices. Let all neighbors of v in G be w_1, \ldots, w_r and let $v_i \in V(G_1)$ be the subdivision vertex for vw_i , $i = 1, 2, \ldots, r$. Let S be the set of all subdivision vertices which belong to D and if S is not empty let $S = \{v_1, \ldots, v_k\}$. If S is empty, then $v \in D$ and $D - \{v\}$ is a dominating \mathcal{H} -set of G - v (\mathcal{H} is induced-hereditary). Hence $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G_1) = |D| \ge 1 + \gamma_{\mathcal{H}}(G - v)$ and by the definition of $\mathbf{V}_{\mathcal{H}}^-(G)$ it follows that (ii) holds. Now assume $k \ge 1$. We distinguish two cases according to k.

Case 1: k = 1. If $v \in D$, then since \mathcal{H} is induced-hereditary, $w_1 \in \operatorname{pn}[v_1, D]$. But then $D - \{v_1\}$ is a dominating \mathcal{H} -set of the graph G_2 obtained from G_1 by deleting v_1 and adding vw_1 , a contradiction. So $v \notin D$ which immediately implies $w_2, \ldots, w_r \in$ D. If $w_1 \in D$, then $D - \{v_1\}$ is a dominating \mathcal{H} -set of G_2 , a contradiction. If $w_1 \notin D$ and $w_1 \notin \operatorname{pn}[v_1, D]$, then $(D - \{v_1\}) \cup \{v\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set without subdivision vertices—a contradiction. So, let $w_1 \in \operatorname{pn}[v_1, D]$. But then $D_{w_1} = (D - \{v_1\}) \cup \{w_1\}$ is a $\gamma_{\mathcal{H}}(G)$ -set with $pn[w_1, D_{w_1}] = \{w_1\}$. This implies $w_1 \in \mathbf{V}_{\mathcal{H}}^-(G)$ and then (iii) holds (with $u \equiv w_1$).

Case 2: $k \ge 2$. By the choice of D it follows that $w_i \notin D$ for all $i = 1, \ldots, k$ (otherwise $D - \{v_i\}$ would be a dominating \mathcal{H} -set of G_1 , a contradiction). If $w_i \in$ $pn[v_i, D]$ for some $i \in \{1, \ldots, k\}$, then $(D - \{v_i\}) \cup \{w_i\}$ is a $\gamma_{\mathcal{H}}(G_1)$ -set with fewer subdivision vertices than D, a contradiction. Hence $w_i \notin pn[v_i, D]$ for all $i = 1, \ldots, k$. But then $(D - S) \cup \{v\}$ is a dominating \mathcal{H} -set of G_1 , a contradiction. \Box

The next two corollaries follow immediately from Theorem 2.5.

Corollary 2.6. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. Let G be a graph, $v \in V(G)$ and $\deg(v) \ge 2$. Then there is a subset U of the set of all edges incident to v with $\gamma_{\mathcal{H}}(G) \ne \gamma_{\mathcal{H}}(S(G,U))$ (in particular $\mathrm{sd}_{\gamma_{\mathcal{H}}}^{\ne}(G) \le \deg(v)$) provided one of the following holds:

(i) v and none of the isolated vertices of the graph ⟨N(v), G⟩ belong to V⁻_H(G);
(ii) v ∉ V⁻_H(G) and ⟨N(v), G⟩ ∉ H.

Corollary 2.7. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. If a graph G has $\Delta(G) \ge 2$ and $\mathbf{V}^-_{\mathcal{H}}(G) = \emptyset$, then $\mathrm{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) \le \min\{\mathrm{deg}(x): x \in V(G) \text{ and } \mathrm{deg}(x) \ge 2\}.$

Corollary 2.8. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. If a graph G has $\Delta(G) \ge 2$ and $\gamma_{\mathcal{H}}(G) < (|V(G)| + \Delta(G))/(\Delta(G) + 1)$, then $\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G) \le \min\{\operatorname{deg}(x): x \in V(G) \text{ and } \operatorname{deg}(x) \ge 2\}.$

Proof. Assume $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$. Then $|V(G)| \leq (\gamma_{\mathcal{H}}(G) - 1)(\Delta(G) + 1) + 1$, which implies $\gamma_{\mathcal{H}}(G) \geq (|V(G)| + \Delta(G))/(\Delta(G) + 1)$, a contradiction. The result now follows by Corollary 2.7.

Corollary 2.9. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. Let G be a graph and let $2 \leq \delta(G) \leq \Delta(G) < \operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G)$. Then $\mathbf{V}_{\mathcal{H}}^{-}(G)$ is a dominating set of G.

3. Upper bounds for $\xi(G)$

For 2-cell embeddings, we have the important result known as *generalized Euler's* formula.

Theorem 3.1 (Thomassen [24]). If G is 2-cell embedded on surface Σ having genus g or non-orientable genus \overline{g} and if the embedded G has |V(G)| = p vertices, |E(G)| = q edges and |F(G)| = f faces, then p - q + f = 2 - 2g or $p - q + f = 2 - \overline{g}$, respectively.

The following two results are of paramount importance when working with minimal embeddings. The former is due to J. W. T. Youngs [26] and the latter to Parsons, Pica, Pisanski and Ventre [18].

Theorem 3.2. Every minimal orientable embedding of a graph G is 2-cell.

Theorem 3.3. Every graph G has a minimal non-orientable embedding which is 2-cell.

The Euler characteristic of a surface is equal to |V(G)| + |F(G)| - |E(G)| for any graph G that is 2-cell embedded on that surface. The Euclidean plane, the projective plane, the torus, and the Klein bottle are all the surfaces of nonnegative Euler characteristic.

Let G be a graph 2-cell embedded on a surface S. For each edge $e = xy \in E(G)$ we define

$$D_e = D_{xy} = \frac{1}{d(x)} + \frac{1}{d(y)} + \frac{1}{r_e^1} + \frac{1}{r_e^2} - 1,$$

where r_e^1 is the number of edges on the boundary of a face on one side of e, and r_e^2 is the number of edges on the boundary of the face on the other side of e. In case when an edge e is on the boundary of exactly one face, say f, let $r_e^1 = r_e^2 = 2r_e$, where r_e is the number of edges on the boundary of f. We observe that $\sum_{e \in E(G)} (1/d(x) + 1/d(y)) = 1$

|V(G)| and $\sum\limits_{e\in E(G)}(1/r_e^1+1/r_e^2)=|F(G)|,$ and therefore

(3.1)
$$\sum_{e \in E(G)} D_e = |V(G)| + |F(G)| - |E(G)|.$$

Theorem 3.4. Let G be a connected graph and let at least one of g(G) = 0 and $\overline{g}(G) = 1$ hold. Then $\xi(G) \leq \Delta(G) + 3$. Moreover, $\xi(G) \leq \Delta(G) + 2$ provided one of the following assertions holds:

- (P₁) $\Delta(G) \notin \{3, 4, 5, 6, 7\};$
- (P₂) $\Delta(G) \in \{6,7\}$ and every edge $e = xy \in E(G)$ with d(x) = 5 and $d(y) = \Delta(G)$ is contained in at most one triangle.

Proof. Suppose G is 2-cell embedded on at least one of S_0 and N_1 . Let $e = xy \in E(G), d(x) \leq d(y)$ and $r_e^1 \leq r_e^2$.

 $\begin{array}{l} Case \ 1: \ \mathrm{One} \ \mathrm{of} \ (\mathrm{P}_1) \ \mathrm{and} \ (\mathrm{P}_2) \ \mathrm{holds.} \ \mathrm{Assume to the \ contrary \ that} \ \xi(G) \geqslant \Delta(G) + 3. \\ \mathrm{Hence} \ \Delta(G) \geqslant 6. \ \ \mathrm{If} \ d(x) \leqslant 3, \ \mathrm{then} \ d(x) = 3, \ d(y) = \Delta(G) \ \mathrm{and} \ r_e^1 \geqslant 4; \ \mathrm{hence} \ D_e \leqslant \frac{1}{3} + \frac{1}{\Delta(G)} + \frac{1}{4} + \frac{1}{4} - 1 \leqslant 0. \ \ \mathrm{If} \ d(x) = 4, \ \mathrm{then} \ d(y) \geqslant \Delta(G) - 1 + |N(x) \cap N(y)|, \ \mathrm{which} \ \mathrm{implies \ either} \ r_e^1 \geqslant 4 \ \mathrm{and} \ d(y) \in \{\Delta(G) - 1, \Delta(G)\} \ \mathrm{or} \ r_e^1 = 3, r_e^2 \geqslant 4 \ \mathrm{and} \ d(y) = \Delta(G); \ \mathrm{hence} \ \mathrm{either} \ D_e \leqslant \frac{1}{4} + \frac{1}{\Delta(G) - 1} + \frac{1}{4} + \frac{1}{4} - 1 < 0 \ \mathrm{or} \ D_e \leqslant \frac{1}{4} + \frac{1}{\Delta(G)} + \frac{1}{3} + \frac{1}{4} - 1 \leqslant 0. \end{array}$

Let d(x) = 5. Then $d(y) \ge \Delta(G) - 2 + |N(x) \cap N(y)|$, which leads to $5 \le d(y) \in \{\Delta(G) - 2, \Delta(G) - 1, \Delta(G)\}$. If $d(y) = \Delta(G) - 2$, then $r_e^1 \ge 4$; hence $D_e \le \frac{1}{5} + \frac{1}{\Delta(G) - 2} + \frac{1}{4} + \frac{1}{4} - 1 < 0$. If $d(y) = \Delta(G) - 1$, then $r_e^2 \ge 4$; hence $D_e \le \frac{1}{5} + \frac{1}{\Delta(G) - 1} + \frac{1}{3} + \frac{1}{4} - 1 < 0$. If $d(y) = \Delta(G)$, then (a) $D_e \le \frac{1}{5} + \frac{1}{\Delta(G)} + \frac{1}{3} + \frac{1}{3} - 1 < 0$ when $\Delta(G) \ge 8$, and (b) $D_e \le \frac{1}{5} + \frac{1}{6} + \frac{1}{3} + \frac{1}{4} - 1 < 0$ when $\Delta(G) \in \{6, 7\}$.

Finally, if $d(x) \ge 6$, then $D_e \le \frac{1}{6} + \frac{1}{6} + \frac{1}{3} + \frac{1}{3} - 1 = 0$.

Therefore $1 \leq |V(G)| + |F(G)| - |E(G)| = \sum_{e \in E(G)} D_e \leq 0$, a contradiction.

Case 2: $\Delta(G) \in \{6,7\}$ and there is an edge $e = xy \in E(G)$ with d(x) = 5 and $d(y) = \Delta(G)$ which belongs to at least 2 triangles. Clearly $\xi(e) \leq \Delta(G) + 3$.

Case 3: $\Delta(G) = 5$. Assume to the contrary that $\xi(G) \ge \Delta(G) + 4$. Then one of the following conditions holds: (a) d(x) = 4, d(y) = 5 and $r_e^1 \ge 4$, (b) d(x) = d(y) = 5 and $r_e^2 \ge 4$. Hence $D_e < 0$ and we obtain a contradiction as in Case 1.

Case 4: $\Delta(G) = 4$. Assume G is regular. Then G contains a triangle-otherwise $D_e \leq 0$ for each edge $e \in E(G)$, a contradiction.

Case 5: $\Delta(G) \leq 3$. Obviously $\xi(G) \leq \Delta(G) + 3$.

The equality $\xi(G) = \Delta(G) + 3$ holds at least for triangle-free cubic planar (projective) graphs. For example, such graphs are: (a) a prism graph CL_n , $n \ge 4$, which is a graph corresponding to the skeleton of an *n*-prism, and (b) the Petersen graph which is nonplanar and can be embedded without crossings in the projective plane.

Theorem 3.5. Let G be a connected graph and let at least one of the identities g(G) = 1 and $\overline{g}(G) = 2$ hold. Then $\xi(G) \leq \Delta(G) + 4$ with equality if and only if one of the following conditions is valid:

 (P_3) G is 4-regular without triangles;

 (P_4) G is 6-regular and no edge of G belongs to at least 3 triangles.

Proof. Suppose G is 2-cell embedded on at least one of S_1 and N_2 . Let $e = xy \in E(G), d(x) \leq d(y)$ and $r_e^1 \leq r_e^2$.

Assume that $\xi(G) \ge \Delta(G) + 4$. Hence $\delta(G) \ge 4$. First let d(x) = 4. Then $d(y) = \Delta(G)$ and $r_e^1 \ge 4$, which leads to $D_e \le \frac{1}{4} + \frac{1}{\Delta(G)} + \frac{1}{4} + \frac{1}{4} - 1 \le 0$ with equality when $d(x) = d(y) = \Delta(G) = 4$ and $r_e^1 = r_e^2 = 4$. If d(x) = 5, then either $d(y) = \Delta(G)$ and $r_e^2 \ge 4$, or $d(y) = \Delta(G) - 1$ and $r_e^1 \ge 4$; hence either $D_e \le \frac{1}{5} + \frac{1}{\Delta(G)} + \frac{1}{3} + \frac{1}{4} - 1 < 0$ or $D_e \le \frac{1}{5} + \frac{1}{\Delta(G) - 1} + \frac{1}{4} + \frac{1}{4} - 1 < 0$. Now, let d(x) = 6. Then either $d(y) = \Delta(G)$

and $r_e^1 \ge 3$, $r_e^2 \ge 3$ or $d(y) = \Delta(G) - 1$, $r_e^1 \ge 3$ and $r_e^2 \ge 4$ or $d(y) = \Delta(G) - 2$ and $r_e^1 \ge 4$. Hence either $D_e \le \frac{1}{6} + \frac{1}{\Delta(G)} + \frac{1}{3} + \frac{1}{3} - 1 \le 0$ with equality when $d(x) = d(y) = \Delta(G) = 6$ and $r_e^1 = r_e^2 = 3$, or $D_e \le \frac{1}{6} + \frac{1}{\Delta(G) - 1} + \frac{1}{3} + \frac{1}{4} - 1 < 0$ or $D_e \le \frac{1}{6} + \frac{1}{\Delta(G) - 2} + \frac{1}{4} + \frac{1}{4} - 1 < 0$, respectively. Finally, if $d(x) \ge 7$, then $D_e \le \frac{1}{7} + \frac{1}{7} + \frac{1}{3} + \frac{1}{3} - 1 < 0$.

Therefore $0 = |V(G)| + |F(G)| - |E(G)| = \sum_{e \in E(G)} D_e \leq 0$ with equality if and only

if one of the following conditions is valid:

- (a) G is 4-regular and $r_e^1 = r_e^2 = 4$ for each $e \in E(G)$;
- (b) G is 6-regular and $r_e^1 = r_e^2 = 3$ for each $e \in E(G)$.
- Thus $\xi(G) = \Delta(G) + 4$ and one of (P₃) and (P₄) holds.

It remains to note that (i) if (P₃) holds, then clearly $\xi(G) = \Delta(G) + 4$, and (ii) if G is 6-regular, then Theorem 3.1 implies $r_e^1 = r_e^2 = 3$ for each edge $e \in E(G)$; therefore $\xi(G) = \Delta(G) + 4$ when (P₄) is satisfied.

It follows from Theorem 3.1 that a 4-regular graph without triangles has a quadrilateral embedding. A classification of 4-regular graphs with quadrilateral embedding on the torus and the Klein bottle was given by Altshuler [1] and Nakamoto and Negami [16], respectively. Theorem 3.1 also implies that a graph with minimum degree 6 embedded in the torus or the Klein bottle is a 6-regular triangulation. Altshuler [1] found a characterization of 6-regular toroidal maps and Negami [17] characterized 6-regular graphs which embed in the Klein bottle.

4. Upper bounds for the domination subdivision AND BONDAGE NUMBERS

We will need the following results.

Theorem 4.1 (Haynes et al. [9]). For any connected graph G with adjacent vertices u and v, each of them of degree at least two, we have $\operatorname{sd}^+_{\gamma\tau}(G) \leq \xi(uv) - 1$.

Theorem 4.2 (Samodivkin [21]). Let \mathcal{H} be a nondegenerate and inducedhereditary graph property. For any connected graph G with adjacent vertices u and $v, b^+_{\mathcal{H}}(G) \leq \xi(uv) - 1$.

Theorem 4.3 (Jafari Rad and Volkmann [11]). Let G be a graph and $xy, yz \in E(G)$. Then $b_R(G) \leq \xi(xy) + d(z) - 3$. If $xz \in E(G)$, then $b_R(G) \leq \xi(xy) + d(z) - 4$.

If $\xi(xy) = \xi(G)$, then by Theorem 4.3 we obtain the next result immediately.

Corollary 4.4. Let G be a connected graph of order at least 3. Then $b_R(G) \leq \xi(G) + \Delta(G) - 3$. If every edge of G lies in a triangle, then $b_R(G) \leq \xi(G) + \Delta(G) - 4$.

First we concentrate on graphs with nonnegative Euler characteristic. Combining Theorem 3.4 and Theorem 3.5 with Theorem 2.1 and Theorem 4.1 yields:

Theorem 4.5. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property and let G be a connected graph with $\delta(G) \ge 2$. Let at least one of the equalities g(G) = i and $\overline{g}(G) = 1 + i$ be valid for some $i \in \{0, 1\}$. Then $\max\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\} \le \Delta(G) + 2 + i$. Moreover: (a) $\max\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\} \le \Delta(G) + 1$ provided i = 0 and one of (P₁) and (P₂) holds, and (b) $\max\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G)\}$, $\operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\} \le \Delta(G) + 2$ provided i = 1 and neither (P₃) nor (P₄) holds.

Combining Theorem 3.4 and Theorem 3.5 with Theorem 4.2 we obtain

Theorem 4.6. Let \mathcal{H} be a nondegenerate and induced-hereditary graph property. Let G be a nontrivial connected graph and let at least one of the equalities g(G) = iand $\overline{g}(G) = 1 + i$ be valid for some $i \in \{0,1\}$. Then $b^+_{\mathcal{H}}(G) \leq \Delta(G) + 2 + i$. Moreover: (a) $b^+_{\mathcal{H}}(G) \leq \Delta(G) + 1$ provided i = 0 and one of (P₁) and (P₂) holds, and (b) $b^+_{\mathcal{H}}(G) \leq \Delta(G) + 2$ provided i = 1 and neither (P₃) nor (P₄) holds.

The inequality $b_{\mathcal{H}}^+(G) \leq \Delta(G) + 2 + i$ stated in Theorem 4.6 was proven by (a) Kang and Yuan [14] for g(G) = 0 and $\mathcal{H} = \mathcal{I}$, (b) Samodivkin [21] when g(G) = 0and \mathcal{H} is additive and induced-hereditary, (c) Carlson and Develin [2] for g(G) = 1and $\mathcal{H} = \mathcal{I}$, and (d) Gagarin and Zverovich [6] for $g(G) \in \{0,1\}, \overline{g}(G) \in \{1,2\}$ and $\mathcal{H} = \mathcal{I}$.

As we already know a 6-regular graph embedded in the torus or the Klein bottle is a triangulation. Combining Theorem 3.4 and Theorem 3.5 with Corollary 4.4 we obtain the following result.

Theorem 4.7. Let G be a connected graph of order at least 3 and let at least one of the equalities g(G) = i and $\overline{g}(G) = 1 + i$ be valid for some $i \in \{0, 1\}$. Then (Jafari Rad and Volkmann [12] when g(G) = 0) $b_R(G) \leq 2\Delta(G) + i$. Moreover:

(a) $b_R(G) \leq 2\Delta(G) - 1$ provided i = 0 and one of (P₁) and (P₂) holds, and

(b) $b_R(G) \leq 2\Delta(G)$ provided i = 1 and (P₃) does not hold.

Next we find upper bounds in terms of orientable/non-orientable genus for $\operatorname{sd}_{\gamma_{\mathcal{P}}}^{\neq}(G)$, $\operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)$, $b_{R}(G)$ and $b_{\mathcal{P}}^{+}(G)$. We need the following notation and results.

$$h_{3}(x) = \begin{cases} 2x+13 & \text{for } 0 \leq x \leq 3, \\ 4x+7 & \text{for } x \geq 3, \end{cases} \qquad h_{4}(x) = \begin{cases} 8 & \text{for } x = 0, \\ 4x+5 & \text{for } x \geq 1, \\ 4x+5 & \text{for } x \geq 1, \end{cases}$$
$$k_{3}(x) = \begin{cases} 2x+11 & \text{for } 1 \leq x \leq 2, \\ 2x+9 & \text{for } 3 \leq x \leq 5, \\ 2x+7 & \text{for } x \geq 6, \end{cases} \qquad \text{and} \quad k_{4}(x) = \begin{cases} 8 & \text{for } x = 1, \\ 2x+5 & \text{for } x \geq 2. \end{cases}$$

Theorem 4.8 (Ivančo [10]). If G is a connected graph of orientable genus g and minimum degree at least 3, then G contains an edge e = xy such that $\deg(x) + \deg(y) \leq h_3(g)$. Furthermore, if G does not contain 3-cycles, then $\deg(x) + \deg(y) \leq h_4(g)$. Moreover, all bounds are the best possible.

Theorem 4.9 (Jendrol' and Tuhársky [13]). If G is a connected graph of minimum degree at least 3 on a nonorientable surface of genus $\overline{g} \ge 1$, then G contains an edge e = xy such that $\deg(x) + \deg(y) \le k_3(\overline{g})$. Furthermore, if G does not contain 3-cycles, then $\deg(x) + \deg(y) \le k_4(\overline{g})$. Moreover, all bounds are the best possible.

The next theorem follows by combining Theorem 2.1 and Theorem 4.1 with Theorem 4.8 and Theorem 4.9.

Theorem 4.10. Let \mathcal{H} be an induced-hereditary and closed under union with K_1 graph property. For a connected graph G of orientable genus g, non-orientable genus \overline{g} and minimum degree at least 3, we have $\max\{\operatorname{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \operatorname{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\} \leq \min\{h_3(g), k_3(\overline{g})\} - 1$. Furthermore, if G does not contain 3-cycles, then

$$\max\{\mathrm{sd}_{\gamma_{\mathcal{H}}}^{\neq}(G), \mathrm{sd}_{\gamma_{\mathcal{T}}}^{+}(G)\} \leqslant \min\{h_{4}(g), k_{4}(\overline{g})\} - 1.$$

Corollary 4.4, Theorem 4.8 and Theorem 4.9 together lead to

Theorem 4.11. Let G be a connected graph of minimum degree at least 3, orientable genus g and non-orientable genus \overline{g} . Then $b_R(G) \leq \min\{h_3(g), k_3(\overline{g})\} + \Delta(G) - 3$. If every edge of G lies in a triangle, then $b_R(G) \leq \min\{h_3(g), k_3(\overline{g})\} + \Delta(G) - 4$. If G does not contain triangles, then $b_R(G) \leq \min\{h_4(g), k_4(\overline{g})\} + \Delta(G) - 3$.

Gagarin and Zverovich [6] have recently proposed the following conjecture.

Let

Conjecture 4.12. For a connected graph G of orientable genus g and nonorientable genus \overline{g} we have, $b(G) \leq \min\{c_g, c'_{\overline{g}}\}$, where c_g and $c_{\overline{g}}$ are constants depending, respectively, on the orientable and non-orientable genera of G.

In this connection, combining Theorem 4.2 with Theorem 4.8 and Theorem 4.9 we have the following result.

Theorem 4.13. Let \mathcal{H} be a nondegenerate and induced-hereditary graph property. For a nontrivial connected graph G of orientable genus g, non-orientable genus \overline{g} and minimum degree at least 3 we have $b^+_{\mathcal{H}}(G) \leq \min\{h_3(g), k_3(\overline{g})\} - 1$. Furthermore, if G does not contain 3-cycles, then $b^+_{\mathcal{H}}(G) \leq \min\{h_4(g), k_4(\overline{g})\} - 1$.

The next conjecture in the case provided $\mathcal{P} = \mathcal{I}$ is the main outstanding conjecture on ordinary bondage number.

Conjecture 4.14 (Teschner [23] when $\mathcal{P} = \mathcal{I}$). Let \mathcal{P} be a nondegenerate and induced-hereditary graph property. Then for any graph G, $b^+_{\mathcal{P}}(G) \leq 1.5\Delta(G)$.

Theorem 4.13 gives particular support for this conjecture. Namely, Conjecture 4.14 is true when $\min\{h_3(g), k_3(\overline{g})\} - 1 \leq 1.5\Delta(G)$ and $\delta(G) \geq 3$.

Acknowledgement. The author thanks the anonymous referee for carefully reading the manuscript and making suggestions that improved the content and presentation of the paper.

References

[1]	A. Altshuler: Construction and enumeration of regular maps on the torus. Discrete Math.	
	4 (1973), 201–217.	zbl MR
[2]	K. Carlson, M. Develin: On the bondage number of planar and directed graphs. Discrete	

- Math. 306 (2006), 820–826. [2] O. Evenence, T. W. Jackson, C. T. Hedetwieren Dereinstien sub division numbers in graphs
- [3] O. Favaron, T. W. Haynes, S. T. Hedetniemi: Domination subdivision numbers in graphs. Util. Math. 66 (2004), 195–209.
 Zbl MR
- [4] O. Favaron, H. Karami, S. M. Sheikholeslami: Connected domination subdivision numbers of graphs. Util. Math. 77 (2008), 101–111.
- [5] O. Favaron, H. Karami, S. M. Sheikholeslami: Paired-domination subdivision numbers of graphs. Graphs Comb. 25 (2009), 503–512.
- [6] A. Gagarin, V. Zverovich: Upper bounds for the bondage number of graphs on topological surfaces. Discrete Math. (2011), 10.1016/j.disc 2011.10.018.
- [7] W. Goddard, T. Haynes, D. Knisley: Hereditary domination and independence parameters. Discuss. Math., Graph Theory. 24 (2004), 239–248.
- [8] T. W. Haynes, S. T. Hedetniemi, L. C. van der Merwe: Total domination subdivision numbers. J. Comb. Math. Comb. Comput. 44 (2003), 115–128.
- [9] T. W. Haynes, M. A. Henning, L. S. Hopkins: Total domination subdivision numbers of graphs. Discuss. Math., Graph Theory 24 (2004), 457–467.

[10]	J. Ivančo: The weight of a graph. Combinatorics, Graphs and Complexity, Proc. 4th	
	Czech. Symp., Prachatice/Czech. 1990, Ann. Discrete Math. vol. 51, 1992, pp. 113–116.	$\mathrm{zbl}\ \mathrm{MR}$
[11]	N. Jafari Rad, L. Volkmann: Roman bondage in graphs. Discuss. Math., Graph Theory	
	31 (2011), 753-761.	$_{\rm zbl}$ $_{\rm MR}$
[12]	N. Jafari Rad, L. Volkmann: On the Roman bondage number of planar graphs. Graphs	
	Comb. 27 (2011), 531–538.	$\mathrm{zbl}\ \mathrm{MR}$
[13]	S. Jendrol', M. Tuhársky: A Kotzig type theorem for non-orientable surfaces. Math. Slo-	
	vaca 56 (2006), 245–253.	$\mathrm{zbl}\ \mathrm{MR}$
[14]	L. Kang, J. Yuan: Bondage number of planar graphs. Discrete Math. 222 (2000),	
	191–198.	$\mathrm{zbl}\ \mathrm{MR}$
[15]	D. Michalak: Domination, independence and irredundance with respect to additive in-	
		$\mathrm{zbl}\ \mathrm{MR}$
[16]		
		MR
[17]	S. Negami: Classification of 6-regular Klein-bottlal graphs. Res. Rep. Inf. Sci. T.I.T.	
[+ 0]	A-96 (1984).	
[18]	T. D. Parsons, G. Pica, T. Pisanski, A. G. S. Ventre: Orientably simple graphs. Math.	1.1.0.000
[10]		zbl MR
[19]	C. S. ReVelle, K. E. Rosing: Defendens imperium romanum: A classical problem in mil-	1.1.0.000
[00]		$\mathrm{zbl}\ \mathrm{MR}$
[20]	V. Samodivkin: Domination with respect to nondegenerate and hereditary properties.	
[91]		$\mathrm{zbl}\ \mathbf{MR}$
[21]	V. Samodivkin: Domination with respect to nondegenerate properties: bondage number. Australas. J. Comb. 45 (2009), 217–226.	$\mathrm{zbl}\ \mathbf{MR}$
[99]	<i>I. Stewart</i> : Defend the Roman Empire. Sci. Amer. 281 (1999), 136–139.	
	U. Teschner: A new upper bound for the bondage number of graphs with small domi-	
[20]		$\mathrm{zbl}\ \mathbf{MR}$
[24]	C. Thomassen: The Jordan-Schönflies theorem and the classification of surfaces. Am.	
[= 1]		MR zbl
[25]		
[-9]	lated Topics. Ph.D. Thesis, 1997.	
[26]	J. W. T. Youngs: Minimal imbeddings and the genus of a graph. J. Math. Mech. 12	
r .1	(1963), 303–315 (In English. Russian original.); translation from Kibernet. Sb., N.	
		$\mathrm{zbl}\ \mathrm{MR}$

Author's address: Vladimir Samodivkin, UACEG, Bulgaria, Sofia, "Hristo Smirnenski" 1, Postal Code: 1146, e-mail: vlsam_fte@uacg.bg.