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Abstract: The functional structure of our new network is not přeset; instead, it
comes into existence in a random, stochastic manner.

The anatomical structure of our model consists of two input “neurons”, hun-
dreds up to five thousands of hidden-layer “neurons” and one output “neuron”.

The proper process is based on iteration, i.e., mathematical operation governed
by a set of rules, in which repetition helps to approximate the desired result.

Each iteration begins with data being introduced into the input layer to be
processed in accordance with a particular algorithm in the hidden layer; it then
continues with the computation of certain as yet very crude configurations of images
regulated by a genetic code, and ends up with the selection of 10% of the most
accomplished “oífspring”. The next iteration begins with the application of these
new, most successful variants of the results, i.é., descendants in the continued
process of image perfection. The ever new variants (descendants) of the genetic
algorithm are always generated randomly. The determinist rule then only requires
the choice of 10% of all the variants available (in our čase 20 optimal variants out
of 200).

The stochastic model is marked by a number of characteristics, e.g., the initial
conditions are determined by different data dispersion variance, the evolution of
the network organisation is controlled by genetic rules of a purely stochastic nátuře;
Gaussian distribution noise proved to be the best “organiser”.

Another analogy between artificial networks and neuronal structures lies in the
use of time in network algorithms.

For that reason, we gave our networks organisation a kind of temporal develop-
ment, i.e., rather than being instantaneous; the connection between the artificial
elements and neurons consumes certain units of time per one synapse or, better to
say, per one contact between the preceding and subsequent neurons.
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The latency of neurons, natural and artificial alike, is very importaiit as it
enables feedback action.

Our network becomes organised under the effect of considerable noise. Then,
however, the amount of noise must subside. However, if the network evolution gets
štuek in the local minimum, the amount of noise has to be inereased again. While
this will make the network organisation waver, it will also inerease the likelihood
that the erisis in the local minimum will abate and improve substantially the statě
of the network in its self-organisation.

Our systém allows for constant state-of-the-network reading by ineaiis of es-

tablishing the network energy level, i.e., basically ascertaining progression of the
network’s rate of success in self-organisation. This is the principál parameter for
the detection of any jam in the local minimum. It is a piece of input information
for the formator algorithm which regulates the level of noise in the systém.
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1. Introduction

Our study has a duál purpose, a) to project a new efficient network of artificial
neurons, the activities of which would be more like natural brain structures and b)
to design a practically functioning model such as would serve as a reliable analyser
and classifier of States, curves, patterns and the like. In the future we should like
to go as far as modelling dynamic changes in neuronal networks such as oceur in
sleep, or as far as simulating higher nervous structures and functions, e.g., columns
or hypercolumns as we already once did using the Simula language (Faber and
Weinberger [11]).

We chose to innovate the neuronal networks by means of structural changes
and new algorithms of learning and also by introducing a “finite” speed of impulse
propagation including latency on artificial “neurons”.

The functional structure of our new network is not přeset; instead, it comes into
existence in a random, stochastic manner. We were inspired by neurophysiological
knowledge and mathematical models, mainly by Farley and Clark systém [17].

Lion and Winter [23] and Saunders [27] ušed physical and mathematical mod¬
elling to show that the basic EEG alpha rhythm is very much like noise of the
Gaussian distribution. Neuronal impulses or unit potentials studies in an inter¬
val histogram exhibit “noise-like” distribution even as early as the prenatal pe¬
riod. Crepel [4] demonstrated a Gamma III (according to Pearson) distribution of
Purkinje cells even in adult rats. Bergstróm [3] found the interval histogram dis¬
tribution dependent on age with the Poisson distribution slowly changing into the
Gaussian variety and with the dispersion of interval around the mean value deereas-
ing. The author concluded that the entropy of the unit potentials activity grows
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less in inverse proportion to age. Also very much like the Poisson distribution is
the activity of impulses in the limbic cortex of rabbits from neonates up to three
months of age - at rest and in response to sensory stimulation (Nikitina [25]). As
for the cortical structure, we drew inspiration from anatomical neurophysiological
discoveries inade by several authors (Eccles [6], Verzeano [28], Kandel [21], Jones
[19]) as well as from mathematical models, in particular, from the self-organising
systém devised by Farley and Clark [17].

Humans, too, were found to háve a complex firing of neurons in what is a mix of
reactive response in psychotests and spontaneous noise, i.e., ‘‘random firing”. These
phenomena were described by Halgren et al. [18] in neurons of the hippocampus
and amygdala, and by Creutzfeldt et al. [5] in neurons of the temporal neocorťex.

2. Definition of the Farley and Clark systém
The formator or modifier is a smáli area of active elements (here neurons) capable of
programme-controlling a vast remote area of again active elements (here neurons)
in the complex. The formator sends out directions to the complex as to how,
what and when to deal with and sets thresholds of excitability for the elements of
the complex, sometimes supplying also “constructive noise” to the complex (see
hereafter). The complex then deals with the assigned tasks making use of the
data present in it partly genetically, partly as received from the sensory organs.
It is as if the complex comprised two kinds of data: facts designed to be solved
or considered, as well as instructions on when and how to handle the data, i.e.,
algorithms. In a way, this process is reminiscent of working on mathematical
problems. For instance, Pythagoras’s theorem c^ = a^ + b^ can be treated in
different ways, using an equation we háve written about here, or geometrically, or

empirically or as Thales’s theorem (all triangles constructed over the diameter of a
circle are right-angled) and so on. Hence, we cannot simply say that the formator
will provide the algorithm for the solution (it is not fit to perform this function)
while the complex provides the specific data (a, b, c sides and their values). What
the formator is more likely able to supply is a design for the method of approach as
mentioned above. The mathematical, geometrical solution, etc. and sophisticated
implementation will be doně by the cortex. This is quite obvious in the mode
of thinking, especially programmistic thinking: one and the same stimulus, e.g.

hearing water running during wakefulness, will provoke the right kind of perception
and reaction; in the course of synchronous sleep, it may provoke a reflex dream of
a river, while in paradoxical sleep the same stimulus will provoke, say, a dream of
voyage on rough seas with feelings of fear.

In generál, we can conceive the Farley and Clark systém as applied in widely
different systems, specialties, fields. In Chemical processes, the function of the
formator is performed by the catalyzer; in biochemistry - by enzymatic proteins;
in endocrinology - by the tiny pituitary gland controlling a vast systém of endocrine
glands and metabolism of all tissues; in meteorology these may be eruptions in the
remote Sun which we ourselves can hardly perceive, in sociology it is the government
and State institutions that control a large population of the nation, and so on. The
influence of the formator, e.g. government, must be appropriate, it must be neither
imperative, dictatorial, nor too free such as would lead to anarchy.
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The mathematical model of the formator and the complex and its computerisa-
tion were developed in the 1960s. Farley and Clark [17] designed a self-organizing
cybernetic systém capable of controlling and repairing itself on the basis of recog-
nition of its own reactivity errors. The more recent artificial networks such as
the neuronal systems Adaline or Madeline (Beneš [1], Nicolis et al. [24], Novák
et al. [26]) and Selfridge’s pandemonium were constructed along similar Unes
and, in addition, they already had a multilayer cortex-like structure. The Farley
and Clark model has four parts; generátor of signals, complex, discrimination or

analytical unit, and formator or modifier. The signál generátor sends impulses into
the complex which is divided into four quadrants: two input ones - 01 and 02 and
two output quadrants - 0+ and 0 — . All four units of the complex comprising 128
independent elements are randomly interconnected as are the 128 elements, also
interconnected according to random numbers (Fig. 1).

The signál generátor sends its signals alternately to the 0+ or 02 quadrants
of the complex; these impulses are freely dispersed throughout the complex. The
purpose of learning is that the “stimulation” of 01 should activate solely the 0+
and not the 0- quadrant. Similarly, excitation of the 02 should activate solely the
0-quadrant. The complex with the signál generátor alone would háve learned this
over a very long time; however, the whole process of learning is greatly accelerated
by the other two elements - the discrimination unit along with the formator. The
discrimination unit monitors the statě values of the complex and supplies Informa¬
tion about them to the formator and to the signál generátor. Apart from sending
Gaussian noise to the complex, the formator sets the input and output thresholds
of the elements of the complex. With the assistance of the last two members of
the whole systém, learning proceeds very fast and the systém can soon learn the
responses 01—or 02^0-. Nicolis et al. [24] ušed not only Gaussian but also
“jitter” noise which, however, not only blocked the process of learning but also dis-
rupted the whole systém organisationally; this systém failed to converge to stability
with higher-level organization.

These models inspired us to advance analogies with the nervous systém. The
complex resembles a poorly organized neonatal cortex which is only partially pre-
formed genetically. The signál generátor is nearly identical with the rhythmic
thalamic generators which supply not only sensory Information from external and
internal environments but also send to the complex regular impulses very much like
clock impulses in a microprocessor. The discrimination unit performs very much
the’ same function as the limbic systém which also detects endogénous statě values
of the organism and the brain, and which takés a share in rnotivational behaviour.
And last, the most interesting part of the systém, the formator is analogical to
the brain-stem centers (Faber [7], [12], [14], Faber and Vladyka [9], [10]). Most
of these centers are ready-made thanks to the genetic pian well before birth; they
háve a significant role to play in the maturation of the suprabulbar and cortical
structures. E.g., the nuclei for paradoxical sleep, locus caeruleus or nucleus gi-
gantocellularis, send out massive salvoes influencing limbic as well as neocortical
structures already in the prenatal period, and, in a cyclic way, during the episodes
of paradoxical sleep. Jouvet [20] specifically refers to genetic brain programming
(Fig. 2).
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Fig. 1 The self-onjanising systém designed and developed by Farley and Clark con-
sists of four main parts: complex of elements cornparable with the cortex. The con-
nection of the elements and the input thresholds of the elements are at first designed
at random. The generátor of signals sends alteimately impulses into the 01 or 02
parts of the complex; it is analogical to the thalamus which, together with the cortex,
constitutes the thalamocortical reverberation systém. In keeping with the statě quan-
tities detected, the signál generátor is controlled by the discrimination unit. This
unit is reminiscent of the limbic systém which, too, detects the “statě values”, i.e.,
the equilibrium and “composure” of the out body and mind, and “motivates” our be-
haviour by the results detected. The fourth member of the systém, the formator, sets
the thresholds of the complex elements excitability and sends Gaussian noise into
the complex. The formator’s activity is analogical to that of the brain-stem nuclei
which, too, set the thresholds of the cortical neurons ’ excitability, thus switching the
States of the cortext, e.g., from wakefulness to sleep, etc. The formator and complex
coordination gives rise to an anatomico-physiological unit of crucial importance -

FC (symbolically Farley and Clark or “faber componens” - the architect setting up
the systém).

3. Our model proper

The anatomical structure of our model consists of two input “neurons”, himdreds
up to five thousands of hidden-layer “neurons” and one output “neuron”. (Fig. 3)
The number of input and output “neurons” is low rather from didactic reasons
because very low numbers facilitate two-dimensional visualisation. Moreover, not
even a single output “neuron” could be seen as too little if it were able to cope
with a situation as complex as the decision-making process, for instance, whether
a freshly analysed EEG curve without typical epileptic graphoelements came from

237



Neural Network World 3—4/04, 233—246

Fig. 2 Brain-stem nuclei of non-specific afferentation influence in a crucial way
cortical activity already before birth, simply on the basis of the genetic pian, thus
giving rise to States, programmes of the Ist order: vigilance, NONREM and REM
sleep, as early as two months before the child is bom. These are States of con-
sciousness. In the postnatal period, these genetic effects are joined by exogenous

influences taken in by sensory organs, thus giving rise to programmes of the 2nd
order called types of consciousness: processes of attachrnent, emotions, States fo-
cussed attention or generál attention, etc. Simultaneously with the thalamocortical
systém, the septohippocampal systém too, goes on maturing. In around one year
of Ufe, specifically human programmes, i.e., programmes of the 3rd order, start de-
veloping in what we call parts of consciousness. At that Ume, the cortext shows
signs of anatomical and physiological differentiation; speech and abstract thought
begin developing. Formators for the cortex are in the brain stem; formators for the
archicortex are represented by šeptal nuclei, or rather the area adolfactoria in homo

sapiens.

an epileptic (yes) or a healthy person (no), which is exactly where a single binary
number would do.

Neuron: N E where ^ is a complete set of neuron parameters (weights,
transfer function, threshold, etc.).

Our model of an axtificial neuronal network is not based on conventional “back-

propagation” algorithms as these fall short of introducing noise into an organisation
or involving hundreds of elements; (Novák et al. [26]). Networks organised by the
back-propagation mechanism háve, on the whole, simple processes in each partic-
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Fig. 3 Morphological structure of our model consisting of three layers (input,
hidden, output).

iilar iteration except that large numbers of such iterations are necessary, e.g., teris
up to hundreds of tliousands.

In our networks, each iteration is complex just because of the presence of noise,
but it is very effective, and that is why the process of learning in our network takés
a much faster course requiring tens or hundreds of iterations.

Input training set: Pí G

Output training set: Pq €

Result set: Pr G

Neural network statě: Se{N‘^}, where n is a count of the neurons in network

Transfer function of the neural network input layer:
Y = , where Pí is a network input set (1)

Transfer function of the neural network output layer:
Pr = F (x,^), where x are neuron’s inputs (2)

Our presented network realises a process, in which it learns to create and rec-

ognize geometrical figures such as a circle or square, but also more complex figures
such as an empty-centre circle, a kind of annular ring or lagoon. The last-named
figuře is difficult to learn for an artificial network since no continuum of the shape
has been preserved here; instead, there is a recurrent interruption, as will be easy
to show if we imagine this “lagoon” as intersected by a straight line (Fig. 9).

The process proper is based on iteration, i.e., mathematical operation governed
by a set of rules, in which repetition helps to approximate the desired result (Fig. 4).
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Fig. 4 Neural network training based on genetic algoritlim.

Iteration I: S (n) = F {S {n — l) ,f (■£’)), where F is the niodification func-
tion and f(E) is the formator function that regulates noise (3)

N

Level of systém energy: E = Yh f {Pot-, Fm), where N is a count of traning
í=i

sets and f is a metric function (4)

Each iteration begins with data introduced into the input layer to be processed
in accordance with a particular algorithm in the hidden layer; it then continues with
the computation of certain as yet very crude configurations of images created by a

genetic algorithm, and ends up with the sdection of 10% of the most accomplished
“offspring”. The next iteration begins with the application of these new, most
successful variants of the results, i.e., descendants in the continued process of image
perfection. AU the new variants (descendants) of the genetic algorithm are always
generated randomly. The deterministic rule then only requires the choice of 10%
of all the variants available (in our čase 20 optimal variants out of 200).

Genetic algorithm - modification function F

1) Také the current statě S of the neural network. From S compute the n number
of children by randomizing the parameters ^ with noise amount f(E).

2) Based on the energy E choose best x percent from computed children.

3) Create new statě S. If energy is below our goal, end the process. Otherwise
go to step 1.

The algorithm change rested in the possibility to involve up to thousands of
artificial neurons in a single layer.

240



Kolda T., Faber J., Svoboda P., Dvořák M.: A model of artifícial neuronal...

In other words, a genetic mechanism was employed to create a functional statě
of the network (Fig. 5). Similarly as in living organisms, it is a čase of indicating a
certain direction of functional structures development rather than of total genetic
predestination. Tliis mechanism also enables specific adjustment of the initial con-

ditions, an option of importance for subsequent uses of the network as a specialised
classifier for some particular purpose. These initial conditions will be diíferent for
the shape reading functions, diíferent again for the reading of curves or for the
classification of diverse symptoms in differential diagnoses, etc.

Genetic algorithm Traínlng %ti Í
i

Level of system enorgy
- amount of error *

Iteratíon 1

Ileralion 2

Iteratíon 3 ^ ^

Iteratíon n J ^ • o O
t Learned neural network

Fig. 5 Example of leaming process with genetic algorithm.

The stochastic model is marked by a number of characteristics, e.g. the initial
conditions are determined by diíferent data dispersion variance, the evolution of
the network organisation is regulated by genetic rules of a purely stochastic nátuře;
Gaussian distribution noise proved to be the best “organiser”. (Just for illustration
see Fig. 6.)

We also tried out diíferent characters of noise, e.g. a uniform one, in which all
data exhibit the same probability of incidence. There, too, the network became
organised with success, albeit at a slower rate.

This new stochastical organisation of the network of artifícial neurons makes
it possible to perform computations in parallel in a network of computers, thus
substantially speeding up the process of computation.

Another analogy between artifícial networks and neuronal structures lies in
the mode of time. According to Laufberger [22], life is a complex of íixed cyclic
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Fig. 6 Examples of different statistical distňbutions.

enzymatic reactions. As early as 1938, Berger [2] found electric rhythms in the
brain and gave them the names of alpha (8-13 Hz) and beta (14-30 Hz). All
of US perceive time consciously and unconsciously. For that reason, we gave our
networks organisation a kind of temporal development, i.e. rather than being
instantaneous, the connection between the artificial elements and neurons consumes
certain units of time per one synapse or, better to say, per one contact between the
preceding and subsequent neurons. Next, each element has a particular latency
between the stimulation (signál) at the input and the response (signál) at the
output. Neurologically speaking, this is a cornplex process which consists of the
reception of impulses (signals) at hundreds up to thousands of synapses (points of
interneuronal connection), the threshold of irritation on the neuronal membrane
and the impulse output from the neuron, a process taking plače at the axon hillock
(a speciál organelle of the neuron).

The latency of neurons, natural and artificial alike, is very important as it
enables feedback action. Indeed, a negative feedback can be realised by a great
prolongation of this latency.

Systems making no use of latency are incapable of organisation, convergence
toward a statě of stability (Votruba [29]).

Getting štuek in the local minimum is a frequent impediment in the organi¬
sation of networks. At first, our network becomes organised under the effect of
considerable noise. Then, however, the amount of noise must subside (Fig. 7).

However, if the network evolution gets štuek in the local minimum, the amount
of noise has to be inereased again. While this makes the network organisation
waver, it will also inerease the likelihood that the erisis in the local minimum will
abate and improve substantially the statě of the network in its self-organisation.
In other words, after a temporary “deliberate” inerease, the level of entropy will
deerease markedly (Fig. 8).

Introduced into the network algorithm was the feedback for automatic detection
of the organisation’s jam in a local minimum. A situation like that is dealt with by
raising the level of Gaussian noise as already mentioned before. With the functional
structure of the network jammed in an intricate situation the systém might well
repeatedly lapse into the same local minima. For that reason, we devise and realise
their registration, i.e. their “topology” and storage in memory.

For constant state-of-the-network, our systém allows reading by means of es-

tablishing the network energy level, i.e. basically ascertaining progression of the
network’s rate of success in self-organisation. This is the principál parameter for
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Fig. 7 Occurence of square picture leaming by help of noise.

Level of advantageous distant States

Fig. 8 Employment of noise for escape of the systém from štuek in the local
minimum.

the detection of any jam in the local minimum. It is a piece of input information
for the algorithm which regulates the level of noise in the systém.

For examples of stochastic network application to image classification see (Fig. 9).

4. Conclusion

Our model is, to a degree, reminiscent of one of the hrst cybernetic self-organising
Systems designed by Farley and Clark, which, however, is very much different from
the later “stratified” neuronal networks. All the same, we see it as very important
and are in the hábit of reusing it since, more than other systems, it reminds us of
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Output value f(x,y) - 0

Space of States of training
set. Points iilustrates of
single patterns.

Output value f(x,y) =s 1

l = 50 E = 20,2% 1 = 100 E=16.3% 1 = 150 E = 16%

I

!

Fig. 9 Occurence of geometrical picture leaming (I - Number of Iteration,
E - systém energy).

the essential structures in the brain (CNS = centrál nervous systém), as already
described. The following are analogies between the systems under study: Farley
and Clark (FC), our present-day stochastic model (SM) and the brain systém (BS
or CNS).

’

The FC generátor of signals alternately sends out signals to the Ol or 02 parts
of the complex of elements, and is controlled by an analytical unit. In our SM
systém, this part is played by the two input “neurons” designed, in the future, to
represent the input into, say, the “perceptron” which can read and classify any
curve (seismogram, electrocardiogram, tachogram, electroencephalogram, etc.). In
the CNS this is the thalamus conducting impulses from the senses to the brain
cortex (neocortex).

The complex of 128 elements randomly interconnected in the FC model is in our
SM systém represented by a hidden layer comprising the above-mentioned hundreds
up to thousands of “neurons”; this is the site of the actual process of learning and
visualisation of, e.g. geometrical figures. In the brain systém (CNS) we refer to
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the six-layer structure of the neocortex responsible for the execution of all phatic
(speech), cognitive and logical functions.

The discriminating or analytical unit is designed to analyse the States of the
model and to send the relevant quantities to the signál generátor and to the for-
mator in the FC systém. In our own model, this is an algorithm for the calculation
of the energy levels of the actual statě of the network, precisely estimating how
successful the network organisation is. In the CNS, a similar function is performed
by the limbic systém.

The formator or modifier in the FC systém sets the thresholds of irritation
of the elements of the complex, and sends Gaussian noise into the complex. In
our model, this is an algorithm representing part of the feedback (between the
State of the organisation and its hidden layer output). This statě is expressed
in the energy level and/or in being štuek in the local minimum. This situation
stimulates an inerease in Gaussian noise which, in turn, enables escaping from the
local minimum and, ultimately, to inerease the rate of success of the hidden layer
organisation. In the CNS, were refer to what are known as modulátory humorergic
afferent non-specific systems of the brain stem or an epileptic focus (Faber [7], [16],
Faber et al. [9]). (See Fig. 1 and 2.)

We also pian to introduce collateral ties or horizontál connections of “excitatory
and inhibitory” feedbacks in a single layer. For greater similarity with biological
Systems we intend to develop networks of up to 6 layers as in the mammalian neo¬
cortex. At the same time, we expect the layers to háve similar functions: input
or afferentation of signals from the input layer (thalamic nuclei) into the 4th hid¬
den layer, from there the signals disperse into hidden layers 3 to 5; conceivable
intracortical circulation between hidden layers 2 to 5 and, possibly, the processed
data output from layer 6 into the output elements, i.e., the thalamus or some other
cortical motor and imaging systems. Hidden layers 1 and 2 w^ould then serve as
mediators of stimuli between the formator and this neocortical six-layer structure
so that it would set and occasionally alter the thresholds of irritation of some of
the neocortical elements, in particular mainly hidden layers 3 and 5. The present
neurophysiological knowledge provides also other possibilities for intracortical and
thalamocortical interactions and data processing.
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