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Abstract: Belief functions can be takeri as an alternativě to the classical proba¬
bility theory, as a generalization of this theory, but also as a non-traditional and
sophisticated application of the probability theory. In this páper we abandon the
idea of numerically quantiíied degrees of belief in favour of the čase when belief
functions také their vahies in partially ordered sets, perhaps enriched to lower or

upper semilattices. Such structures seern to be the most generál ones to which
reasonable and nontrivial parts of the theory of belief functions can be extended
and generalized.
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1. Introduction and Motivation

The degrees of belief quantified by belief functions, and the inathematical the¬
ory Processing thern and sometiines called the Dempster-Shafer theory, present an

interesting inathematical model and tool for uncertainty quantification and Pro¬
cessing. Belief functions can be taken, at the same time, as an alternativě to the
classical probability theory, as a generalization of this theory, but also as a non-
traditional and sophisticated application of the probability theory. Leaving aside
informal considerations concerning the intuition and motivation behind the notions
of degrees of belief and belief functions, and referring the reader to [1], [11], or to
other sources dealing with an informal approach to these notions, let us begin with
very brief and forrnalized definitions applying to the sirnplest čase of the finite basic
spaces.

Let 5 be a finite nonernpty set, sornetimes called the universe of discourse,
let V{S) denote the power-set of all subsets of S. A basic probability assiymnent
(b.p.a.) m on S is nothing else than ajorobability distribution on the (obviously
finite) power-set V{S), hence, m takés V{S) into the unit interval [0,1] of reál
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numbers in such a way that ^ m{A) = 1. The (non-nornialized) belief function
ACS

defmed or induced by the b.p.a. m on S is the mapping bel„i : V{S) —> [0,1],
defined for each A C 5 by

beb,^(A) = E '"(B). (1)
(d^BCA

We apply the convention according to which bel„i(0) = 0 for the ernpty subset 0
of 5.

Perhaps more often introduced and defined is the so called norrnalized belief
function bel*j also taking 7^(5) into [0,1] and defined, for all A C S, by

bel*,(A) = (1 - m(0))“^ bel,„(A) (1 - m(0))“^ ^ m{B) (2)
(bi^BcA

so that bel^(S') = 1. If m(0) = 1, bel*, is not defined. As a matter of fact,
the norrnalized belief function can be introduced also directly, i.e., independently
of a non-norinalized belief function, supposing a priori that 7n(0) == 0 or, which
turns to be the same, that ber(0) = 0 and bel* (5) = 1. These conditions are
obviously satisfied when the systém processing the data in question is consistent.
In every čase, norrnalized belief functions can be taken as speciál cases of the non-
normalized ones, so that we will try to begin our seeking for non-numerical belief
functions just with the non-normalized nurnerical ones, with the aim to investigate
the phenomenon of inconsistent data also in the čase of non-numerical degrees oí
belief.

An alternativě way enabling one to rewrite (1) in a more appropriate form for
our purposes, and offering also an intuitive insight into the notion of the degree of
belief, may read as follows. Let S be taken as the set of possible internal States of a
systém (medical diagnoses, answers to questions, Solutions to a problém,...), just
one So G 5 being supposed to be the actual one. Our task is either to identify sq, or
at least to decide whether sq G T holds for some (proper, as a rule) subset T of 5 or
not. This decision will be based on some empirical data x G E, perhaps vector ones,
deseribing the results of various observations, experiments, etc., concerning the
systém in question and its environment. As E may be a vector space, experirnental
or empirical data of different nátuře, as well as results of the repeated observations
and experiments, can be also embedded within the frarnework of this model. Ol
course, in order to ensure at least a portion of ratioriality in such a decision making,
the internal States of the systém in question and the empirical data obtained should
be bound by a relation, námely, the so called conipatibility relation p will be ušed for
these purposes. This relation is defined either by a subset of the Cartesian product
S X E, or, which will be easier to process in our context, by a mapping which
aseribes to each s G 5 and x £ E either the value 0 or 1. Námely, if p{s, x) — 0 for
some s £ S and x £ E, tben as far as the subject or the user knows, s cannot be the
actual State of the observed systém supposing that x was observed. If this is not
the čase, we write p{s,x) = 1 and the values s and x are (niutually) conii)atible.
Given X £ E, we can easily deíine the subset
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Up{x) = {.s G S : p{s,x) = 1} (3)
of States of S which are compatible with x.

The phenornenoii of uncertairity enters our model supposing that the empirical
data are of random nátuře. Námely, we will suppose that x is the value takeii
by a random variable X defined on a řixed probability space {Í),,A,P) and with
values in a measurable space {E, 8) generated by an appropriate nonempty a-field
of subsets of E\ if E is finite, we usually také the whole power-set V{E). Combining
the mappings Up and X together, we arrive at the composed rnapping Up{X{-))
which takés Q into V{S), i.e., for every uj G ÍK, Up{X{uj)) is a subset of 5, and we
will suppose that this rnapping is measurable in the sense that, for each .4 C S,
the inverse iniage {Up{X))~^ (A) belongs to the fj-řield A of subsets of íl, so that
the value

ni{A) = P{{uj G n : Up{X{u)) = A}) (4)
is defined. In other terms, the rnapping Up{X{-)) is supposed to be a (generalized
set-valued) random variable which takés the probability sjrace {Í},A,P) into the
measurable space {V{S),V{P{S))). As cari be easily seen, the rnapping jn : V{S) —)■
[o, 1] is, for each finite S, a basic probability assignment on 5 and for the induccxl
non-normalized belief function we obtain that

bel„,(A) P{{uj G í) : 0 7^ Up{X{uj)) C A}) (5)
for every A C S. Let iis notice that the normalized belief function belJ,.j can be
defined in a similar way using the notion of conditional probability, námely, for
each A c S,

bei;.(/l) = P ({« 6 n : U,iX{u,)) CA}/{u,en: U,{X{u>)) ^ 0}) (0)
supposing that this conditional probalrility is defined.

It is just the relation (5) that all the modifications and generalizations of t he
notion and theory of belief functions mentioned below start ťroni; let us list them
vory briefly.

(i) As the operation of sunmiation occurring in the classical combinatoric defi-
nition (1) is eliminated, the relation (5) enables one to drdine the degrees of
belief also for at least some subsets of an infinite universe of discourse, námely,
for those subsets of S for which their inverse iinages in íl are measurable, i.e.,
belong to the cr-field A of subsets of U.

(ii) Using the worst-case analysis (rninirnax principle) belief functions can be
reasonably approxirnated in some cases when the compatibility relation is
known only partially, so that for sbine pairs (s,.x) ^ S x E the value p(s,x)
is not known or even defined.

(ni) The idea to define the degrees of belief as sizes of certain sets of elementary
random events is kept, but instead of probability measure P anoth(!r set
function, say, a possibilistic measure II, is ušed for these puri)oses.
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(iv) The degrees of belief are quantiřied also by reál nunibers outside the unit
interval of reals.

(v) The degrees of belief are not quantified by reál numbers, but ratlier by ele-
inents of sorne non-nunierical structures which rnay perhaps better reflect the
nátuře of uncertainty in various particular cases. E.g., the degrees of belief
need not be always dichotomie, i.e., sorne pairs of degrees of belief need not
be comparable by the relation “greater than or equal to”. Perhaps the hrst
non-nurnerical structure arising in one’s mind as a good tool for these sakes
is Boolean algebra, in particular, the Boolean algebra of all subsets of a fixed
space with respect to the standard set-theoretic operations.

Pursuing further the reasonings which háve motivated the research sub (v), we
arrive at the following question, key one in our context: which are the most generál
and the simplest conditions that the structure of the degrees of uncertainty should
meet in order to be able to develop a non-trivial fragment of the classical theory oí
belief functions within this generalized and simplified framework? The aim of this
páper is to argue in favotir of the idea that the degrees of belief should deřine a
partially ordered set, in the čase of sorne particular statements enriched to an upi)er
or lower (serni)-lattice or to a lattice. This particular nátuře of our investigations
preserited below irnplies that it would not be realistic to expect sorne qualitatively
new and perhaps surprisirrg results. On the otlier hand, we believe that the frag¬
ment of the theory of belief function which cari be built in the investigated čase is
rich and interesting enough to justify our effort.

2. Preliminaries on Partially Ordered Sets
Let US recall sorne most elernentary notions and properties frorn the dornain of
partially ordered (p.o.) sets.

Definition 2.1. Quasi-pariially ordered set T is a pair where T is a

nonempty set and is a binary relation on T, called quasi-partial orderrtifj and
fulřilling, for all ti, Í2, k £ T, the conditions

(i) íi ti (reflexivity),

(ii) if ti -< t-i and t2 -< t^, then ti ^ t-^ (trarrsitivity).
If fulfils also, for all ti, € T, the relation

(iii) if ti :< O and Í2 íi, then ti = t2 (antisyrnrnetry),

then ;:< is called a partial ordering on T and the pair (T, ■<) is called a partially
ordered set (p.o. set). □

Giverr a quasi-p.o. set (T, ^), let us introduce a binary relation on T, setting,
for all íii 0 G T, ti « O iff ti ■< Í2 and O L bold simultaneously. As caii be
easily seeri, ftí is an equivalence relation on T. Indeed, ti w L and the irnirlicatioii
ti K ^2 ^2 ~ ti follow., for all L, ^2 G T, imrriediat(!ly from the reflexivity of -<
(Dedinitiorr 2.1, (i)) and from the definition of Moreover, if L « t2 and /.2 ~ G
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hold, hence, if ti ■:< Í2, t-2 '^ti^t2 and řa ■< Í2 hold simultaneously, then ti ■< ts
and Í3 ■;< ti also hold dne to the transitivity of ;:< (Definition 2.1, (ii)). So t] w t^
is valid and the relation « is transitive; consequently, it is an equivalence relation
on T.

Using this fact, we rnay define the factor-space T/ w of equivalence classe.s with
respect to w. I.e., for each t e T we denote by [t] the set {.s G T : s k, t} and
T/ {[í] : t G T}. Let us define a binary relation ^ on T/ «, setting [t\] :< [bi]
iff ti < t2 holds. Obviously, :< on T/ « is independent of the choice of rei)resenters
from [ti] and [^2], i-e., if [ti] ■< [t2], h ^ [íi] and bi G [b?], then t-^ :< bj also holds.
So is a binary relation 011 classes of equivalence from T/ « and, as can be easily
seen, it is a partial ordering on T/ Consequently, the pair (T/ ■<) is a i).o. set.
Here we intentionally use the symbol :< for denoting the relations on T as well as
on T/ blit we hope that the sense will be always clear from the context and
that the comrnon intuition behind both the applications of the symbol at least
partially legitimates this use.

Definition 2.2. Let (T, :<) be a p.o.set, let 0 7^ A C T be given. An element
fa E T is called the supremurn of A in (T, or with respect to and denoted

Víea shortly, by V A, if the following conditions are fulfilled:
(i) t <tA holds for all t £ A\

(ii) if there is G T such that t < t*^ holds for all t G .4, then tj\ ^ Cj holds as
well.

Dually, an element sa G T is called the infimurn of A in (T, ;:<) or with respect
to and denoted by Ate/i ^ abbreviately, by /\A, if the following conditions
are fulfilled:

(iii) sa t holds for all t ^ A,

(iv) if there is s\ G T such that -< t holds for all t E A, then ^ .S'a holds as
well. □

Evidently, \/ A and /\ A need not be defined for some 0 7^ .4 C but if t,he>-
are defined, they are unique, so that the dehnite article {th,e supremurn and the
infirnum), ušed in Definition 2.2 above, is legitimate. This definition could be also
extended to the quasi-partially ordered sets, but in this čase, if \J A and/or A-4
are defined, they are defined up to the equivalence relation «. If A = {t} for some
t E T, i.e., if A is a singieton containing just one element of T, then V{f) and /\{t}
are always defined and identical with b

An element I7- (O7-, resjí.) of T is called the unit or the niaximal (the zcro
or the minimal, resp.) element of a p.o.set T = (T, A) if t < Ij- (O7- ^ t, resp.)
holds for all t E T. If O7- and Ij- exist, they are defined uniquely. If O7- and Ir
exist, the definition of supremurn and infirnum can be also extended to the empty
subset 0 of T, setting \/ 0 = Or and A ^ These definitions can be proved to
be conservative extensions of the definitions for nonempty subsets of T. Moreover,
if Or and Ir exist, then obviously

OT=/\t = /\T, l,-=V( = Yr, (7)
teT i£t
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3. Set Structures over Partially Ordered Sets

In this chapter we will builcl a stnicture of partial ordering over the power-set V{T)
of all subsets of T, which extends conservatively tdie properties of partial ordering
in T, and which can be totally ernbedded into the p.o. set supi)Osing that
this p.o. set is complete in the sense that \J A and f\ A are defined for all .4 C T.

Definition 3.1. Let (T, :<) be a p.o. set, let C be the binary relation on VÍT) =

{A : A C T} defined in this way: given A, B C T, A C B holds iřf, for each
S\ C A such that V 5i exists, there exists S2 C B such that V So is defined and
V :< V <52 holds. □

An intuition behind this definition can read as follows. Let A C T be the
set of values describing the (degree of) uncertainty connected with an event (phe-
nomenon) a, the description being related to a multidirnensional criterion (to a
rnulticriterial meta-criterion, in other terrns). Soine criteria can be represented
and replaced by another, say, the dorniiiating one in the sense that an event is
at least as certain to occur than the event a with respect to this subset of criteria,
iřf the value ascribed to 0 by the doniinating criterion is at least as large as the
value ascribed by this doininating criterion to event a. Considering a subset of
criteria such that no criterion of this set dorninates (or is dorninated by) 110 niattcn'
which one inside this subset, event 13 is at least as certain to occur as a iíf any oí
the criteria frorn the subset in question ascribes to (3 the sanie or even a greater
value than to a. Hence, the set of all criteria can be replaced by a (sinaller, as a
rule) set of mutually non-dominating and non-dominated ones. E.g., if the whole
set of criteria can be replaced by a doininating one, the comparison of the degrees
of certainty of events a and (i reduces to their comparison with respect to t,he
doininating criterion. In the opposite extreme čase, when no criterion dorninates
(or is dorninated by) another one, event (3 rnust be at least as sure to occur as a
with respect to all the criteria simultaneously so that we could to conclude that (3
is at least as sure to occur as a with resjíect to the multidiinensional criterion in
question.

For the generál čase of such a rnulticriterial decision making, the resulting order¬
ing (quasi-partial one, as the following Lemma proves) is just what Definition 3.1
tries to formalize.

Lemma 3.1. The relation C is a quasi-partial ordering on V{T). □

Proof. If A C T, then A C A obviously holds, as for each 5i C A such that V Si
exists we také simply S2 = Si, so that V ‘S'i A V ^‘2 obviosly holds. Let A \Z B
and B c. C hold simultaneously for A, B, C C T. Také Si C A such that V Si
exists and denote by S2 C B (one of) the subset (s) of B such that V S2 exists and
V ‘S'i A V ^2 holds. As B C is valid and \/ S2 is defined, there exists C C
such that V S3 is defined and V ‘52 A V *5.3 holds. Hence, dne to the transitivity
property of the relation ■< on T, \/ Si S3 is valid. So, for each 5i C A such
that V 5j exists, there exists S3 C C such that Y S3 is defined and V A V
holds. Conseiiuently, C it is a transitivc, as well as (luasi-partial ordering relation
on V{T). ■ □
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Iii particiilar, Deíinition 3.1 yields that ií A {Z B, theri for each t E A there
obviously exists St C B such that V St. is defined and t ■< \/ St holds. Obviously,
t E A defiries the singleton {t} C A and the suprerrmrn of {t} is ahvays deíincd and
equals to t itself.

Using the sanie construction as in Chapter 2, we introduce the equivalence
relation ~ on V{T), setting A ^ B líí A C B and B C. A hold siinultaneously,
.4, B C T. Abusing the symbol C in the same way as the symbol < in Chapter 2,
we rnay extend it to the equivalence classes [A] G B{T)/ where [A] = {B C T :
B A}, A C T. So, [A] C [B] holds iff A C Z? holds; the validity of this relation
clearly does not depend on the choice of representatives of classes [A] and [Z?].

For each A C T, if \/A is defined, then the equality [A] =: [{V ^}] fiolds.
Indeed, given Si C A snch that V Si is defined, the relation \/ 5i ^ V holds, so
that we can také S2 = {V order to prove that Ad {V To prove
the inverse relation, the ordy (nonernpty) systém of subsets of {V "4} is {V
for this systém there exists a subsystém of A, námely A itself, such that V A is
defined and V ^ V ^ trivially holds. Consequently, if A, C T are such that
V A and \J B exist, then [A] = [B] holds \ň\J A = \J B holds in (T, <).

Lemma 3.2. The relation [Z in V{T) is a conservative extension of the set-th('oretic
inclusion on T, hence, if A C 15 C T, then A [Z B. □

Proof. If 5] C A is such that V Si exists, then také sirnply ^2 = C B, so that
y S2 = y Si is defined and V ‘^'i V ^'2 obviously holds. □

Considering the p.o.set {'P{T)/ ~,ll), let iis define the supremurn operation U
and the infimum operation □ induced by d, copying the standard way in which
these operations are defined. As can be easily seen, UA and flA need not be always
defined, hence, the operations of supremurn and infimum are, in generál, partial,
blit if uA and/or flA are defined, they are defined uniquely. Given A C V{T),
denoting by \JA= U the usual set-theoretic union of the sets froni A, and

AeA

applying Lemma 3.2 to the trivial inclusion A C IJA valid for each A G A, the
result is that [A] d [U^l liolds; hence, if uA is defined, then UA d [U^^] is valid.

If the p.o. set (T, A) contains the unit element Ix, i.e., if \/5^ — Ir is defined,
then the relation 0 d A d T holds for each A c T. The first part 0 d A holds dne
to the trivial fact that there is no nonempty 5 C 0, so that the antecedent of the
corresponding irnplication is always falše. Given 5i C A snch that V 5i is defiiuíd,
také sirnply S2 — T, so that y Si :< y T = Ir holds (or apjily Lemma 3.2) and A d
T follows. Conseíiuently, [0] d [A] d [T’] is valid in V{T)/ so that {V{T)I ~,d)
is a p.o.set with the zero element [0] and the unit element [T] (obviously identical
with [{Ir}])-

4. Complete Upper Semilattices
Defiriitiori 4.1. A partially ordered set T = (T, is called complete upper
sernA ttice, if for all A C T the suinemum V A with respect to ^ is defiiuíd. □
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As an example of a complete upper semilattice také a systém of all infinite
subsets of an infinite space T with respect to tlie usual set-theoretic operations of
union and intersection taken as supremum and infimum. Evidently, the union of
any nonempty systém of infinite subsets of T is an infinite subset of T, but the
intersection of two or more infinite subsets can yield a finite (or even empty) subset
of T which does not belong to the systém of subsets in question.

Theorem 4.1. Let T = {T, be a complete upper semilattice. Then

(i) for each t G T, [{t}] UII

(ii) for each A c T, [A] hence, [A] = {B CT: yB = yA},

(iii) for each A,BcT, [A] d [B] holds my A <y B holds.

(iv) for each A,BCT, [A] U [B] = [AUB], if [A]U [B] is defined.

(v) for each A,BCT, [Anz?] d [A]n[B], if [A]n [B] is defined.

Proof.

(i) Given í 6 T, let A C T be such that \l A — t. The empty subset of {f} can
be obviously avoided, here and below, froin consideration when verifying the
validity of an C-relation. The only ^ ^ R C [t] is {t} itself so that, taking
5 == A, we obtain that \/{t} = t ^ \/ A = t holds, so that {t} li A. For each
R C A, y R :< y A = t = y {t} is valid, so that, taking S = {t}, we arrive at
the conclusion that A C {í} holds. Hence, for the equivalence classes we háve
proved that [{í}] D {A C T : V ^ If C T is such that y B ^ t, then
B does not belong to [{t}]. Indeed, ií y B y t, y B ^ t holds, then {t} d B,
but not B 11 [{í}], ií y B :< y B ^ t, then B C [{ř}], but not {í} d B.
If t and V B are incomparable with respect to :<, then neither {t} C B nor
B d {t} hold. Indeed, taking R = {t},y R = t cannot be reached by V S no
inatter which S C B is taken, and taking R = B, the relation y R = y B ^ t
does not hold as well. Consequently, the equality [{t}] — {A C T : y A — t}
is proven.

(ii) Také A C T and B C A. Obviously, yB :< y A, so that A d
follows. Inversely, taking {V "4} as the only nonempty subset of {V A} and
setting 5 — A, the relation y A < y A is trivial, so tliat F A and,
consequently, [A] = [{V A}] follows irnmediately.

(iii) Také fi, t-z G T such that ti :< O- For the only nonempty subset {t\} of {fi},
the relation Vl^i} = ^2 = V{^2} ~ y S is evident, taking S = {t-i}, so
that {ři} d {h} follows. If {ti] d {O}, then the relation to is obvious,
so that [{íj}] d [{o}] holds iff ti ;< O- But, given A, B C T, the identities
[A] — [{V A}] and [B] = [{\/ B}] follow by (ii), so that setting ti y A and
t-2 = y B, (iii) is proved.

(iv) The only thing we háve to prove is that [{ti}] U [{^2}] = [{^i V to}] is valid
for all fi, Í2 G T. Indeed, setting ti = y A, t2 = y B, and applying (ii), we
obtain that
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MlU[B] = [{V^}]Lj[{V-B}]=[{*>)lU[{t2}] = [{ť, Vt2)] =
= [{V'4vV-B}] = [{V(-''UB)}] = |.4uB]. (8)

So, let ti, Í2 Ě T. As we háve already proved, ti ■< ti Vto and t-i :< ti Vto yield
that [{ti}] C [{ti V Í2}] and [{^2)] C [{^i V Í2}] hold, so that [{ti}] U [{^2}] C
[{ti V Í2}] hs also valid dne to the fact that U is the supremurn operation
with respect to the partial ordering relation C on the factor-space V{T)/
Hence, we háve to prove that [{ti V Í2}] C [{^1}] LI [{^2}] is valid.
In order to arrive at a contradiction, suppose that this is not the čase. Then
there exists R C {ti V ^2} such that \/ R, ^ \/ S does not hold íbr every
S C [{ti}] U [{ř2}]- But, [{ti}] U [{^2}], if defined, is an element of the factor-
space V{T)/ ~, so that [{ti}] U [{^2}] = [C] for some C C T. As {ti V ^2}
is the only possibility for R, we arrive at this conclusion; if [{ti V ^2)] C
[{ti}] U [{^2}] does not hold, then for all 5 C C the relation t] V ^2 ^ V *5'
is invalid. Consequently, C cannot háve a subset R such that ti < \J R.
and t-2 ■< \J R hold sirnultaneously; if this were the čase, we could siinply
set 5 = /? in order to obtain íi V Í2 \J S. Moreover, having Ri <Z C
with the property ti -^^Ri and R/^ C C with the property t-^ -< \l R-i, we
could také S = Ri^J R2 C C to arrive at ti V t2 :< V S. In other terins,
the property “for no R C C the property ti ^ \/ R. holds” is valid either
for z = 1 or i = 2; let us consider the čase with z = 1, as the other one is
quite analogous. However, it follows that {ti} C C does not hold, hence,
also the relation [{ti}] C [C] {= [{ti}] U [{t2}]) is invalid, so that we háve
arrived at a contradiction. Thus the relations [{ti V t2}] C [{ti}] U [{t2}] and,
consequently, [{ti V Í2}] = [{Li}] U [{t2}] are proved, so that (iv) holds.

(v) Easily follows from the inclusions Ad B C A and Ad B C B.
In špite of (iv), equality in (v) does not hold in generál, as the following
counter-example illustrates. Indeed, let Oj- be the minirnal element of T such
that O7- = V 0 Bie eiiipty subset of T (the existence and uniqueness of O7-
follows from the assumption that for all A C T, including the čase A = 0, V A
is dehned). Let A, B be disjoint subsets of T such that \J A — \J B ^ O7-.
E.g., if T is the Boolean algebra of all subsets of a fixed nonempty set, then
A and B rnay be two decompositions of the same nonempty set, with no

component in common. Then

[AnB] = {0r}, (9)

but

[.4]n[B] = [{V^}]n[{Vs}] = [{V'4}] =
= {ccr:\/c = \/-4}?^0r, (10)

due to the idempotence of the.,niinimum operation n. The theorem is proved.
□
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Definition 4.2. A partially ordered set T = (T, ;;;;<) is called lower semilatticc^ if
for all íi, Í2 € T thcir infirnuin ti A Í2 G T is defined. □

It niay seein rather surprisirig, for the Hrst tiine, that Deíinitions 4.1 and 4.2 are
not duál. Námely, we háve not defined the notion of a coinplate lower semilat tice,
everi if such a definition might be easy to introduce, limiting ourselves to a weaker
definition of lower semilattice which is dosed just with respect the to iiilimum oi)(n'-
ation applied to finite subsets of its elements. The reason is that, when introduciiig
and investigating, below, the Boolean version of the Dempster eombination rule,
the infimum operation is applied ordy to pairs of values of the Boolean algebra in
question. Contrary to this fact, the supremum operation applies to the sets of all
pairs of subsets of the statě space under consideration, the intersection of which
yields the sarne set of States. Evidently, the set of such pairs can be infinite for
an infinite basic set of States. This non-syrnmetric role of infimum and supremum

operations iinplies also different minirnal conditions imposed to both the oi)erations
when shifting them to structure {V{T)f ~,[l).

Theorern 4.2. Let T = (T, ;:<) be a cornplete upper semilattice and lower seini-
lattice. Then, for all B CT, the identity

i^in[Bi=[{(vd''(vd}] <">
is valid. □

Proof. As T is a cornplete upper semilattice, the identities [A] = [{V d}] and [B] =

[{V B}] follow by Theorern 4.1, (ii). As T is also a lower semilattice, (V .4)A(V B) is
defined and the obviously vajid relatiorrs {\/ A) A{\/ B) :< \/ A and (V A) A (V í?)
V B, corrrbined with (iii) of Theorern 4.1, yield that

[{(vddvd}]d{vd]=i-4i
and

[{(vd'^(vd}]^[{v^}]=iA (13)

hold, so that, due to the definition of infirnurrr □ in {V{T)/ ~,iZ) the relation

■{(vd^^ívd)] (14)

rnust be satisíied. Let C C T be such that [6'] C [A] and [6^] C [B] are sirnultane-
ously valid. Ajrplying again the assumption that T is a cornplete upper semilattice
arrd the assertion (iii) of Theorern 4.1, we obtain that

[C] =

[Cl =

[{VC}]C1.4] = [{V.4}].
[{Vc}]c:1íJ1=[{Vb}
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hence, \l C :<\l A, \l C ■<\l B, consequently \l C < {\l A) /\ {\l B) and we arrive
at the conchision tliat

1C]C [{(V.4) a(Vb)}] (17)
is valid. Hence, [{(V A) A (\/ i3)}] satisfies both tlie properties iiuioosed by the
deřinition of inřiinum in the partially ordered set {V{T)I ~,[l) to the infiinuin oť
classes [A] and [i5], so that (11) is proven. □

5. Belief Functions with Values in Partially
Ordered Sets

Let S be a noneinpty set, let T = (T, <) be a p.o. set, let V and A denote the
(partial, in generál) snpreinuin and infimnm operations in T indnced by the partial
ordering relation A; let Br = (P(T),U,n,T - •) be (lie Booleaii algííbra indiic('d
in the power-set V{T) of all subsets of T by the standard set-theoretic operations
of union (U), intersection (n) and (:onii)leinent (T — •)•

Deřinition 5.1. The Br-^xilued hasič possibilisUc assigwinent on S (Bv-b.poss.a.
on S, abbreviately) is a. mapping tt : 'P{S) -> V{T), i.e., ^{A) C T for all .4 C .S',
such that y^c.sT^iAi) — T. The BT-(value(l) belief function dejined by a Br-b.poss.a.
7r 011 S is the mapping BEL;^ : V{S) —> V{T) ascribing, to each 0 7^ A C 5, th('
subset

BELa-4) = U AB) (18)
Vlr^BClA

of T, by convention, BEL,r(0) 0 for the einpty subset of S. □

An intuition and niotivation behind this deíinition can be based on the most
trivial idea that the absolntely complete non-mnnerical characteristic of a. set of
no matter which elements is simply the set itself. So, given .4 C 5, the value
7r(/l) C T, ascribed to .4 by a Br-vahied basic possibilistic assigiíment tt, iiiay Ix'
simply a collection of arguments of sonie non-numerical nátuře including, e.g. the
verba! ones which are relevant when considering the problém whether the actual
State of the systém under consideration is in A or not (when keeping in miud the
model sketched at the beginning of this páper). The simplest characteristic of the
set n{A) of relevant arguments is the set itself, and this is just what Dídinitlon 5,1
airns to catch. Subsequently, of course, we can process subset 7r(A) of T somehow,
e.g. ascribing reál numbers to elements of this set and perha,{)s conil)ining these
numbers into a single reál nuniber from the unit interval of reals. If the numbers
ascribed to.various subsets of S nieet soine obvious conditions, we arrive at the
standard čase of basic probabilistic assignments and belief functions as sketched
above. As to more or less trivial cases, however, such processing must be payed
by a loss of information if compared with that contained in the originál set 7r(.4)
itself. E.g., the probability value ascribed to a randoin event does not enable, as a
rule, identifing this randoin event comiiletely, if takeii as a subset of the universe
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of elementary random events. In what follows, we will apply a similar patteni
of reasoning, but we will not ascribe aiiy reals to the elements of set 7r{A) and
perhaps the process these numbers somehow either, biit we will rather také prolit
of the structural properties of set T and its power-set V{T) which can be exjn essed
in the language (and processed by the tools) of partially ordered sets {T, <) and
{V(T)/~,C).

The properties of belief functions taking their values (degrees of belief) in a
Boolean algebra are at a more generál level, and in greater more detail, investigated
in [8] and [9], so that we will refer to the corresponding resnlts and statements
without repeating their proofs. Here we will také into consideration the faet that
valnes 'n{A) and BEL,r(^), A C S, are subsets of the partially ordered set T, so
that we can apply to them the quasi-partial ordering relation C defined on V{T)
and extended to the classes of equivalence frorri the factor-s])ace V{T)/

Lemma 5.1. For every A G B C S the relation

BEL,(.4) C BEK{B) (19)
holds. □

Proof. By definition

BEL,(^) = U 7r(C) C U 7r(C’) = BEL,(iJ), (20)
%i^CCA 0#C'C/?

SO that Lemma 3.2 yields the result. □

Lemma 5.2. For every A, B C S the relation

[BEL,(.4)| U [BEL,(B)1 C (BEL,(/1 U B)] (21)

holds, supposing that [BEL;r(-4)] U [BEL,r(^)] is defined. □

Proof. As A C Au B and B G Au B hold, the relations [BEL;r(.4)] □ [BEL,r(-4U
B)] and [BEL7r(i5)] Cl [BEL;r(-4 U B)] follow by (19). As U is the supremum
operation with respect to C, (21) follows imrnediately. □

The mapping BEL,r : B{S) —> V{T), defined by (18), easily indnces mapping
BEL* : V{S) -> V{T)/ ~, setting simply

BEL;(A) - [BEL^(/1)] - {i? C T : R ~ BEL^(A)} =

{P, C T : 7? C BEL,,(T) and BEL;,(/1) C/?}, (22)

for every .4 C S. Similarly, the basic i)Ossibilistic assignment tt : 'P{S) —> 'P{T)
inducíís mapping tt* ; V{S) -A V{T)f ~ snch that, íbr each A G S,
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7t*{A) ^ [7r(A)] ^ {RcT Rd ixiA) and tx{A) d R). (23)
The inclusion 7r(C) C BEL;r(.4), valid for every ^ C C A by (18), implies,

dne to Lemma 3.2, that the relation [7r(C')] d [BEL^(>1)] holds. Consequently,
7r*(C') d BEL* (/l), so that the relation

□ n'{C) C bel; (.4) (24)
(D^CCA

easily follows, supposing that the supremum in (24) exists.

Lemma 5.3. Let (T, :<) be a complete npper semilattice, let n : V{S} -A V{T) be
a B7’-vahied b.poss.a. on S. Then for each finite A C S the eqnality in (24) holds,
so that

BEL;(.4)= □ n’(C), (25)
di^CcA

supposing that the siii)remum exists. In particular, if whole the space S is hnité,
then

U 7r*(A) = [T],
/1C5

again, supposing that the supremnm exists.

(2G)

□

Proof. The assertion (iv) of Theorern 4.1 can be immediately extended to any
hnité iionernpty systém of subsets A C V{T), hence, if U/ťe/ií-^] hehned, then

U i«i = U «
ReA iReA .

(27)

If /I C 5 is hnité, then {C : 0 / (7 C A} is hnité as well, so that (25) easily follows
frorn (27). If S is hnité, then V{S) is also hnité, so that

U 7r*(.4)
ylC5

U [^('4)] = U 7t{A)
AeV{S) [/l€P{S)

=.[r]

by Dehnition 5.1. The lemma is i)roved.

(28)

□

Under the conditions of Lemma 5.2, [T] = [{V T}] holds, and as V T plays the
role of the unit (maxirnal) element in {T, <), relation (28) can be also taken in such
a way that the rnapping tt* : V{S) —> V{T)/ ~ is a basic possibilistic assignment
011 S taking its values in the factor-space 'P(T)/ ~. The relation (25) then enables
One to understand rnapping BEL* : V{S) -A V{T)/ ~ as belief řunction dehned by
the b.poss.a. tt*. The condition that (T, A) is a complete upper semilattice seems
to be the weakest one imposed on tjie set oí values of the b.poss.a. tt*, under which
the basic philoso])hy underlying the idea of belief íunctions can be applied.
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6. Boolean-Valued Dempster Combination Rule
Within the framework of the classical Dempster-Shafer theory of belief fiinctioiis,
Dempster combination rule is defined as follows. Let S be a finite nonernpty set,
let mi, m.2 be two basic probability assignrnents on S, i.e., two probability distri-
butions on the power-set V{S) of all subsets of S. Let mi2 : V{S) —>■ [0,1] be tlu'
mapping defined by

mi2{A.) = ^ rn[{D) rti2{C) (29)
B,C'CS,BnC=A

for each A C S. As can be easily proved, mi2 is also a basic probability assign-
ment on S, denoted also by rni ®ni2 and called the Dempster product of iiii and
7712- lielation (29) is called the Dempster combination rule for basic jirobability
assignrnents. A sl non-jwrrnalized belief function defined by a basic inobability
assignment ni on S is the mapping belm : ViS) -> [0,1] such that

bel„.(.4)= Y, (30)
^t^bca

for all A C S, belTn(0) = 0 by convention. Dem])ster product 0 is also defined for
belief functions, setting siniply

bel;,(j 0 bel7,j,2 —df deljnj0,7j2. (31)

As analyzed in greater detail, e.g. in [6], the Dempster combination rule is
legitimate under the two following conditions:

(I) Any piece of information allowing one to avoid a hypothesis (statě, explana-
tion, answer, solution, diagnosis, ...) froni the set of i)ossible candidates (as
this hypothesis is incompatible with the empirical data them, or contradicts
obtained by one of the subjects) is also accepted by the other subject. Alore
formally, the composed compatibility relation is defined by the minimum of
cornpatibility relations of both the subjects.

(II) The set-valued random variables defining the probability distributions r/ij, 1112
on V{S) are statistically (stochastically) independent.

Relations (29) and (31), as well as the conditions (I) and (II) above, can be easily
and immediately defined for any finite number of components (basic probability
assignrnents or belief functions). It is alruost obvious that in both the cases the
Dempster combination rule is associative and conmiutative, so that, ajrjrlying 0
many tinies, order and bracketing are irrelevant.

For Boolean-valued basic possibilistic assignments and belief functions induccHl
by them, the Dempster combination rule can be rewritten in such a way that the
summations are routinely replaced by suprerna and the products by infima. In
particular, considering the Boolean algebra Bt = ('P(T), U, fi, T - •), introduccxl
in the first })aragraph of Section 5, two ILy-vahied basic irossibilistic assigunumts
TTi, 772 on 5', i.e., TTi, 772 ■ P(5') —>• V{T) ai(' such that
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U ,ri(>l)= U ”-2(^)=r, (32)
ACS ACS

rewriting (29) in the way just sketched, and usiiig the riotation tti © tt-í for the
resulting inapping, we obtain that, for each A C 5,

(tti ©7r2) (A) = y (7ri(B) n 7r2(C)). (33)
B,CCS, BnC=A

As can be easily proved, tti © 7r2 is also a Br-yAned basic possibilistic assigiiinent
on S, as the relation

y (tti © 7r2) (A) = r (34)
AcS

is valid. Let ns investigate, following the pattern frorn [6], under which conditions
the rule (33) is legitiinate, námely, whether the assunii)tions (I) and (II) from
above, or soirie of their appropriate inodifications, will do.

Let US suppose that 5 is a set of possible internal States of a systém, only
one .so G S being the actual one. Under diffe.rent interpretations, S is a set of
possible answers to a question or Solutions to a i)roblem, only one being trne or
correet, a set of possible technieal or niedieal diagnoses, etc. The subjecťs (e.g. an
observer’s or decision-maker’s) problém is either to identify the actual statě so or
at least to decide whether Sq E Sq C S holds or does not hold for some (projmr, to
avoid trivialities) subset of S. E.g., keeping in rnind the technieal interpretation
and terminology; Sq can be a set of critical or dangerous, in a sense, States of
the systém (a nuclear power-station, e.g.) in question, when some prohibitive
measures must be urgently api)lied. The actual statě of the systém cannot be
directly observed, but the subject has at her/his disposal some einpirical data
(observations, measurernents, results of experiments, etc.), taking their values in
the ernpirical space E (perhaps a vector-like one). Moreover, the subject possesses
a cornpatibility relation p C S x E, taken as a function p : S x E {0,1}, with
this semantics: if p(.‘-',.t) = 0 for some s E S and x E E, the subject knows that
obtaining ernpirical value x, s cannot be the actual statě of the systém. E.g., if
a patient is not feverish, at least some infectíon diseases can be eliminat('d from
the set of possible diagnoses and a patient of a male sex cannot Ire pregnant.
In the other čase, if p{s,x) =■ 1, then s cannot be avoided from consideration
when X is observed, so that s and x are compatible. For each x E E (,he set
Up{x) — {s E S : p{s,x) = 1) of States corniratible with x is deíined.

In order to introduce uncertainty into our model, with Boolean-valued uncer-

tainty degrees, consider a cornplete Boolean algebra B = {D, V, A, ->) and U-valu('d
complete possibilistic space (Í),'P(ÍŽ), Ho). Hence, H is a nonemirty set, P(U) is the
power-set of all subsets of U, and Ho is a H-valued complete possibilistic measure
on H, so that Hq : P(U) -> B is such that no(0) = Og, rio(U) = l^, and

n„ ( U- -q = V "»(•'') ('is)
\AG7^ / AgTZ
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for every nonempty systém TZ of subsets of il. The ernpirical value x E E is uiidei-
stood as a value taken by a variable (mapping) X : Q E, so that the composed
mapping Up{X{-)) takés í) into V{S), the inverse irnage {lj E fl : Up{X{uj)) — A}
is defined for each C 5, and the size of this subset of Q can be quantified by a
value frorn B, setting

n{A) = no({a; G U : Up{Xiuj)) = A}) (3G)
for each A C S. As

V 7r(yl) = V n„({w 6 íl : U,(X(oj)) = A)) =
ACS ACS

TT is a /5-valued b.poss.a. distribution on S. If S is finite, the coinpleteness of IIo
is not necessary, as (37) can be proved when replacing (35) by

no(Aui?)-no(A)vno(B) (38)
for all A, B C in other terms, when reducing (35) to the čase of Systems R.
containing just two subsets of íh

Consider two subjects operating over the same ernpirical space E and possi-
bilistic complete space (íž,'P(íí),Ho), using the same ernpirical values taken by a
variable X : Q E, but with perhaps different cornpatibility relations pi and p2-
Let US accept the assumption (I) frorn above, so that the cornbined cornpatibility
relation pi2 is defined by

Pi2(s,x) = min{/!)](s,3:), p2(s,i)}, (39)
so that Pi2(s,x) = 1 iřf pi(íi, x) = = 1; conse(|ueiitly, tlie rolatiou

u„,{'x) = u,„(x)nu„,(x)
is valid for all x £ E. Applying (3G) to pi2, we defiiie

(40)

„xiiA) = (tr, ffi7r2)(.4) = no({ta€íi:£/„,(A'(w)) = ,4)) =
= Ho ({co 6 í! : U„ (A(co)) n C/«{A'(co)) = 4}) =

= n„ [ U {co6S!:C/,,(A'(co)) = B, [/„(A'(co)) = C)) =
\£í,CCS, finesa /

\J llo ({co e í! : C,(V(co)) = C} n {co e íl: rv,(A'(co)) = C}) ^

(41)
BnC=A

Hence, if Ho is a honreomorphisrn which takés the Boolean algebra Bq = ('P(H), U, n,
H — •) of all subsets of íí on B in sircli a way that
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n„ {{w e n: Uf,(x{u)) = B} n {w € n: c/„(XM) = c}) =
= n„({wGn:C/„(A'(w)) = B})Ano({weíi:í/,,(.YH) = C}) (42)

holds for all B, C C 5; theri

(tti $ 7T2) (.4) =

= V (no({u-6ÍÍ:í7,.(X(a,)) = B))Ano({a;6Si:C/„,(A'(u;))=C))) =
Bnc-A

= v (7r,(B) A7r2(C)), (43)
Br\C=A

introducing tlie /3-valued possibilistic assigiíments tti and tto just as tt is dcfincd
in (36). If S is fiiiitc, the completeness of Ido can be vvcakened to (38). Hence,
(42) plays the role of (II). Using the tenns siinilar to those in the classical i)roba-
bilistic čase, we can say that if (42) holds, the set-valued inappings f/p, (.Y(-)) and
Uf),^{X{-)) are possibilistÁcally independent.

Considering the particular čase when spaces Í2 and T are identical and t.aking
the identity rnapping on 'P(H) as Ho , the resnlt is that (42) rednces to the identity

{coen-. Up,{X{uj)) = D, Up.,{X{cj)) = C} =
= {cj e H : Up, {X{uj)) = D]n{ujen: Up,{X{uj)) - C} , (44)

so that, in this particular čase, the conditions (I) and (II) froin above reduce to (39).
The following rernark concerning the Dernpster coinbination rule is ])erhaps

worth being introduced explicitly. A more often presented intuition behind this rule
reads that what is conibined are degrees of belief of the sarne subject obtained on the
ground of two or more pieces (or collections of pieces) of information. However, the
interpretation with two or more subjects combining their individual belief functions
into a cominon one can be seen to be the same. Indeed, as the univer.se in which
empirical data také their values is supposed to be a vector space, it is well possible
that this space is conimon for two or more subjects eveii when their pieces of
knowledge are qualitatively diíferent from each other. The coni])atibility rcdation
f)i{s, x) of every subject inay sirnply depend just on several, but far not on all, itcms
of the vector empirical valné x = (xq, .T2, • • •,-Cn) (ž E = This situation
can be also taken in such a way that a sinyle subject obtains, in two subsecimíiit
steps, two collections of data perhaps, but not necessarily, of diřferent nátuře, and
she/he biiilds her/his finál belief function in two stages, hrst 7ni and bel,,,,, then
m-i © 77),2 and bel,,,, © bel„i2 {= bel,n,0,„2 by definition). From this ]X)int of view
it is beyond any inii)ortance, whether the second piece of knowledge represíuits
the results of further investigations made by a single subject or whether it is a

collection of data delivered to the hrst subject by her/his colleague either direetly
as data, or processed in the forni of the hasič probability assignment, in > and/or
corresponding belief function ni2-
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7. Dempster Combination Rule for Degrees of
Belief over Partially Ordered Sets

Theorem 7.1. Let tti, -1x2 be Booleari-valued basic possibilistic assignments takiiig
their values iri the Boolean algebra (^^(T),U,fl,T — •), let their Dempster produet
be defined by

(tti © 7r2) (A) = y (7r](B) n7r2(C)). (45)
B,CCS,BC\C=A

Let the Dempster produet of the induced V{T)/ ~-valued basic possibilistic as-
signmerits be defined by

(tti ©7r2) {A) = (tti ®7r2)*(.4) = [(tti © 7r2) (A)] (46)

for all A C S. If T = (T, ;<) is a cornplete upper semilattice and a lower semilattice,
and if

\/MD)n7r2ÍC)) = [y 1^,(8)) A (VíT^lC)) (47)
holds for each B, C C S, then the relation

(ttj* ©TTa) (A) = y [7ri(L?) n7r2(C')] (48)
Bnc=A

is valid for all A C S. □

Remark. The identity (48) can be obtained also when adapting (45) routinely to
the čase of partially ordered set {V{T)/ ~,[l) with its supremurn (U) and infimum
(n) operations.

Proof. Cornbining (45) and (46) we obtain that, given A C 5,

U {ni(B)n7r,(C))
B,CcS,Br\C=A

y [7ri(i?) n 7r2(C)],
B,CCS, BnC=A

(49)

as (T, is supposed to be a cornplete upper semilattice. Due to the same proj^erty,
the subset 7ri(jB) n7r2(C') of T can be replaced by the singleton containing just the
supremurn value (cf. Theorem 4.1), (ii), so that

« ©7r.2) (A) U
B,CCS,Br\C^A

{\/(>fl(iJ)njr2(C))}]. (50)

Applying Theorem 4.2 to the assurnption (47), we obtain that
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[7ri©7r2)(A) = □ [{(V’'!^) a(V’'2(C))}
B,CcS,Br\C=A

B,CcS,BnC=A

□ ([7ri(B)]n[7r,(C)])
B,CCS,BnC=A

U K(i?)n,r2(C)),
B,CcS,BnC=A

:5i)

and Theorem 4.2 can be applied once more, but now in the opposite seiise. The
assertion is proved. □

Let US notě that the inequality

y(^,(B)nMC)) < (V^riíB)) A (52)
trivially holds in generál, so that the weakened forin of (48), námely the relation

(tt* ©TT.]) ^ U n 7r.2(C)), (53)
B,CcS,BnC=A

valid for every .4 C 5, can be proved without assurnption (47).
Assnmption (47) can be, and should be, a rnatter of a more detailed discnssion.

Let US introduce one particular čase whcn (47) holds true. Let 5, W be nonempty
sets and let ttq : V{S) —> 7^(1^) be a Boolean-valued basic possibilistic assignment,
so that (J 7ro(A) = W. Set T = {V{W), c) = (T, <), hence, T is the power-set of

.4cí>'
all subsets of W partially ordered by the relation of set-theoretic inclusion. Dchne
mapping A : V{W) -A- V{T) = V{V{W)) in this way:

A(lTo) = {{'íc) ; a; G ITq} C 7^(1^) (54)

for each Wq C W. In particular, given A C 5, set

n{A) = A(7ro(A)) = {{a;} : w G 7ro(A) C W} C V{W) = T. (55)

Obviously, the supremum operation in {'P{W),C) is identical with that of the
set-theoretic union and the inhmuin operation reduces to set-theoretic int('rsection,
so that, for each A C V{\V),

and

\/ A — \J Wq — [J Wo = ^ (shortly), (56)

f\ Wq = p| ILo = n -4 (shortly).
VV'o€^ WoeA
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In the particular čase of 7r(^), A C S, we obtaiii that

Evidently,

y 7r{A) = IJ {u;}=7ro(A).
weno(A)

(58)

/\n(A) = P| {to} =?ro(-4), (59)

if 7ro(A) is a singleton, i. e., if 7ro(^) = for some wo G W and /\ 7t{A) = 0 (the
ernpty siibset of W) otherwise, as {'řCi} fl {W2] 0 for every Wi 7^ wo, wi, 'tu-y G W.
Now,

V = V ^ ^ ^o(^)} = U {{w} : w G 7ro(A)} =
ACS ACS ACS

= |{ía} : w G jj 7ro(>l)^ = {{w} :w eW} = A(fE) = A (1(p(vv),c))(C0)
as W is the inaximal (unit) element of the p.o. set {V{W),C). Hence, in this
sense tt is a 'P(T)-valued Boolean basic possibilistic assigmnent on 5.

Let US consider two V{W)-víúned Boolean basic possibilistic assignments ttoi , 7102 ;

'P{S) -A V{\'V), let TTi, TTa : V{S) -A VÍT) = P(P(IE)) be deřined by

TTíÍA) = A(7roi(H)) :::: {{tc} 1 VJ G T^ím{A)] , Í - 1, 2. (01)
Given J5, C C 5, we get the result that

\J{-K,{B)niT2{C)) - V ^ ^ 7roi(i?)} n {{w} : 'W G 7ro2(C)}) =

- V ^ ^ “

= U ^ 7roi(B) n 7ro2(C)} TTO] {B) n TToiíC).
. (62)

Using (58), another calculation yields that

(V TT, (B)) A (V TTaCC')) = TTO, (B) n 7ro3(C) , (03)
so that (47) holds in this particular čase.

8. Nonspecifity Degrees and Dempster Rule
A quite legitirnate question can arise: why, how, and in which sense is the Dempster
combination nde useful? To put the question more explicitly, námely whether and
in which sense and degree, the ciuality of a basic probability or a basic possibilistic
assignment is improved. when combined with another such assigmnent. Let us
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brieřiy analýze and illustrate this problém, first, for the čase of classical numerical
probabilistic assignrnents over a finite space S trying, later, to niodify the suggested
way of reasoning to the čase of nonnunierical assignments with the aiin to conserve
as many results as possible froin those achieved in the classical probabilistic čase.

Let 5 be a finite set, let m : ViS) —)■ [0,1] be a basic probability assignment
(b.p.a.) on 5, i.e., ^ m{A) = 1. Subset C 5 is called a focal element ofV{S)

ACS
with respect to m, if m{A) is nonzero, i.e. positive. Let us define the nonspecificity
(legree W{m) of the b.p.a. m on S by the expected relative size of focal elements
ofV{S) with respect to rn, in syrnbols,

W(m)= Y, (l|.4||/||S||)m(.4), (C4)
ACS

where ||yll| (jl^H, resp.) denotes the cardinality, i.e., in this čase simply the number
of the elements of A (of 5, resp.). The intuition behind reads that the smaller is
the values W(rn) the better is rn in the sense that it specifies the valné so of the
actual State of the systém under consideration within the framework of smaller
subsets of S. Or, W{rn) takés its maximal value 1 iff m. is the empty b.jxa. when
m{S) = 1 and, conseqiiently, m{A) = 0 for all A C 5, .4 7^ S. Hence, rn offers
no more detailed specification concerning the actiial value sq beyond the tacitly
accepted assumption of the dosed world according to which sq is supposed to
belong to S. When restricting ourselves to the normalized b.p.a.’s, i.e., to b.p.a.’s
such that m(0) = 0, W{7n) takés its minimum value ||S1|“^ ordy when m.{A) > 0
can hold when ||d|| = 1, i.e., when all focal elements are singletons. Evidently,
in this čase rn defines a probability distribution on S. This class of l).i).a.'s also
includes, as particular cases, the “degenerated” b.p.a.’s mg,} such that 7/iq,s}({.s}) =
1, — 0 '^5 t £ S, s ^ t. These b.p.a.’s define the čase when the
obtained ernpirical data enable determining (with the probability one, i.e., “alrnost
surely”) the actual statě of the systém under investigation. Values W{in) < l/H^H
are ascribed to partially (if W(rn) > 0) or completely (if W{in) 0) inconsistent
b.p.a.’s, when 7n(0) > 0 or even m(0) = 1 holds for the empty subset 0 of S.

As a matter of fact, the nonspecificity degree W defined by (G4) agrees, up
to the normalizing constant with the degree jíroposed and investigated by
Yager in [18]. Perhaps a nonsj)ecificity degree ušed more often is the one suggested
by Dubois and Prade in [2], when the size of a subset A C S is not (juantihed by ii.s
cardinality 1|A||, but ratluu’ by the binai-y logarithm of this cardinality, so t.hat tlu'
resulting nonspecificity degree Wq ascribes the value IVoirn) = Y1 "'(-‘0

ACS

to each b.p.a. in on S (the convention according to which 0 • log2 0 = 0 is adopted).
This definition makes the notion of nonspecificity degrees close to that of entropy in
the classical Shannon inforrnation theory (e.g., for appropriately defined stocha.s-
tical indei)endence of two or more data sources the nonsi)ecificity degrees add to-
gether). However, for our í)urposes it would be difficult to distinguish, within a
non-nurnerical partially ordered structure of quantities, sizes ||A|| and logodl-dH)
froni each other. Hence, we háve a limit ourselves just to the nonspecificity degree
defined by (64) airning to “translate’’ it into appropriate terms of non-numerical
structures. It could be a subject bf further interesting investigative eíforts to sug-
gest more alternatives for non-numerical nonspecificity degrees as well as some
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reasonable criteria enabling one to classify the merits and the weak points of vari-
ous alterriatives.

Given b.p.ads mi, m2 on the sanie finite set S and defining their Deinpster
product mi 0 1712 in the standard cornbinatoric way, so that

(mi0m2)(i4)= ^ rni{B)m2{C) (65)
B,ccs,Bnc-A

for each A C S, we can prove (cf. [7]) the inequality of

W{mi 0 7112) < W(mi) A W{1712), (66)
where A denotes the standard infiinurn (i.e., rninhnuni in this čase) in [0,1]. Also
the duál inequality holds. Defining the duál Deinpster combination rule 0 by

(mi0m2)(A)= ^ 7ni{B) 7ii2{C), (67)
B,ccs, blic=a

we can prove, dually to (66), that the inequality

W{'t7ii ^7112) > W{7n[) V W{771,2) (68)
holds with V, denoting the standard supreinuni in [0,1] (cf. also [7] for more details).

Analyzing the proofs of (66) and (68) we can observe that the only property
of the quantitative criterion llAjl/H^H ušed throughout these proofs consists in
its inonotonicity with respect to the set inclusion, i.e., in the trivia! fact that
A C B C S implies jlAlj/lj^jl < ||íl||/||5||. Hence, (66) and (68) can be generalized
to the čase when the relative cardinality of the subsets of S is replaced by a fuzzy
7neasur'e, i.e., by mapping A : V{S) -A [0,1] such that A(0) = 0, X{S) — 1, and
A(A) < X{B) holds for each A C B C S (cf., e.g., [14] for more details on fuzzy
measures). Given a b.p.a. m on a finite set S, we set

in(m)= ^A(.4)m(.4), (G9)
AcS

and we can prove that for all b.p.a.’s mi and 7712 on S the inequalities of

Wx{7ni @7712) < W\{77ii) A W\{ni2) (70)
and

Wx{77ii 771-2) > Wx{7ni) V Wx{7n->) (71)
are valid with V and A denoting the standard supremum and iníimurn in [0,1].

Assertions generalizing (70) and (71) to the čase of Boolean-valued basic prob-
abilistic assignrnents can be also easily proved. Let S be a nonempty set, let (T,
be a p.o. set. Let tti, 712 be Boolean-valued basic possibilistic assignments dehned
on S and taking their values in V{T), i.e., ttí takés V{S) into V{T) in such a way
that

IJ TT.Cl) = y ,r2(,4) = \J'P{r) = T. (72)
ACS' ACS
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Let the Deiiipster product rri 0 7^2 and the duál Denipster product tti 0 tt? be
defined by

(tti © 772) (A) = U (7ri(B) n7r2(C)),
B,CcS,BnC^A

(73)

(tti (g) 7r2) (.4) = y (7ri(B) n7r2(C))
B,CCS,BUC=A

(74)

íbr every A C S. Let A : V{S) —)■ V{T) be a V{T)-valued Boolean fuzzy m,easure
on 5, i.e. A(0) = 0, A(5) = T, and \{A) C X{B) holds for each Ac B cS.

Using these notions, let us define the V{T)-valued Boolean nonspecificity deyree
VLj|(7r) of a Boolean-valued b.poss.a. tt with values in 'P{T), setting

(75)
ACS

Theorem 8.1. For each Boolean-valued b.poss.ads tti, tt-í on 5, the set inchisions

w^{n, ® TTj) c n (70)
and, dnally,

® K2) 3 ) U (77)

are valid. □

Proof. Evidently, when proving (76) the only thing we háve to prove is the inclu-
sion

IViKTr, ©TTs) C IVj‘(7r,), (78)
as the proof for 1:2 is analogous and (76) trivially follows froni both these inchisions.
Hence, we háve to prove that the relation

U U (7ri(j5)n7r2(C))nA(yl) C [J (tti (/l) n A(/l)) (79)
ACS \B,CcS,BnC=A J ACS

holds. But, B n C = A yields that A C B, so that \{A) C X{B)] hence.

U U {ttiíb) n7T2{C)) n A(.4) j c
acs \B,CCS,BnC^A )

u u (7ri(/9) n7r..(C)) n A(7J)
A C S V B ,CCS\BnC=.4
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= IJ (jr,(B)n7r2(C)nA(B)) = U Ui(B)nA(B)n IJ TTiiS)
B,CCS BCS V CCS

= \J{,r,{B)n\{B)), (80)
BCS

as y TX-iiC) = T holds, so that (79) and, consequently, (76) follovvs. Dnally, we
CCS

háve to prove the inclusion

7^2)3 ivj:(7r,), (81)
i.e., the inclusion

U U (7r,(B)n7r2(C))nA(A) D U (,f,(-4)nA{.l)). (82)
Acs \b,ccs,buc=a J AcS

But, B U C yields that B C A, so tliat X{B) C A(.4) holds; hence,

U IJ (7r,(B)n7t2(C))nA(Al) 3
Acs \ll.CCS,BuC=A }

(83)

U U (7r,(B)n7f2(C))nA(B) =
ACS \b,CcS,BciC^A j

= U (7ri(B)nír2(C)nA(B)) =
B,CCS

= U (''■(S)nA(B))
BCS

as has been proved above. The assertion is proved. □

Lemma 3.2 immediately yields that, under the notations and conditions of The-
oreni 8.1, (76) and (77) imply that

[lV''(,r, ® TTj)] C ) n W'‘(7r2)] (84)
and

[W!í{7„ ® 772)] 3 [H't(7r,) U W--‘(,r2)] . (85)
If (T, 2^) is a comj)lete up])er semilattice, then Theorern 4.1 (iv) enables rewrit-
ing (85) in the form

® tt)] □ [l^ÍTTi)] U [H'I'(772)] ; (86)
if, moreover, (T, ;<) is a lower semilattice, then Theorern 4.2 and (84) yield that

[1^(77, © 77)] C [I4'':(77, )] n [Wt(772)] • (&<)
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Hence, urider the conditions that (T, is a coniplete upper seinilattice and,
siinultaneously, a lower seinilattice, the rnapping seerns to be a reasonable
P(T)/~-valued nonspecificity degree of 7^(T)/~-valued basic possibilistic assign-
rnents, copying in a reasonable and nontrivial way sonie intuitive and acceptable
properties of the nonspecificity degrees W, W\ and as outlined above. At the
Same tiine, these conditions imposed on the partially ordered set {T, A) seeni to be
the weakest ones vinder which such a inodification is possible and nontrivial.

9. Conclusions

When considering some possibilities of applications of non-nurnerical uncertainty
degrees in generál, and non-numerical basic possibilistic assignnients and belief
fimctions in particnlar, we can inodify the basic paradigma ušed in the čase of
probabilistically quantified and processed degrees of uncertainty. In this čase, cle-
rnentary random events, rnutually disjointed and defining a composition of a certain
event, are supposed to be endowed by non-negative probability values sumrning to
One. The assumption of additivity or (j-additivity, together with the assumption of
statistical (stochastical) independence of at least some random events if they occur
repeatedly, enable computing probabilities for large collection of random events
defining a very rich structure.

In the čase of non-numerically quantified uncertainties we can start from a
structure of events; the degrees of uncertainty of at least some of thein can be
compared by the relation “greater than” or “greater than or eciual to”. The degrees
of uncertainty of some events can be taken, by a subject, as ac.cejitable as far as the
risk, following when taking theni as surely valid, is concerned, some other degrees
of uncertainty are taken as too great to accept the same decision. In both the cases
the subjecťs feelings are immediate, not based on some numerical evaluations of
these degrees of uncertainty by reál numbers, in particnlar those from the unit
interval. When taken as sets, the events, are structured by the relation of the set-
theoretical inclusion, perhaps with some more demands imposed on this structure;
their degrees of uncertainty are structured by a partially ordering relations, and
the airn is to compute the degree of uncertainty of some more sophistically defined
events. Here “to compute” rneans to prove that the uncertainty degrees of these
more cornplex events are cornparable with those aseribed either to the elementary
events supposed to be known a priori, or with the degrees of uncertainty of events
for which such a comparison has been already proved.

In particnlar, we can process, in this way, the non-numerical uncertainties as¬
eribed to the events like “the actual statě of the systém in question is in an investi-
gated subset of 5”, demanding answers of this kind: “the degree of uncertainty of
this event is at least as great as the degree of uncertainty aseribed to an event T”,
or “the degree of uncertainty of this event is smaller than that aseribed to an
event J5”, A and B being events from the elementary basis in both the cases so
that the subject can také profit of the uncertainty degrees aseribed to them, in
her/his decision making, thanks to her/his knowledge concerning the practical and
extra-mathematical circumstances of the systém and the decision-making problém
vinder consideration. E.g., a solution to a problém may be takwi as good and fail-
jiroof if we know that the uncertainty deseribing the possibility of its failure is not
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greater than the danger of a strong earthquake iii our region, even if we perhai)S
do not know the precise probability valné of the occurrence of the last eatastrophe.

At least the three following problems or directions of fnrther investigation would
deserve being taken into consideration.(I)We háve chosen, in this páper, a rather generál approach when degrees of

uncertainty are subsets of a partially ordered set. Consequently, the set of
uncertainty degrees can be endowed by two structures; the Boolean one,
generated on the power-set V{T) of the partially ordered set (T, :<) by the
usual set-theoretic operations and relations (e.g., C, fl, U), and the relations
and operations defined throngh the partial ordering relation on T (e.g.,
(Z, n, U). A question arises whether it is possible to obtain a siniilar model
either with single-valued uncertainties, even if from a larger set than T, or
vvith set-vahied uncertainties but structnred only by usnal set-theoretic oi>
erations and relations.(II)In the author’s opinion, the conditions imposed in this páper on the structure
of the set of uncertainty degrees seeni to be the weakest ones under which a
non-trivial fragment of the theory of belief fnnctions can be built up. Never-
theless, this conjecture should be re-written in a more formalized way to be
either proved or rejected.(III)It would be interesting and perhaps usefnl to seek for a non-artificial and
rather practical structure of events charged by uncertainty such that this
structure would rneet the demands imposed in this páper, but would not, nieet
some stronger demands requested by, say, probabilistic rnodels of decision
rnaking under uncertainty.

Let US hope that at least some of these problems will be touched by further
investigative efforts.

Items [3] and [12] listed below may serve as good sources of elernentary knowl-
edge concerning Boolean algebras, partial ordering and related structures. Mono-
graphs [5] and [10] then provide the basic pieces of information concerning the
rneasure theory in generál and the probability theory in particular, both in their
most abstract and mathematically formalized settings. Some more referenc('s, the-
matically very close to the subject of this i)aper, are also listed below.
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