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Abstract. Let K be a field and S = K[x1, . . . , xn]. Let I be a monomial ideal of S and
u1, . . . , ur be monomials in S. We prove that if u1, . . . , ur form a filter-regular sequence on
S/I , then S/I is pretty clean if and only if S/(I, u1, . . . , ur) is pretty clean. Also, we show
that if u1, . . . , ur form a filter-regular sequence on S/I , then Stanley’s conjecture is true
for S/I if and only if it is true for S/(I, u1, . . . , ur). Finally, we prove that if u1, . . . , ur is
a minimal set of generators for I which form either a d-sequence, proper sequence or strong
s-sequence (with respect to the reverse lexicographic order), then S/I is pretty clean.
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1. Introduction

Let R be a multigraded Noetherian ring andM a finitely generated multigraded R-

module. (Here, “multigraded” stands for “Zn-graded”.) A basic fact in commutative

algebra says that there exists a finite filtration

F : 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

of multigraded submodules of M such that there are multigraded isomorphisms

Mi/Mi−1
∼= R/pi(−ai) for some ai ∈ Zn and some multigraded prime ideals pi

of R. Such a filtration of M is called a (multigraded) prime filtration. The set of

prime ideals p1, . . . , pr which define the cyclic quotients of F will be denoted by
SuppF . It is known (and easy to see) that AssR M ⊆ SuppF ⊆ SuppR M .

The research of the second and third authors are supported by grants from IPM
(No. 90130212 and No. 90130062, respectively).
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Let MinM denote the set of minimal prime ideals of SuppR M . Dress [4] called

a prime filtration F of M clean if SuppF = MinM . Pretty clean filtrations were

defined as a generalization of clean filtrations by Herzog and Popescu [7]. A prime

filtration F is called pretty clean if for all i < j for which pi ⊆ pj , it follows that

pi = pj. If F is a pretty clean filtration of M , then SuppF = AssR M ; see [7],

Corollary 3.4. The converse is not true in general as shown by some examples in [7]

and [16]. The prime filtration F of M is called almost clean if SuppF = AssR M .

The R-module M is called clean (or pretty clean or almost clean) if it admits

a clean (or pretty clean or almost clean) filtration. Obviously, cleanness implies

pretty cleanness and pretty cleanness implies almost cleanness.

Throughout, let K be a field and I a monomial ideal of the polynomial ring

S = K[x1, . . . , xn]. In this paper, we always consider the ring S with its standard

multigrading. So, an ideal J of S is multigraded if and only if J is a monomial ideal.

When I is square-free, one has AssS S/I = MinS/I, and so the above three concepts

coincide for S/I. If S/I is pretty clean, then [7], Theorem 6.5, asserts that Stanley’s

conjecture holds for S/I; see the paragraph preceding Theorem 3.6 for the statement

of this conjecture.

Let u1, . . . , ur be monomials in S. If u1, . . . , ur is a regular sequence on S/I, then

by [11], Theorem 2.1, S/I is pretty clean if and only if S/(I, u1, . . . , ur) is pretty

clean. In this paper, we pursuit this line of research not only for regular sequences,

but also for other special types of sequences of monomials.

We show that the assertion of [11], Theorem 2.1, is also true for cleanness and

almost cleanness. Also, we prove that if u1, . . . , ur is a filter-regular sequence on S/I,

then S/I is pretty clean if and only if S/(I, u1, . . . , ur) is pretty clean. Next, we show

that if u1, . . . , ur form a filter-regular sequence on S/I, then Stanley’s conjecture is

true for S/I if and only if it is true for S/(I, u1, . . . , ur).

Assume that u1, . . . , ur is a minimal set of generators for I. We prove that if either

u1, . . . , ur is a d-sequence, proper sequence or strong s-sequence (with respect to the

reverse lexicographic order), then S/I is pretty clean.

2. Regular sequences

We begin with the following preliminary results.

Lemma 2.1. Let R be a commutative Noetherian ring, M an R-module and A

an Artinian submodule of M . Then

AssR M = AssR A ∪ AssR M/A.
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P r o o f. It is well-known that

AssR A ⊆ AssR M ⊆ AssR A ∪AssR M/A.

On the other hand, [3], Lemma 2.2, yields that

AssR M/A ⊆ AssR M ∪ SuppR A.

But A is Artinian, and so SuppR A = AssR A. This implies our desired equality. �

Lemma 2.2. Let R be a multigraded Noetherian ring, M a multigraded finitely

generated R-module and A a multigraded Artinian submodule of M . If M/A is

pretty clean (almost clean, respectively), then M is pretty clean (almost clean, re-

spectively) too.

P r o o f. Since A is an Artinian R-module, one has

MinA = AssR A = SuppR A ⊆ MaxR.

So obviously, ifM/A is pretty clean, thenM is pretty clean too. Also, by Lemma 2.1,

almost cleanness of M/A implies almost cleanness of M . �

We denote the maximal monomial ideal (x1, . . . , xn) of the ring S = K[x1, . . . , xn]

by m. For an S-module M , Hi
m(M) denotes i-th local cohomology module of M

with respect to m. If M is a multigraded finitely generated S-module, then Hi
m(M)

is a multigraded Artinian S-module for all i.

Example 2.3. Lemma 2.2 is not true for the cleanness. To this end, let S =

K[x, y] and I = (x2, xy). Set M := S/I and A := H0
m(M). Clearly A = (x)/I, and

so M/A ∼= S/(x). It is easy to see that M/A is clean while M is not clean.

Proposition 2.4. Let M be a multigraded finitely generated S-module and A

a multigraded Artinian submodule of M . ThenM is pretty clean if and only if M/A

is pretty clean.

P r o o f. In view of Lemma 2.2, it remains to show that if M is pretty clean,

then M/A is pretty clean. Let

F : 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

be a pretty clean filtration of M . For any S-module N , let lS(N) denote the length

of N . First, by induction on t := lS(H
0
m(M)), we show that M/H0

m(M) is pretty
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clean. For t = 0, there is nothing to prove. Now, assume that t > 0 and the claim

holds for t − 1. Then H0
m(M) 6= 0, and so m ∈ AssS M = SuppF . Since the

filtration F is pretty clean and AnnS M1 ⊆ m, it follows that M1
∼= S/m, and so

(M1 :M m∞) = H0
m(M). Then, one has

H0
m

( M

M1

)

=
M1 :M m∞

M1

=
H0

m(M)

M1

,

and so

lS

(

H0
m

( M

M1

))

= lS(H
0
m(M))− lS(M1) = t− 1.

Obviously, M/M1 is pretty clean, and so by the induction hypothesis, (M/M1)/

H0
m(M/M1) is pretty clean. But,

M/M1

H0
m(M/M1)

=
M/M1

H0
m(M)/M1

∼= M

H0
m(M)

,

and hence M/H0
m(M) is pretty clean.

Since A is a multigraded Artinian submodule of M , one has A ⊆ H0
m(M). From

the first part of the proof, we conclude that (M/A)/(H0
m(M)/A) is pretty clean. But

H0
m(M)/A is a multigraded Artinian submodule of M/A, and so Lemma 2.2 implies

that M/A is pretty clean. �

In what follows, we recall some needed notation and facts about monomial ideals.

For each subset H of S, let MonH denote the set of all monomials in H . For any

monomial ideal I of S, there is a unique minimal generating set G(I) of I. Clearly,

G(I) consists of finitely many monomials and there is no divisibility among different

elements of G(I). Also for any nonempty subset T of MonS, set G(T ) := G((T )).

Clearly, G((T )) is a finite subset of T . A monomial ideal of S is irreducible if and

only if it is of the form (xa1

i1
, . . . , xat

it
), where ai ∈ N for all i; see [6], Corollary 1.3.2.

Moreover, (xa1

i1
, . . . , xat

it
) is (xi1 , . . . , xit)-primary and each monomial ideal can be

written as a finite intersection of irreducible monomial ideals. Let I be a monomial

ideal of S and P : I =
r
⋂

i=1

Qi a primary decomposition of I such that each Qi is an

irreducible monomial ideal of S. We use notation Ti(P) for G
(

Mon
(i−1
⋂

j=1

Qj \Qi

))

.

Notice that

T1(P) = G(Mon(S \Q1)) = {1}.

For proving our first theorem, we shall need the following lemma.
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Lemma 2.5 ([14], Corollary 2.7). Let I be a monomial ideal of S. The following

conditions are equivalent:

a) S/I is clean (or pretty clean or almost clean).

b) There exists a primary decomposition P : I =
r
⋂

j=1

Qj of I, where each Qj is an

irreducible pj-primary monomial ideal, such that

i) ht pj 6 ht pj+1 for all j and {p1, . . . , pr} = MinS/I,

(or ht pj 6 ht pj+1 for all j or {p1, . . . , pr} = AssS S/I) and

ii) Tj(P) is a singleton for all 1 6 j 6 r.

Next, we generalize [11], Theorem 2.1. It also extends [12], Corollary 4.10.

Theorem 2.6. Let I be a monomial ideal of S and u1, . . . , uc ∈ MonS a regular

sequence on S/I. Then S/I is clean (or pretty clean or almost clean) if and only if

S/(I, u1, . . . , uc) is clean (or pretty clean or almost clean).

P r o o f. By induction on c, it is enough to prove the case c = 1. Let u ∈ MonS

be a non zero-divisor on S/I. Without loss of generality, we may and do assume that

for some integer 0 6 t < n, the only variables that divide u are xt+1, . . . , xn. Then

u =
n
∏

i=t+1

xai

i for some natural integers at+1, . . . , an and I = JS for some monomial

ideal J of S′ := K[x1, . . . , xt].

First, we show that if S/I is clean (or pretty clean or almost clean), then S/(I, u)

is clean (or pretty clean or almost clean). Let P : I =
r
⋂

i=1

Qi be a primary de-

composition of I which satisfies the condition b) in Lemma 2.5. Let 1 6 e 6 r.

Since

AssS S/I = {p1, . . . , pr}
and AssS S/Qe = {pe}, it turns out that u is also a non zero-divisor on S/Qe. Hence

Qe = qeS for some irreducible monomial ideal qe of S
′. Obviously,

P ′ : (I, u) =

( n
⋂

i=t+1

(Q1, x
ai

i )

)

∩
( n

⋂

i=t+1

(Q2, x
ai

i )

)

∩ . . . ∩
( n

⋂

i=t+1

(Qr, x
ai

i )

)

is a primary decomposition of (I, u) and each (Qi, x
aj

j ) is an irreducible (pi, xj)-

primary monomial ideal. We are going to show that the condition b) in Lemma 2.5

holds for P ′. Clearly, T1(P ′) is a singleton. For each t+ 2 6 i 6 n, we have

G

(

Mon

( i−1
⋂

j=t+1

(Q1, x
aj

j ) \ (Q1, x
ai

i )

))

= G

(

Mon

((

Q1,

i−1
∏

j=t+1

x
aj

j

)

\ (Q1, x
ai

i )

))

=

{ i−1
∏

j=t+1

x
aj

j

}

.
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Let 2 6 i 6 r, t+ 1 6 h 6 n and assume that Ti(P) = {v}. Since
((i−1

⋂

j=1

n
⋂

k=t+1

(Qj , x
ak

k )

)

∩
( h−1

⋂

l=t+1

(Qi, x
al

l )

))

\ (Qi, x
ah

h )

=

((i−1
⋂

j=1

(

Qj ,
n
∏

k=t+1

xak

k

))

∩
(

Qi,
h−1
∏

l=t+1

xal

l

))

\ (Qi, x
ah

h ),

one has

G

(

Mon

(((i−1
⋂

j=1

n
⋂

k=t+1

(Qj , x
ak

k )

)

∩
( h−1

⋂

l=t+1

(Qi, x
al

l )

))

\(Qi, x
ah

h )

))

=

{

v

h−1
∏

l=t+1

xal

l

}

.

So, Ti(P ′) is a singleton for all i. On the other hand, we can easily deduce that

AssS
S

(I, u)
=

{

(p, xk) ; p ∈ AssS
S

I
and t+ 1 6 k 6 n

}

,(∗)

Min
S

(I, u)
=

{

(p, xk) ; p ∈ Min
S

I
and t+ 1 6 k 6 n

}

,(†)

and

(‡) ht(p, xk) = ht p+ 1

for all p ∈ AssS S/I and all t + 1 6 k 6 n. Hence P ′ satisfies the condition b) in

Lemma 2.5.

Conversely, let S/(I, u) be clean (or pretty clean or almost clean). So, (I, u) has a

primary decomposition P which satisfies the condition b) in Lemma 2.5. From (∗),
we can conclude that P has the form

P : (I, u) = (Q1, x
hj1

j1
) ∩ (Q2, x

hj2

j2
) ∩ . . . ∩ (Qs, x

hjs

js
),

where for each 1 6 i 6 s, Qi = qiS for some irreducible monomial ideal qi of S
′,

√
Qi ∈ AssS S/I and ji ∈ {t + 1, . . . , n}. It follows that I =

s
⋂

i=1

Qi is a primary

decomposition of I. By deleting unneeded components, we get a primary decompo-

sition

P ′ : I = Qi1 ∩Qi2 ∩ . . . ∩Qil

such that i1 < i2 < . . . < il and for each 1 6 j 6 l,
⋂

k<j

Qik * Qij and
⋂

k<j

Qik =
⋂

m<ij

Qm. We intend to show that P ′ satisfies the condition b) in Lemma 2.5. Since

AssS S/I = {
√

Qi1 ,
√

Qi2 , . . . ,
√

Qil},
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in view of (∗), (†) and (‡), we only need to indicate that each Ti(P ′) is a singleton.

Let 1 6 j 6 l. Since
⋂

k<j

Qik * Qij , it follows that there exists at least a monomial v

in G
(

⋂

k<j

Qik

)

\ Qij . We claim that v is unique. If there exists a monomial w 6= v

in G
(

⋂

k<j

Qik

)

\ Qij , then since
⋂

k<j

Qik =
⋂

m<ij

Qm, it turns out that v and w are

belonging to G
(

⋂

m<ij

Qm

)

\ Qij . Denote ij by d. Since v, w ∈ S′, we can conclude

that v and w belong to

G((Q1, x
hj1

j1
) ∩ (Q2, x

hj2

j2
) ∩ . . . ∩ (Qd−1, x

hjd−1

jd−1
)) \ (Qd, x

hjd

jd
).

This contradicts the assumption that Td(P) is a singleton. Therefore, each Ti(P ′) is

a singleton, as desired. �

As an immediate consequence, we obtain the following result; see [5], Proposi-

tion 2.2.

Corollary 2.7. Let u1, . . . , ut ∈ MonS be a regular sequence on S. Then

S/(u1, . . . , ut) is clean.

3. Filter-regular sequences

Definition 3.1. Let M be a multigraded finitely generated S-module. A non-

unit monomial u in S is called a filter-regular element on M if

u /∈
⋃

p∈AssS M−{m}

p.

A sequence u1, . . . , ur of non-unit monomials in S is called a filter-regular sequence

on M if for each 1 6 i 6 r, ui is a filter-regular element on M/(u1, . . . , ui−1)M .

Lemma 3.2. Let M be a multigraded finitely generated S-module. An element

1 6= u ∈ MonS is a filter-regular element of M if and only if it is not a non zero-

divisor of M/H0
m(M).

P r o o f. Since H0
m(M) is Artinian and H0

m(M/(H0
m(M))) = 0, Lemma 2.1 yields

that

AssS

( M

H0
m(M)

)

= AssS M − {m}.

Hence, by definition the claim is immediate. �
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Theorem 3.3. Let I be a monomial ideal of S and u1, . . . , ur ∈ MonS a filter-

regular sequence on S/I. Then S/I is pretty clean if and only if S/(I, u1, . . . , ur) is

pretty clean.

P r o o f. By induction on r, it is enough to prove that for a monomial filter-

regular element u of S/I, S/I is pretty clean if and only if S/(I, u) is pretty clean.

For convenience, we setM := S/I. By Proposition 2.4,M is pretty clean if and only

if M/H0
m(M) is pretty clean. By Lemma 3.2, u is a non zero-divisor on M/H0

m(M).

Hence, in view of the isomorphism

M/H0
m(M)

u(M/H0
m(M))

∼= M

uM +H0
m(M)

,

Theorem 2.6 yields that M/H0
m(M) is pretty clean if and only if M/(uM +H0

m(M))

is pretty clean. On the other hand, as (uM +H0
m(M))/(uM) is a multigraded Ar-

tinian submodule of M/uM , by Proposition 2.4 and the isomorphism

M

uM +H0
m(M)

∼= M/uM

(uM +H0
m(M))/uM

,

it turns out that M/(uM +H0
m(M)) is pretty clean if and only if M/uM is pretty

clean. Therefore, M is pretty clean if and only if M/uM is pretty clean. �

Corollary 3.4. Let monomials u1, . . . , ur be a filter-regular sequence on S. Then

S/(u1, . . . , ur) is pretty clean.

Lemma 3.5. Let M be a multigraded finitely generated S-module and let

u1, . . . , ur ∈ MonS be a filter-regular sequence on M . If m ∈ AssS M , then

m ∈ AssS(M/(u1, . . . , ur)M).

P r o o f. By induction on r, it is enough to prove that if u is a monomial filter-

regular element ofM and m ∈ AssS M , then m ∈ AssS M/(uM). Since m ∈ AssS M ,

there exists 0 6= x ∈ M such that m = 0 :S x. Then, there exists a nonnegative

integer t such that x ∈ utM \ ut+1M . Hence x = uty for some y ∈ M \ uM .

Clearly, 0 :S y ⊂ S. Let p ⊂ m be a prime ideal of S containing 0 :S y. Since u

is a filter-regular element on M and p 6= m, it follows that u/1 ∈ Sp is Mp-regular.

Hence

(0 :S x)p = 0 :Sp

ut

1

y

1
= 0 :Sp

y

1
= (0 :S y)p ⊆ pSp,

and so

(0 :S x) ⊆ (0 :S x)p ∩ S ⊆ pSp ∩ S = p.
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This is a contradiction, and so m is the unique prime ideal of S containing (0 :S y).

So,

m =
√

(0 :S y) ⊆
√

(0 :S y + uM) ⊂ S.

Therefore,
√

(0 :S y + uM) = m, and so m ∈ AssS M/(uM). �

A decomposition of S/I as direct sum of K-vector spaces of the form D : S/I =
r
⊕

i=1

uiK[Zi], where ui is a monomial in S and Zi ⊆ {x1, . . . , xn}, is called a Stanley
decomposition of S/I. The number sdepthD := min{|Zi| : i = 1, . . . , r} is called the
Stanley depth of D. The Stanley depth of S/I is defined to be

sdepthS/I := max{sdepthD : D is a Stanley decomposition of S/I}.

Stanley conjectured [18] that depthS/I 6 sdepthS/I. This conjecture is known as

Stanley’s conjecture. Recently, this conjecture was extensively examined by several

authors; see, e.g., [1], [2], [7], [5], [10], [11], [15], and [16]. On the other hand, the

present third author [15] conjectured that there always exists a Stanley decompo-

sition D of S/I such that the degree of each ui is at most regS/I. We refer to

this conjecture as h-regularity conjecture. It is known that for square-free monomial

ideals, these two conjectures are equivalent.

Theorem 3.6. Let I be a monomial ideal of S and u1, . . . , ur ∈ MonS a filter-

regular sequence on S/I. Then Stanley’s conjecture holds for S/I if and only if it

holds for S/(I, u1, . . . , ur).

P r o o f. By induction on r, it is enough to prove that if u is a monomial filter-

regular element on S/I, then Stanley’s conjecture holds for S/I if and only if it

holds for S/(I, u). First, assume that m ∈ AssS S/I. Then depthS/I = 0 and by

Lemma 3.5, m ∈ AssS S/(I, u). So, depthS/(I, u) = 0. Hence the claim is immediate

in this case. Now, assume that m /∈ AssS S/I. Then u is a non zero-divisor on S/I,

and so by [11], Theorem 1.1, Stanley’s conjecture holds for S/I if and only if it holds

for S/(I, u). �

4. d-sequences

Definition 4.1. Let R be a commutative Noetherian ring,M a finitely generated

R-module and f1, . . . , ft ∈ R.

i) f1, . . . , ft is called a d-sequence on M if f1, . . . , ft is a minimal generating set

of the ideal (f1, . . . , ft) and (f1, . . . , fi)M :M fi+1fk = (f1, . . . , fi)M :M fk for

all 0 6 i < t and all k > i+1. A d-sequence on R is simply called a d-sequence.
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ii) f1, . . . , ft is called a proper sequence if fi+1Hj(f1, . . . , fi;R) = 0 for all 0 6 i < t

and all j > 0. Here Hj(f1, . . . , fi;R) denotes the j-th Koszul homology of R

with respect to f1, . . . , fi.

iii) Let M = (g1, . . . , gt) and (aij)s×t be a relation matrix of M . Then the sym-

metric algebra of M is defined by SymM := R[y1, . . . , yt]/J , where J =
( t
∑

j=1

a1jyj , . . . ,
t
∑

j=1

asjyj

)

. Let < be a monomial order on the monomials in

y1, . . . , yt with the property y1 < . . . < yt. Set Ii := (g1, . . . , gi−1) :R gi. Then

(I1y1, . . . , Ityt) ⊆ in< J . The sequence g1, . . . , gt is called an s-sequence (with

respect to <) if (I1y1, . . . , Ityt) = in< J . If in addition I1 ⊆ . . . ⊆ It, then

g1, . . . , gt is called a strong s-sequence.

Definition 4.2. Let I be a (not necessarily square-free) monomial ideal of S

with G(I) = {u1, . . . , um}. A monomial ut is called a leaf of G(I) if ut is the only

element in G(I) or there exists a j 6= t such that gcd(ut, ui) | gcd(ut, uj) for all i 6= t.

In this case, uj is called a branch of ut. We say that I is a monomial ideal of forest

type if every nonempty subset of G(I) has a leaf.

[17], Theorem 1.5, yields that if I is a monomial ideal of forest type, then S/I is

pretty clean.

Lemma 4.3. Let u1, . . . , ut be a sequence of monomials with the following prop-

erties:

i) there is no i 6= j such that ui | uj ; and

ii) gcd(ui, uj) | uk for all 1 6 i < j < k 6 t.

Then I = (u1, . . . , ut) is of forest type, and so S/I is pretty clean.

P r o o f. For every nonempty subset A = {un1
, . . . , uns

} of {u1, . . . , ut}, we may
and do assume that n1 < n2 < . . . < ns. Then obviously the first element of A is

a leaf and the last element of A is a branch for that leaf. So, I is of forest type.

Then [17], Theorem 1.5, implies that S/I is pretty clean. �

Proposition 4.4. Let I be a monomial ideal of S with G(I) = {u1, . . . , ut}. If
u1, . . . , ut is a d-sequence, proper sequence or strong s-sequence (with respect to the

reverse lexicographic order), then S/I is pretty clean.

P r o o f. By [8], Corollaries 3.3 and 3.4, any d-sequence is a strong s-sequence

with respect to the reverse lexicographic order and u1, . . . , ut is a proper sequence if

and only if it is a strong s-sequence with respect to the reverse lexicographic order.

So, by the hypothesis and [19], Theorem 3.1, there is no i 6= j such that ui | uj

and gcd(ui, uj) | uk for all 1 6 i < j < k 6 t. Hence, by Lemma 4.3, S/I is pretty

clean. �
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Let I be a monomial ideal of S and u a monomial which is a d-sequence on

S/I. The following example shows that it may happen that S/I is pretty clean, but

S/(I, u) is not.

Example 4.5. Let I = (x1x2, x2x3, x3x4) be a monomial ideal of S = K[x1, x2,

x3, x4]. It is easy to see that S/I is pretty clean and x4x1 is a d-sequence on S/I.

But, by [16], Example 1.11, we know that S/(I, x4x1) = S/(x1x2, x2x3, x3x4, x4x1)

is not pretty clean.

We conclude the paper with the following result.

Corollary 4.6. Let I be a monomial ideal of S. Assume that either:

i) I is generated by a filter-regular sequence; or

ii) I is generated by a d-sequence.

Then both Stanley’s and the h-regularity conjectures hold for S/I. Also, in each of

these cases S/I is sequentially Cohen-Macaulay and depthS/I = min{dimS/p ; p ∈
AssS S/I}.

P r o o f. In both cases i) and ii), it follows that S/I is pretty clean; see Corol-

lary 3.4 and Proposition 4.4.

As S/I is pretty clean, [7], Theorem 6.5, asserts that Stanley’s conjecture holds

for S/I. In fact, by [9], Proposition 1.3, we have depthS/I = sdepthS/I. On the

other hand, by [15], Theorem 4.7, the h-regularity conjecture holds for S/I.

Next, as S/I is pretty clean, [7], Corollary 4.3, implies that S/I is sequentially

Cohen-Macaulay. In [13] this fact is reproved by a different argument and, in addi-

tion, it is shown that depth of S/I is equal to the minimum of the dimension of S/p,

where p ∈ AssS S/I. �
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