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Abstract. This paper presents a Komlds theorem that extends to the case of the set-valued
Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably
bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As
applications, a solution to a best approximation problem is given, weak compactness re-
sults are deduced and, finally, an existence theorem for an integral inclusion involving the
Henstock-Kurzweil-Pettis set-valued integral is obtained.
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1. INTRODUCTION

Komlés’s classical theorem (see [17]) yields that from any L!-bounded sequence
of real functions one can extract a subsequence such that the arithmetic averages of
all its subsequences converge pointwise almost everywhere. Similar results were then
obtained in the vector-valued case and, moreover, in the case of Py (X)-valued
functions, X being a separable Banach space: in Theorem 2.5 in [2] an integrable
boundedness condition is imposed, while Theorem 3.1 in [16] requires Pettis integra-
bility of the multifunctions.

Through the present work, we extend these results providing a Komlés-type theo-
rem for Pyi.(X)-valued functions under Henstock-Kurzweil-Pettis integrability as-
sumptions. The set-valued Henstock-Kurzweil-Pettis integral was introduced in [19]
in the same manner as the Pettis set-valued integral (see e.g. [9]), but the support
functionals are integrated in the Henstock-Kurzweil sense instead of the Lebesgue

one.
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Our method is based on an abstract Komlds-type result (Theorem 2.1 in [1]), which
was also used to obtain a Komlds theorem for Pettis integrable (multi)functions in [3].
As a corollary, a Komlds result similar to that obtained in [16] for the Pettis set-
valued integral is given.

In the second part of the work, we apply the results obtained in the first part to
give a solution to a best approximation problem. Such a problem was investigated
under different assumptions in [5] for integrably bounded multifunctions, as well as
in [16] for Pettis integrable set-valued applications.

The third section contains several weak compactness criteria in the set-valued
HKP-integration, using Komlds’s results given above and a uniform integrability
condition specific to the HK integrability. In particular, a weak compactness result
for the family of all integrable multi-selections of an HKP-integrable weakly compact
convex-valued multifunction is proved.

Recently, many authors have investigated the existence of solutions of differen-
tial (or integral) equations under Henstock-Kurzweil (e.g. [7], [10], [11] and [20])
and Henstock-Kurzweil-Pettis integrability assumptions (e.g. [8]). In that line, we
obtain an existence result for a set-valued integral equation involving the Henstock-
Kurzweil-Pettis integral which represents an extension of Theorem VI-7 in [6] (where
the Pettis integrability is required).

2. TERMINOLOGY AND NOTATION

Let us begin by introducing the basic facts on the Henstock-Kurzweil integrability,
a concept that on the real line extends the classical Lebesgue one.

A positive function ¢ on a real interval [0,7T] provided with the Lebesgue o-al-
gebra ¥ and the Lebesgue measure p = ds is called a gauge. A partition of [0, 7]
is a finite family (Ii,ti)le of nonoverlapping intervals that covers [0,7] with the
associated so-called tags t; € I;. A partition is said to be dé-fine if for each i, I; C
Jti —6(ti), ti +6(t:)[-

Definition 1. A function f: [0,7] — R is Henstock-Kurzweil (shortly, HK-)

integrable if there exists a real, denoted by (HK) fOT f(t)dt, satistying that for ev-
k
i=1

ery € > 0 one can find a gauge d. such that, for every d.-fine partition (I;,t;)

k

> f(t)w(l;)—(HK) fOT f@) dt‘ < e. The function f is HK-integrable on a measur-
i=1

able E C [0,T] if fxg is HK-integrable on [0, T].

Remark 2. Theorem 9.8 in [14] yields that an HK-integrable function is
HK-integrable on any subinterval and, by Theorem 9.12 in [14], its primitive
(HK) [, f(t)dt is continuous.
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Let us recall the properties that connect this kind of integrability with the
Lebesgue one:

Proposition 3 (Theorem 9.13 in [14]). Let f: [0,7] — R be HK-integrable on
[0,T]. Then
a) f is measurable;
b) if f is nonnegative on [0,T], then it is Lebesgue integrable;
c) f is Lebesgue integrable on [0,T], if and only if it is HK-integrable on every
measurable subset of [0,T].

The Lebesgue integrability is preserved under multiplication by essentially
bounded real functions. The following result states that the HK-integrability is
preserved under multiplication by functions of bounded variation.

Lemma 4 (Theorem 12.21 in [14]). Let f: [0,7] — R be an HK-integrable
function and let g: [0,T] — R be of bounded variation. Then fg is HK-integrable.

We will also use the following uniform integrability notion, specific to the HK-
integrability, that allows to obtain a Vitali-type convergence result (Theorem 13.16
in [14]):

Definition 5. A family . of HK-integrable functions defined on [0, 77 is said to
be uniformly HK-integrable if for each € > 0 there exists a gauge §. such that for every
k
d.-fine partition of [0, 7] and every f € Z, | > f(t;)u(l;) — (HK) fOT f@) dt‘ <e.
i=1
Let us note that this concept does not allow us to ignore the p-null sets, as is
shown by the following example.

Example 6 (see [14], p. 209). The sequence (f)nen, where fp,: [0,1] — R is
defined for each n € N by f,(t) = 0 ¥t € ]0,1] and f,(0) = n, is not uniformly
HK-integrable, although all functions of this sequence differ only at one point.

Remark 7. The class of Henstock-Kurzweil integrable functions (which coincides
with the class of Denjoy and Perron integrable functions, cf. [14]) is contained in
the class of Khintchine integrable functions (see [14], Chapter 15). In [13] and [12],
Khintchine integrability is called Denjoy integrability. This will not lead to any
confusion, because we will use only the HK-integral and, when appealing to the
results in [13] and [12], we will mean the integration in Khintchine sense.

Through the paper, X is a separable Banach space, X* and X** denote its topolog-
ical dual and bi-dual, respectively, and P .(X) stands for the family of its weakly
compact convex subsets. On Py.(X) the Hausdorff distance D is considered and,
for every A € Pyic(X), we put |A| = D(A4,{0}).
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A well known extension of the Lebesgue integral to the Banach-valued case is the
Pettis integral (see [18]). One can generalize this notion of integrability by consider-
ing for the canonical bilinear form (-, -) the HK-integral instead of the Lebesgue one
as follows:

Definition 8. A function f: [0,7] — X is said to be Henstock-Kurzweil-Pettis
(shortly, HKP-) integrable if

1) f is scalarly HK-integrable, i.e. for all z* € X*, (z*, f(-)) is HK-integrable;

2) for each [a,b] C [0,T] there exists 2}, € X such that

b
(2", 20 = (HK) / (", £(s)) ds,

for all z*eX*.

We denote x4 by (HKP) f; f(s)ds and call it the HKP-integral of f on [a, b].
If in the condition 2) we require only T[ap) € X, then f is called Henstock-
Kurzweil-Dunford (shortly, HKD-) integrable.

Remark 9.

i) Following Remark 2, if f is HKP-integrable, then its primitive (HKP) [j f(t)dt
is weakly continuous.

ii) Obviously, any Pettis integrable function is HKP-integrable. The converse is
not true: the function considered in Section 4 in [12] provides an example.

One can consider (via Lemma 4) the space of HKP-integrable X-valued func-
tions equipped with the topology induced by the tensor product of the space
of real functions of bounded variation and X* (we call it the weak-Henstock-
Kurzweil-Pettis topology and denote it by w-HKP). That is: f, — f if, for every
g: [0,T] — R of bounded variation and every z* € X*, (HK) fOT g(s){(z*, fa(s))ds —
(HK) fOT g(s){(z*, f(s)) ds. Our considerations arise naturally from Pettis integrabil-
ity setting, where the topology induced on the space of Pettis integrable functions
by the tensor product L>°(][0,7]) ® X* is called the weak-Pettis topology.

Let us recall various kinds of set-valued measurability and integrability that will be
used in the sequel. The support functional of A € Py.(X) is denoted by o (-, A) and
is defined by o(z*, A) = sup{(z*,x), € A} for all z* € X*. A set-valued function
F: [0,T] — X is said to be measurable if, for every open subset O C X, the set
F~10) ={t €[0,T]; F(t)N O # 0} is measurable. F is called scalarly measurable
if, for every x* € X*, o(a*, F(-)) is measurable. According to Theorem III-37 in [6],
in the case when X is separable, a Py (X)-valued multifunction is measurable if
and only if it is scalarly measurable. A function f: [0,7] — X is called a selection
of Flif f(t) € F(t) a.e.
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Definition 10.
i) A multifunction T is said to be integrably bounded if the real function |T'(-)| is
Lebesgue integrable.

ii) T is said to be scalarly (resp. scalarly HK-) integrable if, for every z* € X*,
o(z*,T'()) is Lebesgue (resp. HK-) integrable.

ill) A Puxe(X)-valued function T' is “Pettis integrable in Py (X)” (or, simply,
Pettis integrable since we will work only with Py (X)) if it is scalarly inte-
grable, and for every A € X there exists [4€ Pyi.(X) such that o(a*,I4) =
Jyo(x*,T(t))dt for each 2*€X*. We denote I4 by (P) [, T'(t) dt.

iv) A Py (X)-valued function I' is “HKP-integrable in Py (X)” (shortly, HKP-
integrable) if it is scalarly HK-integrable, and for every [a,b] C [0,T] there
exists I? € Py(X), such that o(z*,I°) = (HK) f; o(z*,T(t))dt, Va*eX™*.
We denote 1% by (HKP) [’ T'(t)dt.

Obviously, in the particular case of a single-valued function, these concepts coin-
cide with those given previously in the vector case.
It is worthwhile to restate here the characterizations of HKP-integrable & k. (X)-

valued multifunctions given in Theorem 1 in [19]:

Theorem 11. Let I': [0,7] — Pywie(X) be a scalarly HK-integrable multifunc-
tion. Then the following conditions are equivalent:

i) T is HKP-integrable;

ii) I' has at least one HKP-integrable selection and for every HKP-integrable se-
lection f there exists G: [0,T] — Py (X) Pettis integrable, such that T'(t) =
F@®)+G@), vt e[0,T);

iii) each measurable selection of T' is HKP-integrable.

In the set-valued setting, we will use the following Komlds-type convergence
(see 17]), involving the support functionals:

Definition 12. A sequence (F},), of Pyk.(X)-valued multifunctions is said to
be Komlds-convergent (shortly, K-convergent) to a Py (X)-valued multifunction F
if for every subsequence (F}, ), there exists a p-null set N C [0,7] (depending on
the subsequence) such that for every * € X* and every ¢t € [0,T]\ N,

o(a*, F(t) = limo <x % Zj; i, (t)) .
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3. A KoMLOS THEOREM FOR THE SET-VALUED
HENSTOCK-KURZWEIL-PETTIS INTEGRAL

By using an abstract Komlds-type theorem proved in [1], we obtain a Komlds-type
result for the Henstock-Kurzweil-Pettis set-valued integral. For the convenience of
the reader, we recall here Theorem 2.1 in [1], for the presentation of which we need
some notation.

Let (2,%, 1) be a finite measure space and Y a convex cone, provided with a
topology compatible with the operations of addition and multiplication by positive
scalars. #(Y) will denote its Borel o-algebra. Consider a collection &7 of ¥ ® Z(Y)-
measurable functions a: Q x Y — R such that, for every w € Q, a(w,-) is affine
and continuous on Y. A function f: 2 — Y is said to be .&/-scalarly measurable
if for every a € &, the real function a(-, f(-)) is X-measurable. Suppose that there
exists a sequence (a;)jen C </ which separates the points of Y. This means that
for every w € Q, y = z if and only if a;(w,y) = a;j(w, 2), Vj € N. Given a function
h: @ xY — [0,+00], we say that h(w,-) is (sequentially) inf-compact if for every
w € Qand a € R, the set {y € Y; h(w,y) < a} is sequentially compact.

Theorem 13 (Theorem 2.1 in [1]). Let (fn)nen be a sequence of of -scalarly
measurable Y -valued functions defined on 2 and satisfying that there exists h: ) X
Y — [0, +0o0] such that h(w,-) is convex and sequentially inf-compact and

1) sup, fy s (@, Fu()pld) < o0,V € N;

2) sup,, [o h(w, fn(w))p(dw) < 4o0.
Then there exists a subsequence (fi,)n C (fn)n that Komlds-converges to an
of -scalarly measurable function f such that [ h(w, f(w))p(dw) < +o0.

In the preceding theorem, f;; is the outer integration with respect to u, that is, for
a (possibly non-measurable) function : Q — R, we have [ pdu = inf{ [, ¢ du, ¢ €
LY (p), ¢ > P ael}.

Applying this result to an appropriate convex cone Y and a suitable family & of
affine continuous functions, we obtain, in the set-valued Henstock-Kurzweil-Pettis
integrability setting, the following Komlds-type result:

Theorem 14. Let X be a separable Banach space which is weakly sequentially
complete and let F,: [0,T] = Pyic(X) be a sequence of HKP-integrable multifunc-
tions. Suppose that

i) for every z* € X*

ia) there exists a real HK-integrable function f,~ such that

for(8) S o Fu(t)), Vte[0,T], Vne;
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ib) sup (HK) fOT o(z*, F,(t)) dt < 4o0;

ii) theren:Xist a function h: [0,T] X Pyre(X) — [0, +00] such that, for every t €
[0, T, h(t,-) is convex and sequentially inf-compact, and a countable measurable
partition (Bp,)m of [0,T] satisfying, for every m € N, the following conditions:
iia) sup, [ |o(z*, Fu(t))|dt < +oo, Va* € X*;
iib) sup,, [ h(t, Fu(t)) dt < +oo.

Then there exist an HKP-integrable Py (X)-valued function F and a subsequence
of (F,),, which K-converges to F'. Moreover, f;m h(t,F(t))dt < 4oo for eachm € N.

Proof. By the separability assumption on X, we can find a Mackey-dense
sequence (zj ), in the unit ball of X*. Consider the convex cone ¥ = Pyi.(X)
provided with the coarsest topology with respect to which all support functionals
are continuous. Consider also the family &/ = {a,«: z* € X*} of functions ag~:
[0,7] x Y — R, defined as az«(t,C) = o(z*,C), which are affine and continuous
on Y. Take the countable subfamily {azzz k € N} that, by the Mackey-density
assumption, separates the points of Y. Applying Theorem 13 on each B,,, after a
diagonal process we obtain a subsequence (Fj, ), which is Komlds-convergent to a
scalarly measurable Py (X )-valued function F. Moreover, |’ ;m h(t, F(t)) dt < +oo
for each m € N.

In order to prove the scalar HK-integrability of the limit multifunction, fix z* € X*
and use the hypotheses ia) and ib). For every n € N, the positive function — f, +

1

o(x*, =3 Fk,_-) is HK-integrable, therefore, by Theorem 9.13 in [14], it is Lebesgue
n =1

integrable. We are now able to apply Fatou’s Lemma to the sequence (— for +

1 n
o(x*, -> Fk,_-)) in order to obtain
n ;=1 n

T
/O (—for (£) + (2", F(1))) dt

< liminf /O —fun ( ZFk )
= (HK) /OT —fo+ (t) dt + lim inf (HK) /OT a(x*, % > R (t)) dt

T T
< (HK)/O fx*(t)dt+7slt€11N>(HK)/0 o(z*, Fy(t)) dt < +oc.

Consequently, —f,+(-) + o(z*, F(:)) is Lebesgue integrable and, since f,« is HK-
integrable, the HK-integrability of o(z*, F(-)) follows.
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Every measurable selection f of F' is scalarly HK-integrable since, for each
¥ e X*,

—o(—z*, F(t)) < (&*, f(t)) < o(a”, F(t)), ae. te0,T].

By Remark 7, f is Khintchine integrable too. Theorem 3 in [12] yields that, for
every [a,b] C [0,7], there exists an element of the bi-dual ], € X** such that,
for every z* € X*, (a*,a};y) = f;(x*, f(s))ds, the integral being in the Khint-
chine sense. As the function to integrate is HK-integrable too, we have (z*, xf‘;b]) =

(HK) fab (x*, f(s)) ds. The Banach space being weakly sequentially complete by The-
orem 40 in [13], we have xf‘a*,b] € X for every subinterval. Thus every measurable
selection of F' is HKP-integrable.

Finally, the implication iii) = i) in Theorem 11 ensures the HKP-integrability of
the limit set-valued function. O

The following Blaschke-type compactness criteria (e.g. Lemma 5.1 in [15]) will
allow us to obtain a useful consequence.

Lemma 15. Let X be a separable Banach space and let M € Py.(X). Then
the family of all weakly compact convex subsets of M is compact with respect to the
coarsest topology of Pyx.(X) for which o(x*,-) is continuous for every x* € X*.

Corollary 16. Let X be a weakly sequentially complete separable Banach
space and let (F,), be a sequence of HKP-integrable multifunctions F,: [0,T] —
Pwrc(X). Suppose that i) of the preceding theorem holds and that there is
a Pyxe(X)-valued multifunction F such that F,(t) C F(t) ae. for all n € N,
Then there exist an HKP-integrable P (X )-valued function F and a subsequence
of (F,,), which K-converges to F'.

Proof. Let us define h: [0,T] X Pyke(X) — [0, +00] by

{o if CCF(t),
h(t,C) =

+o00 otherwise.

It is convex and sequentially inf-compact with respect to the second variable. Indeed,
fixt € [0,T)and o € R. If & < 0, then {C € Py (X); h(t,C) < a} = 0. Otherwise,
{C € Pye(X); W(t,C) < a} = {C € Pyie(X); C C F(t)} which, by Lemma 15, is
compact with respect to the topology of P y.(X).

The countable measurable partition (B, ), of the real interval given by

B ={te[0,T;m—1<|F{t) <m}, VmeN
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satisfies hypothesis ii) in the preceding theorem: for every m € N,

sup/ |o(m*,Fn(t))|dt</
neN JB,, B

therefore, we are able to apply Theorem 14. O

|a(x*,ﬁ(t))|dt</ ()] dt < +o0;

m m

The next consequence is a Komldés-type result similar to Theorem 3.1 in [16] for
the set-valued Pettis integral:

Theorem 17. Let X be a separable reflexive Banach space and (F),), a sequence
of HKP-integrable Pyx.(X)-valued multifunctions satisfying hypothesis i) in Theo-
rem 14 and

ii’) one can find a measurable countable partition (By,)n of [0,T] such that, for
eachm € N,

sup/ |F(t)] dt < +o0.
neN m

Then there exist an HKP-integrable Py.(X)-valued function F and a subse-

quence of (F,), which K-converges to F.. Moreover, [, |F(t)|dt < +oo for every
m € N.

Proof. Alaoglu-Bourbaki’s theorem yields that the function h: [0,7] X
Pake(X) — [0, +00] defined by h(t,C) = |C| is convex and inf-compact in the sec-
ond variable, whence, thanks to Theorem 14, we obtain the announced result. ([l

Applying Biting Lemma, we can prove a stronger property of the above mentioned
subsequence and its Komlés-limit. Let us recall the Biting Lemma: for any L*([0, T7)-
bounded sequence (¢y,)n, there exist a subsequence (¢, )» and a sequence (Ap), C X
decreasing to ) such that the sequence (x ac %, )n is uniformly integrable.

Proposition 18. In the setting of Theorem 17, for every e > 0, there exists T, € X
with u(T.) < € such that for every +* € X* and every measurable A C [0, T\ T: we

have o<$*,/AF(t)dt> 117?10<z*,/4Fkn(t)dt),

where the set-valued integrals are Aumann integrals.

Proof. Since the sequence of measurable sets (By,)n covers the set of finite

measure [0, T] for every ¢ > 0, one can find m. € N such that u( U Bm) < %5.

m=mc+1
By hypothesis ii’) in the preceding theorem, sup [ s |F,(t)| dt < 400, whence
neN m
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the Biting Lemma yields a measurable set i C Lj B, such that u( Lj B, \
m=1

m=1

i) < ie and the sequence (|F,(:)|), is uniformly integrable on T.. Thus, T. =
( an Bm\i) U( B Bm) has p(T:) < € and, for every x* € X*, (o(z*, Fr,(*))n
isnllljﬁformly integr;nbzlem 5);1[0, T\T.. Vitali’s convergence theorem yields then that for
every 2* € X* and A C [0,T]\ T we have o(z*, [, F( *hmo * 4 Fr, (t)dt).

Finally, let us remark that any such measurable A is contained in U B,, and

since on each B,, all F,, and F are integrably bounded, their selectlons are Bochner
integrable on A, thus the set-valued integrals in the statement are Aumann integrals.
d

Remark 19. We can also prove Theorem 17 using a Komlds result for integrably
bounded multifunctions (Theorem 2.5 in [2]) in a manner similar to that in which
Theorem 3.1 in [16] was obtained.

4. APPLICATION TO A BEST APPROXIMATION PROBLEM

We are looking for a solution to the following best approximation problem: given
two Pyic(X)-valued HKP-integrable multifunctions H and F' defined on [0, T, we
want to get a Py (X)-valued HKP-integrable multifunction Fy with Fy(t) C F(t),
vVt € [0,7] such that

T
/ D(H(t), Fo(t)) dt

1nf{/ D(H(t),G(t))dt; G HKP-integrable, G(t)CF(t), Vt € [O,T]}.

Solutions to this problem were already found in [5] in the integrably bounded
setting and in [16] in the Pettis integrable one.

If the Banach space and its topological dual have the Radon-Nikodym property,
then the above problem has a solution. We use the following lower semi-continuity
property of the Hausdorff distance (Lemma 5.1 in [16]):

Lemma 20. Let (Ch)n C Pyuke(X) converge to Cy € Pyi.(X) with respect to
the topology of convergence of all support functionals. Then, for every C € P yy.(X),

D(C, Cy) < liminf D(C, Cy,).
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Theorem 21. Suppose that X and X* have the Radon-Nikodym property and let
H and F be two Pyx.(X)-valued HKP-integrable multifunctions defined on [0,T)].
Then there is a Pyic.(X)-valued HKP-integrable multifunction Fy with Fy(t) C
F(t),Vt € [0,T] such that the equality (1) is satisfied.

Proof. By Theorem 11 there exist HKP-integrable functions f, h and Py (X)-
valued Pettis integrable multifunctions Fy, Hy such that F(t) = f(t) + Fi(¢) and
H(t) = h(t) + Hi(t) for every ¢t € [0,T]. We can suppose that m < oo, where
m denotes the infimum in the equality (1), and consider a sequence (G,,), of HKP-
integrable Py (X )-valued multifunctions contained in F' such that

m = lim TD(H(t),Gn(t)) dt.

n—oo 0

Let us note that every Py (X )-valued HKP-integrable multifunction G,, contained
in F' can be written as the sum of f and a Pyi.(X)-valued Pettis integrable mul-
tifunction G contained in Fy. Indeed, since G, (t) C F(t) = f(t) + Fi(t) for ev-
ery t € [0,7], we obtain that GL(t) = —f(t) + G,(t) C Fi(t). Moreover, G} is
Puke(X)-valued and thus, since F; is Pettis integrable, by the characterization of
Pettis integrable 2. (X )-valued multifunctions (see [9]), Pettis integrability of G,
follows.
We claim that (G}),, satisfies the hypothesis of Theorem 3.3 in [16].

Indeed, since
—o(—a*, Fi(t)) < 02", G (1) < oz, Fi(t))

for every n € N and every t € [0,7] and, since —o(—2z*, Fi1(:)) and o(z*, Fi())
are Lebesgue integrable, it follows that the sequence (o (z*,GL(t))), is uniformly
integrable.
Considering B, = {t € [0,T]; m — 1 < |Fi(t)] < m}, we obtain a count-
able measurable partition of the interval [0, T] satisfying that sug / B, |GL(#)|dt <
ne

J5 |Fi(t)|dt < +oo for each m € N, and, %( U fAG}l(t)dt) c [LF@)dt e
" neN

Pyic(X) for all A C By,.

Then, applying Theorem 3.3 in [16] gives us a Pettis integrable . (X)-valued
function F and a subsequence (G}Cn)n that Komlds-converges to Fj.

Therefore, (Gy,, ), Komlds-converges to Fy = f+ Fy which is HKP-integrable and,
thanks to the weak compactness and convexity of the values of F', Fj is a.e. contained
in F.
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Then, using Lemma 20 and Fatou’s Lemma, we obtain
T T 1 n
m < / D(H(t), Fo(t))dt < / liminfD<H(t), = G, (t)> dt
0 0 " =
T 1 n
lim inf / D (H(t), = G, (t)> dt
" 0 ni4
1 [T
< liminf = Z/ D(H(L), Gy, (£)) dt
n n “4 0
1=1

T
= lim | D(H®),G,(t)dt =m,

n—oo 0

/N

therefore m = fOT D(H(t), Fy(t))dt and thus Fp is a solution to our minimisation
problem. (Il

The best approximation problem (1) has a solution in the case of a weakly sequen-
tially complete Banach space too:

Theorem 22. Let X be weakly sequentially complete and let H, F' be two
Pwke(X)-valued HKP-integrable multifunctions defined on [0,T]. There exists a
Pore(X)-valued HKP-integrable multifunction Fy with Fo(t) C F(t), Vt € [0,T)
such that the equality (1) is satisfied.

Proof. As in the proof of the preceding theorem, we can suppose that
m < oo and consider a sequence (Fp), of HKP-integrable & (X )-valued multi-
functions contained in F' such that m = nan;o fOT D(H(t), F,(t))dt. We claim that
(Fy)n verifies the hypothesis of Corollary 16. Indeed, for every z* € X* there
exists —o(—x*, F') that is a real HK-integrable function such that —o(—z*, F(t)) <
o(z*, F,(t)), Vt € [0,T] for every n € N.

Obviously, sup (HK) fOT o(z*, F,(t))dt < (HK) fOT o(z*, F(t)) dt < +oc.

ne

Then, applying Corollary 16 gives us an HKP-integrable & .(X)-valued func-
tion Fy and a subsequence of (F},),, which K-converges to Fp.
Similarly to the second part of the proof of the preceding theorem, we obtain that

m = fOT D(H(t), Fo(t)) dt, so Fy is a solution to problem (1). O
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5. APPLICATION TO WEAK COMPACTNESS IN THE SPACE OF
HKP-INTEGRABLE MULTIFUNCTIONS

Let F be a Pyx.(X)-valued HKP-integrable multifunction.

Definition 23. G: [0,7] — Pukc(X) is said to be a multi-selection of F' if
G(t) C F(t) a.e.

Obviously, every selection is a multi-selection. Consider the family of all HKP-
integrable multi-selections of F' and denote it by ggKP. It is nonempty by Theo-
rem 11.

On the space of Py.(X)-valued HKP-integrable multifunctions, by the w-HKP
topology, we will understand the coarsest one with respect to which the HK-integrals
of the products of support functionals with real bounded variation functions are
convergent. That is F, — F if for every g: [0,7] — R of bounded variation and
every z* € X*,

(HK)/O g(t)o(z*, Fy(t))dt — (HK)/O g(t)o(x*, F(t))dt.

This is an extension of the w-HKP topology to the set-valued case.
We give now a weak compactness result.

Proposition 24. Let X be a separable Banach space and let F' be a P yy.(X)-
valued HKP-integrable multifunction. Then SEXP js w-HKP sequentially compact.

Proof. Let (F,), be a sequence of HKP-integrable multi-selections of F.
Applying Theorem 11 one can find an HKP-integrable function f and a Py (X)-
valued Pettis integrable multifunction G such that, for all t € [0,T], F(¢t) = f(t) +
G(t).

As in the proof of Theorem 21 we can prove that, for every n € N, there exists a
Pettis integrable multi-selection of G, denoted by G,,, such that F,,(t) = f(¢t)+Gy(¢),
Vtel0,T].

Proposition 2.6 in [4] yields that one can find a subsequence (Gy,), and a
Puke(X)-valued Pettis integrable multifunction G, such that, for every g €
L*>([0,T]) and any z* € X*,

T T
lim g(t)a(a:*,Gkn(t))dtz/O g(t)o(z", Go(t)) dt.

n—oo 0

Moreover, on every measurable A,

/U(x*,Goo(t))dt: lim U(x*,Gkn(t))dtg/U(x*,G(t))dt,
A A

n—oo A
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whence, for every z* € X*, we have o(z*, G (t)) < o(z*,G(t)) a.e. Therefore, by
passing through a Mackey-dense sequence and using the weak compactness of the
values of G, and GG, we obtain that (G, is a multi-selection of G.

It follows that (Fy, ), w-HKP-converges to Foe = f 4 Go, which is a multi-
selection of F', and so the w-HKP sequential compactness of the family of multi-
selections is proved. O

In particular, the family of all HKP-integrable selections is w-HKP sequentially
compact.

Using the Komlés theorems obtained in the first section we can get two weak com-
pactness criteria in the space of all Zy.(X)-valued HKP-integrable multifunctions.
We will use the following two lemmas:

Lemma 25. Let (f,,)n be a uniformly HK-integrable, pointwise bounded sequence
of real functions defined on [0,T] and let g: [0,7] — R be a function of bounded
variation. Then

i) the sequence f,(-) = (HK) Jo fn(t) dt is uniformly equicontinuous on [0,T];

ii) fn is Riemann-Stieltjes integrable with respect to g uniformly in n € N;

iii) the sequence (gfy), is uniformly HK-integrable.

Proof. i) Let us define f: [0,T] — log by f(t) = (fa(t))n, YVt € [0,T]. Let us
first verify that }’v is loo-valued. Take ¢ € [0,7]. By the uniform HK-integrability
hypothesis, there exists a partition of [0, ¢] such that Xk: Fa(ti)(ciz1—ci)—fa(e)| < 1,
Vn. The pointwise boundedness assumption on ( fn):;aldlows to choose M < oo such
that | f, (t;)] < M, Vi€ {1,...,k}, ¥Yn € N. Then |f,(c)| <1+ Mec, Vn €N and so
the assertion follows.

To prove the equicontinuity of the above defined sequence is equivalent to proving
that the function fis continuous with respect to the sup-norm on I, (thus uniformly
continuous, since the definition domain is compact).

Fix ¢ € [0,7] and ¢ > 0. By hypothesis, one can find M, < +oo such that

k ~
|fn(c)] < M, for alln € N, and a gauge . satisfying | > fn(¢:)(cit1—ci)— (fn(civ1)—
i=1

J?n(ci)) < ¢ for every n € N and every é.-fine partition. Then every z € [0,T] with
|z — ¢| < Ne,c, where n. . = min(d.(c),e/M.), satisfies, by Saks-Henstock’s Lemma
(Lemma 9.11 in [14]), the inequality

(@) = FalO)] < |fa(@) = fule) = fule)(@ = )| + | fule)@ — )| < 26, VneEN,
since the interval (z,c) with the tag c is an element of a d.-fine partition of [0, T.
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Consequently, || f(z)— f(c)|lso < 2¢ for every z with |z —c| < 7e,c SO the continuity
is proved.

ii) follows, by virtue of the equicontinuity of the sequence (fn)n, by the straightfor-
ward adaptation of the proof of the fact that every continuous function is Riemann-
Stieltjes integrable with respect to a function of bounded variation (e.g. Theo-
rem 12.15 in [14]).

Finally, the assertions i) and ii) allow us to follow the same reasoning as in the
proof of Lemma 4 in order to obtain iii). O

We have already noticed that the concept of uniform HK-integrability does not
allow to ignore the p-null sets (see Example 6). We have, nonetheless, the following

property:

Lemma 26. Any pointwise bounded sequence of functions fy: [0,T] — R which
are null except on a set of null measure is uniformly HK-integrable.

Proof. Let N be the pu-null set from the hypothesis.

For every n € N, put N, = {t € N: 0 < |fx(t)| < n, Vk} and let (IV,,), be the
associated pairwise disjoint sequence. By the pointwise boundedness assumption,
the sequence (N,,),, covers the set N. For each n one can find an open set O,, such
that N,, C O,, and u(O,) < €/n2". Define a gauge d.: [0,7] — R by

1 if t€[0,T]\ N,
0:(t) = .
d(t,(0p)°) if t € Np.

Then for every d.-fine partition &2 of [0, T], denote by &, the subset of & that has
tags in N,,. If I is an interval of &,,, then I C O,,. If we denote by f(Z?) the HK-
integral sum associated to f and to the partition &2, then, for every k, |fx(Z?)| <

S < Y. nu(0,) < e. Thus the sequence considered is uniformly HK-
n=1 n=1

in_tegrable. O

Proposition 27. Let X be a weakly sequentially complete separable Banach
space and #  a family of Py .(X)-valued HKP-integrable multifunctions on [0, T]
satisfying

i") for every x* € X*, the family {o(x*, F(-)): F € J¢} is uniformly HK-integrable
and ¢ is pointwise bounded;

ii) there exist a function h: [0,T] X Pyic(X) — [0,+00] such that, for every t €
[0, T, h(t,-) is convex and sequentially inf-compact, and a countable measurable
partition (By,)m of [0,T] such that, for every m € N,
iia) sup{ [ |o(a*, F(t))|dt: Fe#} < +oo, Va* € X*;
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iib) sup{ [, h(t,F(t))dt: F € #} < +oo.
Then ¥ is relatively w-HKP sequentially compact.

Proof. Let (F,), be a sequence in . The existence of a subsequence (Fy,, ),
that Komlds converges to a measurable Py (X )-valued function F' follows in the
same way as in the first part of the proof of Theorem 14.

The scalar HK-integrability of the limit multifunction follows from Theorem 13.16
1 n

in [14] applied, for each 2* € X* to the sequence (a(m*, - Fkl)) . Indeed, it
=1

n
is obvious that our condition i’) implies the uniform HK-integrability of the latter

sequence and the pointwise boundedness assumption allows us (thanks to Lemma 26)
to suppose that this sequence converges everywhere to o(z*, F) (on the exceptional
null set, we redefine all multifunctions by 0).

Applying Lemma 25, we obtain that for any g of bounded variation,

(o2 2m),

is uniformly HK-integrable whence, again by Theorem 13.16 in [14], we conclude
that

(HK) /O U olat F (1)) di = lim(HK) /O " oo (ac % Zﬁ? P, (t)) dt.

This equality can be written as

1K) [ g0 FO)at = tim = SWK) [ g0t B 0)

i=1

and, since this is true for every subsequence of (F};, ), it follows that (Fj, ), satisfies
that for every 2* € X* and every g: [0,7] — R of bounded variation one has

(HK)/0 g(t)o(z*,F(t))dt:1171111(HK)/0 g(t)o(x*, Fy, (t))dt.

In other words, the subsequence (Fg,, ), w-HKP converges, whence the relative w-
HKP sequential compactness of . follows. d

In the same way, applying Theorem 17, we get
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Proposition 28. Let X be a separable reflexive Banach space. Let J& be a
family of HKP-integrable Py.(X)-valued multifunctions satisfying the following
conditions:

i") for every x* € X*, the family {o(x*, F), F € J¢} is uniformly HK-integrable

and ¢ is pointwise bounded;

ii) there is a countable measurable partition (By,)m of [0,T] such that, for each

meN, sup{ [, [F(t)|dt: F e #} < +o0.
Then ¥ is relatively w-HKP sequentially compact.

6. AN INTEGRAL INCLUSION INVOLVING THE HENSTOCK-KURZWEIL-PETTIS
SET-VALUED INTEGRAL

In the sequel, we consider the space X provided with its weak topology, denoting
it by X, and the vector space C([0,T], X,,) of all X,-valued continuous functions
on [0, 7] provided with the topology of uniform convergence.

The following theorem extends an existence result for solutions of a set-valued
integral equation (Theorem VI-7 in [6]) that imposed a Pettis integrability condition.

Theorem 29. Let an open subset U of X,,, an HKP-integrable set-valued func-
tionT': [0,T] = Puke(X) and F: [0,T] x U — Pyxe(X) satisfy

1) F(t,z) CT'(t), Vt € [0,T],Vx € U;

2) F(t,-) is upper semi-continuous for every t € [0, T];

3) o(z*, F(-,x)) is measurable for every z* € X* and every x € U.
Then, for every fixed £ € U, there exists Ty € |0, T] such that £+ (HKP) fOT° I'(s)ds C
U and the integral inclusion

z(t) € £+ (HKP)/O F(s,xz(s))ds

has a solution in C([0,Tp], X,). Moreover, the set of solutions is compact in
C([OaTO]an)‘

Proof. Theorem 11 yields that there exist an HKP-integrable function f and
a Pyxc(X)-valued Pettis integrable multifunction G satisfying that, for every ¢t €
[0,T], we have I'(t) = f(¢) + G(t). By Theorem 3, f is scalarly measurable and, as
the Banach space is separable, f is measurable.

Fix £ € U and consider a weakly open subset U; of X and a weak neighborhood U,
of the origin such that £ € Uy and Uy + Us C U. Since (HKP) [; f(t)dt is weakly
continuous, there exists T} € ]0,7T] such that (HKP) fg f(t)dt € Us for every t €
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[07 Tl]

t) + F(t x + (HKP) fo dT) satisfies the following conditions:
F(t,.’L‘) C G( ), Vte [O,Tl], Va e Uy,

F (t,-) is upper semi-continuous for every t € [0,T1];

Then the set-valued function F: [0,T}] x U; — X defined by F(t,z) =

2

3) o(z*, F(-,x)) is measurable for every z* € X* and every z € Uj.

Applying then Theorem VI-7 in [6] we obtain that there exists Ty € ]0, T3] such
that & + ( fo s)ds C Uy, the integral inclusion

3 e €+ (P)/O F(s,7(s)) ds

has a solution in C([0, TO] w) and the set of solutions is compact in C’([O Tol, Xw)-
Therefore, £ + (HKP) [° T'(s)ds = & + (HKP) [;* f(s)ds + (P) [, G(s)ds C U
and we can find & € C(]0, TO] w) such that

s ee+®) [ )+ F (5506 + @) [ soar) as

in other words

—f(
)
)

#(t) + (HKP) /Ot f(s)ds € € + (HKP) /Ot F(s,a?(s) + (HKP) /O £(r) dT) ds

Thus z(-) = Z(-)+ (HKP) [, f(7) d7 is a continuous function mapping [0, Tp] into X,
and it is a solution of our 1ntegral inclusion. O
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