COMMUTANTS AND DERIVATION RANGES

SALAH MECHERI, Tebessa

(Received February 12, 1997)

Abstract. In this paper we obtain some results concerning the set $\mathcal{M} = \bigcup \{\overline{R(\delta_A)} \cap \{A\}': A \in \mathcal{L}(\mathcal{H})\}$, where $\overline{R(\delta_A)}$ is the closure in the norm topology of the range of the inner derivation δ_A defined by $\delta_A(X) = AX - XA$. Here \mathcal{H} stands for a Hilbert space and we prove that every compact operator in $\overline{R(\delta_A)}^w \cap \{A^*\}'$ is quasinilpotent if A is dominant, where $\overline{R(\delta_A)}^w$ is the closure of the range of δ_A in the weak topology.

INTRODUCTION

Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on a complex separable and infinite dimensional Hilbert space \mathcal{H} , the inner derivation induced by $A \in \mathcal{L}(\mathcal{H})$ being the map defined by

$$\delta_A \colon \mathcal{L}(\mathcal{H}) \mapsto \mathcal{L}(\mathcal{H}); \quad \delta_A(X) = AX - XA \quad (A \in \mathcal{L}(\mathcal{H})).$$

The identity is not a commutator, that is, $I \notin R(\delta_A)$ for any $A \in \mathcal{L}(\mathcal{H})$, where $R(\delta_A)$ denotes the range of δ_A . Nevertheless, J.H. Anderson in [2] proved the remarkable result that $I \in \overline{R(\delta_A)}$ for a large class of operators, where $\overline{R(\delta_A)}$ denotes the closure of the range of δ_A in the norm topology. This allowed him to define a new class of operators, called

$$J_A(\mathcal{H}) = \{ A \in \mathcal{L}(\mathcal{H}) \colon I \in \overline{R(\delta_A)} \}.$$

Let $\mathcal{N} = \bigcup \{ R(\delta_A) \cap \{A\}' \colon A \in \mathcal{L}(\mathcal{H}) \}$, where $\{A\}'$ denotes the commutant of A. In finite dimension the set \mathcal{N} is exactly the set of nilpotent operators, in infinite dimension the theorem of Kleïnecke-Shirokov [3] confirms that any operator in \mathcal{N} is quasinilpotent. If we now consider instead of \mathcal{N} the set

$$\mathcal{M} = \cup \Big\{ \overline{R(\delta_A)} \cap \{A\}' \colon A \in \mathcal{L}(\mathcal{H}) \Big\},$$

the theorem of Kleïneck-Shirokov can't be used. In other words an operator in \mathcal{M} is not necessarily quasinilpotent; we can take as a counterexample the existence of an operator $A \in \mathcal{L}(\mathcal{H})$ such that $I \in \overline{R(\delta_A)}$.

J.H. Anderson [1, p. 135–136] proved that $\overline{R(\delta_A)} \cap \{A\}' = \{0\}$ if A is normal or isometric. Here we prove that any operator in \mathcal{M} is nilpotent if P(A) is normal, isometric or co-isometric for some polynomial P.

R.E. Weber [5] confirms that every compact operator in $\overline{R(\delta_A)}^w \cap \{A\}'$ is quasinilpotent, where $\overline{R(\delta_A)}^w$ is the weak closure of $R(\delta_A)$. If we now consider the set

$$\left\{\overline{R(\delta_A)}^w \cap \{A^*\}': A \in \mathcal{L}(\mathcal{H})\right\},\$$

we can ask: is every compact operator in $\overline{R(\delta_A)}^w \cap \{A^*\}'$ quasinilpotent? At this moment, we have not a global answer but we can partially answer this question with the assumption that A is dominant

Lemma 1. Let $A, X \in \mathcal{L}(H), T \in \{A\}'$ and $\varepsilon > 0$. If $||A|| \leq 1$ and if $||AX - XA - T|| < \varepsilon$, then for every $n \in \mathbb{N}$ we have

$$||(A^{n+1}X - XA^{n+1}) - (n+1)A^nT|| < (n+1)\varepsilon$$

We recall that $\forall A \in \mathcal{L}(H), \forall X \in \mathcal{L}(H) \text{ and } \forall T \in \{A\}'$ we have

$$A^{n}X - XA^{n} = nA^{n-1}T - \sum_{i=1}^{n} A^{n-i-1}(T - (AX - XA))A^{i}.$$

Proof. For n = 0 evident. For n = 1 we have

$$A^{2}X - XA^{2} = (A^{2}X - AXA) + (AXA - XA^{2}),$$

so,

$$\begin{aligned} \|(A^2X - XA^2) - 2AT\| &= \|(A^2X - AXA) - AT + (AXA - XA^2) - TA\| \\ &= \|A(AX - XA - T) + (AX - XA - T)A\| \\ &\leq 2\|A\| \|AX - XA - T\| < 2\varepsilon. \end{aligned}$$

Now suppose that for every $n \ge 2$ and for every $k \le n$ we have

(*)
$$||(A^k X - XA^k) - kA^{k-1}T|| < k\varepsilon.$$

Since

$$(A^{n+1}X - X(A^{n+1}) - (n+1)A^nT) = A^n(AX - XA - T) + ((A^nX - XA^n) - nA^{n-1}T)A,$$

we have

$$\|(A^{n+1}X - X(A^{n+1}) - (n+1)A^nT\| < \varepsilon + n\varepsilon = (n+1)\varepsilon.$$

Theorem 2. Let $A \in \mathcal{L}(\mathcal{H})$ and suppose that

$$\overline{R(\delta_{P(A)})} \cap \{P(A)\}' = \{0\}$$

for some polynomial P, then every operator in $\overline{R(\delta_A)} \cap \{A\}'$ is nilpotent.

 $\mathbf{P}\,\mathbf{r}\,\mathbf{o}\,\mathbf{o}\,\mathbf{f}$. Let P be a polynomial of degree n and let $P^{(k)}$ be the k 'th derivative of P. If

$$T \in \overline{R(\delta_A)} \cap \{A\}',$$

then there exists a sequence (X_n) in $\mathcal{L}(\mathcal{H})$ such that

$$AX_n - X_n A \to T;$$

since $T \in \{A\}'$ then

$$P^{(k)}(A)X_n - X_n P^{(k)}(A) \to P^{(k+1)}(A)T.$$

 \mathbf{So}

$$P(A)X_n - X_n P(A) \to P^{(1)}(A)T,$$

which shows that

$$P^{(1)}(A)T \in \overline{R(\delta_{P(A)})} \cap \{P(A)\}',$$

that is, $P^{(1)}(A)T = 0$. Also we have

$$P^{(1)}(A)X_n - X_n P^{(1)}(A) \to P^{(2)}(A)T,$$

which gives

$$0 = TP^{(1)}(A)X_nT - TX_nP^{(1)}(A)T \to P^{(2)}(A)T^3$$

that is, $P^{(2)}(A)T^3 = 0$. By repeating the same argument it follows that $T^k = 0$ for a given integer number k, so T is nilpotent. In particular, every normal operator in $\overline{R(\delta_A)} \cap \{A\}'$ vanishes.

845

Corollary 3. Let $A \in \mathcal{L}(\mathcal{H})$. If P(A) is normal, isometric or co-isometric $(AA^* = I)$ or $A^*A = I$) for some polynomial P, then $\overline{R(\delta_A)} \cap \{A\}'$ is nilpotent.

 $\Pr{\text{oof.}}$ In [1, p. 136–137] Anderson showed that

$$\overline{R(\delta_{P(A)})} \cap \{P(A)\}' = \{0\}.$$

Definition 4. An operator $A \in \mathcal{L}(\mathcal{H})$ is called *dominant* if, for all complex λ , range $(A - \lambda) \subseteq \operatorname{range}(A - \lambda)^*$, or equivalently, if there is a real number $M_{\lambda} \ge 1$ such that

$$\|(A-\lambda)^*f\| \leqslant M_\lambda \|(A-\lambda)f\|$$

for all f in \mathcal{H} . If there is a constant M such that $M_{\lambda} \leq M$ for all λ , A is called M-hyponormal, and if M = 1, A is hyponormal (see [4]).

Theorem 5 [5]. Let $A \in \mathcal{L}(\mathcal{H})$, then every compact operator in $\overline{R(\delta_A)}^w \cap \{A\}'$ is quasinilpotent.

Theorem 6. If $B \in \overline{R(\delta_A)}^w \cap \{A\}'$ and f(B) is compact, where f is an analytic function on an open set containing $\sigma(A)$, then

$$\sigma(B) \subset \{z \colon zf(z) = 0\}.$$

Proof. If $B \in \overline{R(\delta_A)}^w \cap \{A\}'$, then

$$AX_{\alpha} - X_{\alpha}A \xrightarrow{w} B$$

since $f(B) \in \{A\}'$ we have

$$AX_{\alpha}f(B) - X_{\alpha}Af(B) \xrightarrow{\mathrm{w}} Bf(B),$$

hence

$$AX_{\alpha}f(B) - X_{\alpha}f(B)A \xrightarrow{\mathrm{w}} Bf(B),$$

that is,

$$Bf(B) \in \overline{R(\delta_A)}^w \cap \{A\}'.$$

Since Bf(B) is compact, then $\sigma(Bf(B)) = g(\sigma(B)) = 0$ by Theorem 5, where g(z) = zf(z). In particular, if P(B) is compact for some polynomial P, then

$$\sigma(B) \subset \{z \colon zP(z) = 0\}.$$

Theorem 7. Let A or A^* be a dominant operator.

If $B \in \overline{R(\delta_A)}^w \cap \{A^*\}'$, then

$$\{\lambda \in \sigma_p(B^*) \colon \dim \ker(B^* - \overline{\lambda}) < \infty\} \subset \{0\}$$

or,

$$\{\lambda \in \sigma_p(B) \colon \dim \ker(B - \lambda) < \infty\} \subset \{0\},\$$

where $\sigma_p(A)$ is the point spectrum of A.

Proof. Suppose that A is dominant and $B \in \overline{R(\delta_A)}^w \cap \{A^*\}'$, then

$$B^* \in \overline{R(\delta_{A^*})}^w \cap \{A\}'.$$

Let $\lambda \in \sigma_p(B^*)$ be such that $E = \ker(B^* - \lambda)$ is finite dimensional.

The subspace E is invariant under B^* and A. It is easy to verify that $A|_E$ is dominant, hence $A|_E$ is normal and so E reduces A (see [4]).

Let $H = E \oplus E^{\perp}$, then we can write

$$A = \begin{pmatrix} C & 0 \\ 0 & * \end{pmatrix}, \quad B^* = \begin{pmatrix} \lambda & * \\ 0 & * \end{pmatrix}.$$

Since $B^* \in \overline{R(\delta_{A^*})}^w$, then $\lambda I_E \in R(\delta_{C^*})$, and this necessarily implies $\lambda = 0$.

By the same arguments as in the above proof we achieve the proof of the present theorem.

Corollary 8. If A or A^* is a dominant operator, then every compact operator in $\overline{R(\delta_A)}^w \cap \{A^*\}'$ is quasinilpotent.

Proof. Suppose that $B \in \overline{R(\delta_A)}^w \cap \{A^*\}'$ with B compact and $\lambda \in \sigma(B) \setminus \{0\}$, then $\lambda \in \sigma_p(B)$ with dim ker $(B-\lambda) < \infty$ and $\overline{\lambda} \in \sigma_p(B^*)$ with dim ker $(B^* - \overline{\lambda}) < \infty$. It follows from Theorem 7 that B is quasinilpotent. \Box

References

- [1] J.H.Anderson: On normal derivations. Proc. Amer. Math. Soc. 38 (1973), 135-140.
- [2] J.H.Anderson: Derivation ranges and the identity. Bull. Amer. Math. Soc. 79 (1973), 705–708..
- [3] D.C.Kleïnecke: On operator commutators. Proc. Amer. Math. Soc. 8 (1957), 535–536..
- [4] J.G.Stampfli, B.L.Wadhwa: On dominant operators. Monatsh. Math. 84 (1977), 143–153.
- [5] R.E. Weber: Derivations and the trace class operators. Proc. Amer. Math. Soc. 73 (1979), 79–82.

 $Author's \ address:$ Université de Tebessa, Département des sciences exactes, 12000 Tebessa, Algerie.