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Abstract. Let a, b, c > 0. We investigate the characterization problem which asks for
a classification of all the triples (a, b, c) such that the Weyl-Heisenberg system {e2πimbx×
χ[na,na+c) : m,n ∈ Z} is a frame for L2(R). It turns out that the answer to the problem is
quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique,
one can reduce the problem to the case where b = 1 and only let a and c vary. In this paper,
we extend the Zak transform technique and use the Fourier analysis technique to study the
problem for the case of a being a rational number. We prove some special cases of values
for c and a that do not produce a frame, which expands earlier works.
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1. Introduction

Let g ∈ L2(R) and a, b ∈ R
+. We use (g, a, b) to denote the Weyl-Heisenberg

system (also called a Gabor system) {EmbTnag : m,n ∈ Z} generated by a window

function g where Ebg(t) = e2πibtg(t) is the modulation operator and Tag(t) = g(t−a)

is the translation operator. We say that (g, a, b) is a Weyl-Heisenberg frame (WH-

frame for short) for L2(R) if there exist two positive constants A,B such that

(1.1) A‖f‖2 6
∑

m,n∈Z

|〈f, EmbTnag〉|
2
6 B‖f‖2

holds for every f ∈ L2(R). The Gabor system (g, a, b) is called a Bessel sequence

if the second inequality in (1.1) holds. We refer to the excellent survey papers of
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Casazza [1] and Heil [5] for some background material and recent development in the

WH-frame theory.

For any g ∈ L2(R), a fundamental question in the WH-frame theory is to classify all

the a, b such that (g, a, b) generates a WH-frame for L2(R). One general restriction

is the density condition which forces ab 6 1 if (g, a, b) is a frame. Although it is

a key condition for a WH-frame, the density condition is still far from providing

an answer to the fundamental question. This is generally believed to be a quite

difficult problem. In fact, up to the very recent time just few functions have been

solved completely, such as the Gaussian g(t) = e−πt2 ([9]–[11]), the hyperbolic secant

g(t) = (et + e−t)−1, one- and two-sided exponential functions g(t) = e−tχR+ and

g(t) = e−|t| ([6], [8]), and the totally positive function of finite type [3].

In this paper, we are concerned with the problem when the window function g is

a characteristic function χE of a measurable subset of R. Without loss of generality

we assume that b = 1 and 0 < a < 1. For the simplest case g = χ[0,c), it is

slightly surprising that the classification of all a, c ∈ R
+ such that (χ[0,c), a, 1) is

a frame is a very difficult problem (called the abc-problem), which is associated with

a complicated set—Janssen’s tie (see Subsection 3.7 in [7]). Janssen [7] has obtained

many elaborate results on a, c for (χ[0,c), a, 1) being a frame or not. Gu and Han [4]

established a new way to how study this problem and got a characteristic criterion

for (χ[0,c), a, 1) being a frame. Although classification has been obtained for some

cases, this problem appears to be very difficult in general. In this paper, by virtue

of the technique of Fourier analysis, we make some progress on this problem.

The paper is organized as follows. In Section 2, some known and new results are

presented. In Section 3, we give proofs of the new results.

2. Preliminaries

Let ⌊c⌋ be the largest integer which is less than or equal to c and let {c} = c−⌊c⌋

be the fractional part of c. For the cases 0 < c 6 2 and 0 < a 6 1, (χ[0,c), a, 1)

has been solved completely as to whether it is a frame or not (see 3.3.5, 3.3.6 and

3.4.3 in [7] and also [4]). First we recall the following theorem given by Janssen [7],

Propositons 3.2.2 and 3.3.4.

Theorem 2.1. Let c > 2 and let p, q be two positive integers.

(1) When a = 1/q, then (χ[0,c), a, 1) is not a frame if and only if {c} ∈ [0, 1/q) ∪

(1− 1/q, 1).

(2) When a = p/q with gcd(p, q) = 1, then (χ[0,c), a, 1) is not a frame if {c} ∈

[0, 1/q) ∪ (1− 1/q, 1).
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Naturally we want to know the result of Theorem 2.1(2) at the extreme points

{c} = 1/q and {c} = 1− 1/q. Using a new method we get the following theorem.

Theorem 2.2. Let c > 3 and let p, q be two co-prime positive integers. When

{c} = 1/q, then (χ[0,c), p/q, 1) is not a frame if gcd(p, ⌊c⌋) > 1 or p is even; when

{c} = (q − 1)/q, then (χ[0,c), a, 1) is not a frame if gcd(p, ⌊c⌋+ 1) > 1 or p is even.

We conjecture that (χ[0,c), p/q, 1) is a frame when c > 3 and gcd(p, ⌊c⌋) = 1 for

any odd p with {c} = 1/q. In general, Janssen [7], Propositions 3.3.2 and 3.4.4, also

showed

Theorem 2.3. If a is rational with 0 < a 6 min{{c}, 1− {c}} or irrational with

0 < a 6 max{{c}, 1− {c}}, then (χ[0,c), a, 1) is a frame.

Next we consider the remaining case min{{c}, 1 − {c}} < a < 1 with a being

rational in two situations {c} < a and 1− {c} < a.

Theorem 2.4. Let c > 3 and let p, q be two co-prime positive integers. Then

(χ[0,c), p/q, 1) is not a frame when ⌊q{c}⌋ < gcd(p, ⌊c⌋) < ⌊c⌋ or ⌊q(1 − {c})⌋ <

gcd(p, ⌊c⌋+ 1) < ⌊c⌋+ 1.

We remark that the condition ⌊q{c}⌋ < gcd(p, ⌊c⌋) yields {c} < a and the other

yields 1− {c} < a. Hence we have the following corollary.

Corollary 2.5. Let c > 3 and a = p/q with p, q being two co-prime positive

integers. If {c} < a and p is a proper factor of ⌊c⌋ or 1− {c} < a and p is a proper

factor of ⌊c⌋+ 1, then (χ[0,c), a, 1) is not a frame.

There is an example given by Janssen [7], Example (b), page 33, that a = p/q =

4/5 and c = 28/5: in this case (χ[0,c), a, 1) is a frame. Note that here p = 4 and

⌊c⌋ = 5, which does not satisfy the conditions of Theorem 2.4. So we conjecture that

the conditions of Theorem 2.4 are the best for (χ[0,c), p/q, 1) not being a frame.

Janssen [7], Casazza and Kalton [1], [2] and others used the Zak transform to

study the WH-frame for the case a = 1 or a = 1/q. In this paper, we extend the Zak

transform technique and use the Fourier analysis technique to study the abc-problem

for the case 0 < a = p/q < 1.
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3. Proofs

We begin with the definition of the Zak transform [1], Section H, page 46:

Definition 3.1. The Zak transform of a function f ∈ L2(R) is defined by

(3.1) Zf (x, t) =
∑

k∈Z

f(x+ k)e−2πikt

for a.e. x, t ∈ R, where the convergence of the right-hand side has to be interpreted

in the L2
loc(R

2) sense.

From the definition we have the quasi-periodicity relations

Zf(x + 1, t) = e2πitZf(x, t),

Zf(x, t+ 1) = Zf (x, t).

It is straightforward that the Zak transform is completely determined by its values

in the unit square Q = [0, 1)2. Note that ZEmTnχ[0,1)
(x, t) = e2πi(mx+nt), (x, t) ∈ Q

and {e2πi(mx+nt)}m,n∈Z forms an orthonormal basis for L
2(Q); we see that the Zak

transform is a unitary map from L2(R) onto L2(Q). Based on the above fact, we

have the following lemma.

Lemma 3.2. Let g ∈ L2(R) and a = p/q with p, q being two co-prime positive

integers. If the Gabor system (g, a, 1) is a Bessel sequence, then, for any f ∈ L2(R),

∑

m,n∈Z

|〈f, EmTnag〉|
2

=

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

j=0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)Zg

(

x−
l

q
+
rlj
q
, t
)

e−2πi(kp+dlj)t dt

∣

∣

∣

∣

2

,

where l + jp = dljq + rlj and 0 6 rlj < q for 0 6 l, j < q.

P r o o f. By the definition of the Zak transform, it is easy to check that

ZEmTnag(x, t) = Zg(x − na, t)e2πimx.
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Then

∑

m,n∈Z

|〈f, EmTnag〉|
2 =

∑

m,n∈Z

|〈Zf , ZEmTnag〉|
2

=
∑

m,n∈Z

|〈Zf (x, t)Zg(x− na, t), e2πimx〉|2

=
∑

n∈Z

∑

m∈Z

∣

∣

∣

∣

∫ 1

0

(
∫ 1

0

Zf (x, t)Zg(x− na, t) dt

)

e−2πimx dx

∣

∣

∣

∣

2

=
∑

n∈Z

∫ 1

0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)Zg(x− na, t) dt

∣

∣

∣

∣

2

dx

=
∑

n∈Z

∫ 1

0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)Zg(x+ na, t) dt

∣

∣

∣

∣

2

dx

=

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

j=0

∣

∣

∣

∣

∫ 1

0

Zf(x, t)Zg

(

x+
jp

q
, t
)

e−2πikpt dt

∣

∣

∣

∣

2

,

where we have used the decomposition n = kq+ j for each n ∈ Z with 0 6 j 6 q− 1

and the quasi-periodicity properties of the Zak transform. Since there are unique

nonnegative integers dlj and rlj with 0 6 rlj < q such that l + jp = dljq + rlj for

0 6 l, j < q, it follows that x+ jp/q = x− l/q+ rlj/q+ dlj for each 0 6 l < q. Hence

the above sum is equal to

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

j=0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)Zg

(

x−
i

q
+
rlj
q
, t
)

e−2πi(kp+dlj)t dt

∣

∣

∣

∣

2

,

and the lemma follows. �

It is worth noting that the Gabor system (g, a, b) is a Bessel sequence for any

choice of a, b > 0 when g ∈ L2(R) is bounded and compactly supported. So if g is

an indicator function, then Lemma 3.2 always holds.

Let ϕ(x) = χ[0,c)(x) be the characteristic function of the interval [0, c). Then

(3.2) Zϕ(x, t) =























⌊c⌋
∑

n=0

e−2πint, if x ∈ [0, {c});

⌊c⌋−1
∑

n=0

e−2πint, if x ∈ [{c}, 1).

From now on we write g1(t) =
⌊c⌋
∑

n=0
e−2πint and g2(t) =

⌊c⌋−1
∑

n=0
e−2πint, and denote by Zf

the zero point set of a function f on [0, 1), that is, Zf = {t ∈ [0, 1): f(t) = 0}. Then

451



Zg1 = {1/(⌊c⌋+ 1), . . . , ⌊c⌋/(⌊c⌋+ 1)}, Zg2 = {1/⌊c⌋, . . . , (⌊c⌋ − 1)/⌊c⌋} and

dist{Zg1 ,Zg2} =
1

⌊c⌋(⌊c⌋+ 1)
.

Write Iu(δ) = (u/⌊c⌋ − δ, u/⌊c⌋ + δ) for 1 6 u 6 ⌊c⌋ − 1. It is easily seen that

none of the intervals Iu(δ) (1 6 u 6 ⌊c⌋ − 1) contains any points of Zg1 if 0 < δ <

1/(⌊c⌋(⌊c⌋+ 1)).

The remainder of this section will be devoted to the proof of Theorems 2.2 and

2.4. Before we begin the proof, we will need the following lemma.

Lemma 3.3. Let c > 3. Suppose that p is an even integer or gcd(p, ⌊c⌋) > 1.

Then, for any δ < 1/(⌊c⌋(⌊c⌋+ 1)), there is a nonzero function h with support in
⌊c⌋−1
⋃

u=1
Iu(δ) such that

(3.3)

∫ 1

0

h(t)e−2πikpt dt = 0, k ∈ Z.

P r o o f. When p is an even integer, then any nonzero function h with h(t) =

−h(t+1/2) for 0 6 t < 1/2 satisfies (3.3). Note that the set
⌊c⌋−1
⋃

u=1
Iu(δ) is symmetric

about 1/2, which implies the existence of h with this property. When gcd(p, ⌊c⌋) =

d > 1, one only needs to show the result for any odd p, thus d > 3. We will construct

a nonzero function h with support in
⌊c⌋−1
⋃

u=1
Iu(δ) such that

p−1
∑

j=0

h(x + j/p) ≡ 0 for

x ∈ [0, 1/p); then it is the desired function by the standard argument. Note that, in

this case, 1/⌊c⌋+(p/d)/p = (1 + ⌊c⌋/d)/⌊c⌋, which is equivalent to I1(δ)+(p/d)/p =

Iα(δ) where α = 1 + ⌊c⌋/d 6 ⌊c⌋ − 1. Define

h(x) =











−1, if x ∈ I1(δ);

1, if x ∈ Iα(δ);

0, otherwise.

Then h satisfies the assertion by the hypothesis δ < 1/(⌊c⌋(⌊c⌋+ 1)). Hence the

proof is complete. �

Having proved Lemma 3.3, we turn to the proof of the first assertion of Theo-

rem 2.2.
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Theorem 3.4. Let c > 3, and let a = p/q with p, q being two co-prime positive

integers. If {c} = 1/q and p is an even integer or gcd(p, ⌊c⌋) > 1, then (χ[0,c), a, 1) is

not a frame.

P r o o f. Let l + jp = dljq + rlj , 0 6 rlj < q for all 0 6 l, j < q. Clearly

{rlj : j = 0, 1, . . . , q − 1} = {0, 1, . . . , q − 1}. Then, for each l, there exists a unique

j∗ depending on l such that rlj∗ = 0. Let ϕ(x) = χ[0,c)(x), recall that Zϕ(x, t) = g1(t)

if x ∈ [0, 1/q) and g2(t) if x ∈ [1/q, 1). Then, by Lemma 3.2,

∑

m,n∈Z

|〈f, EmTnaϕ〉|
2(3.4)

=

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

∑

j 6=j∗

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g2(t)e
−2πi(kp+dlj)t dt

∣

∣

∣

∣

2

+

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g1(t)e
−2πi(kp+dlj∗)t dt

∣

∣

∣

∣

2

.

According to the definition of dlj , it is easy to get that dlj 6 p and the cardinality of

Ar = {j : dlj ≡ r (mod p), j = 0, 1, . . . , q−1} is less than or equal to 2(1+(q − 1)/p)

for each 0 6 r < p. Since

∑

k∈Z

∑

j 6=j∗

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g2(t)e
−2πi(kp+dlj)t dt

∣

∣

∣

∣

2

6 2
(

1 +
q − 1

p

)

∑

k∈Z

∑

06r<p

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g2(t)e
−2πi(kp+r)t dt

∣

∣

∣

∣

2

= 2
(

1 +
q − 1

p

)

∫ 1

0

|Zf (x, t)g2(t)|
2 dt,

it follows that

∑

m,n∈Z

|〈f, EmTnaϕ〉|
2 6 2

(

1 +
q − 1

p

)

∫

Q

|Zf (x, t)g2(t)|
2 dt(3.5)

+

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g1(t)e
−2πi(kp+dlj∗)t dt

∣

∣

∣

∣

2

.

For any ε > 0 there exists a δ less than 1/(⌊c⌋(⌊c⌋+ 1)) such that

|g2(t)| < ε, for t ∈

⌊c⌋−1
⋃

u=1

Iu(δ).

453



Choosing h in Lemma 3.3, since g1(t) 6= 0 on
⌊c⌋−1
⋃

u=1
Iu(δ) by the restriction of δ, for

each 0 6 l < q we define functions on [0, 1] by

ψl(t) =







h(t)(g1(t)e
−2πidlj∗t)−1, if t ∈

⌊c⌋−1
⋃

u=1

Iu(δ);

0, otherwise.

The Fourier analysis yields that there exist complex numbers {aln}n∈Z such that

ψl(t) =
∑

n∈Z

alne
−2πint. Define f(x + n) = aln if x ∈ [l/q, (l + 1)/q) for 0 6 l < q.

Then

Zf (x, t) =
∑

n∈Z

f(x+ n)e−2πint = ψl(t)

for x ∈ [l/q, (l + 1)/q), l = 0, 1, . . . , q − 1. For this function f , by Lemma 3.3 and

above, (3.5) becomes

∑

m,n∈Z

|〈f, EmTnaϕ〉|
2 6 2

(

1 +
q − 1

p

)

∫

Q

|Zf(x, t)g2(t)|
2 dt

= 2
(

1 +
q − 1

p

)

q−1
∑

l=0

∫ (l+1)/q

l/q

dx

∫

⋃⌊c⌋−1
u=1 Iu(δ)

|Zf (x, t)g2(t)|
2 dt

6 ε22
(

1 +
q − 1

p

)

‖f‖2.

By virtue of the arbitrariness of ε, we conclude that the upper condition in (1.1) is

violated. Hence the result follows. �

According to Theorem 3.4 and its proof, one can show the other assertion of

Theorem 2.2 similarly. Here we omit it. Before we give the proof of Theorem 2.4,

we state and prove a lemma that is interesting on its own.

Lemma 3.5. Let c > 3 and 1 < d = gcd(p, ⌊c⌋) < ⌊c⌋ with p being a positive

integer. Then for any δ < 1/(⌊c⌋(⌊c⌋+ 1)) there is a nonzero function h with support

in
⌊c⌋−1
⋃

u=1

Iu(δ) such that

(3.6)

∫ 1

0

h(t)e−2πi(np+cr)t dt = 0 for r = 1, 2, . . . , d− 1 and n ∈ Z,

where cr ≡ r (mod d) for 1 6 r 6 d− 1.

P r o o f. Recall that Iu(δ) = (u/⌊c⌋ − δ, u/⌊c⌋ + δ) for 1 6 u 6 ⌊c⌋ − 1. We

define h(t) on R by h(t) = 1 if t ∈
d−1
⋃

α=0
I1+α⌊c⌋/d(δ), 0 if t ∈ [0, 1) \

d−1
⋃

α=0
I1+α⌊c⌋/d(δ)
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and extend its range of definition to R by periodic extension with period 1. Since

1/⌊c⌋+ α/d = (1 + α⌊c⌋/d)/⌊c⌋, we have that 1/d is a period of h(t). Note that

∫ 1

0

h(t)e−2πi(np+cr)t dt =

∫ 1/d

0

d−1
∑

α=0

h(t+ α/d)e−2πicrα/de−2πi(np+cr)t dt.

Consequently,

d−1
∑

α=0

h(t+ α/d)e−2πicrα/d = h(t)

d−1
∑

α=0

e−2πicrα/d = 0

for t ∈ [0, 1/d), thus the result follows. �

We remark that the formula (3.6) does not hold for any nonzero functions in

L2(R) when d = ⌊c⌋ and when d = 1 for any r. Moreover, we conjecture the

converse of Lemma 3.5 is true. We now proceed with the proof of the first assertion

of Theorem 2.4.

Theorem 3.6. Let c > 3 and a = p/q with p, q being two co-prime positive

integers. If ⌊q{c}⌋ < gcd(p, ⌊c⌋) < ⌊c⌋, then (χ[0,c), a, 1) is not a frame.

P r o o f. Write d = gcd(p, ⌊c⌋) and s = ⌊q{c}⌋, then s/q 6 {c} < (s + 1)/q and

s < d. From (3.2) and Lemma 3.2, it follows that

∑

m,n∈Z

|〈f, EmTnaϕ〉|
2

=

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

j=0

∣

∣

∣

∣

∫ 1

0

Zf(x, t)Zϕ

(

x−
l

q
+
rlj
q
, t
)

e−2πi(kp+dlj)t dt

∣

∣

∣

∣

2

,

where l+jp = dljq+rlj , 0 6 rlj < q for 0 6 l, j < q. Again using the rearrangement,

rljv = v for 0 6 v < q, we have

∑

m,n∈Z

|〈f, EmTnaϕ〉|
2(3.7)

=

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)Zϕ

(

x−
l

q
+
v

q
, t
)

e−2πi(kp+dljv )t dt

∣

∣

∣

∣

2
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=

q−1
∑

l=0

∫ l/q+{c}−s/q

l/q

dx
∑

k∈Z

s
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf(x, t)g1(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

+

q−1
∑

l=0

∫ (l+1)/q

l/q+{c}−s/q

dx
∑

k∈Z

s−1
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g1(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

+

q−1
∑

l=0

∫ l/q+{c}−s/q

l/q

dx
∑

k∈Z

q−1
∑

v=s+1

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g2(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

+

q−1
∑

l=0

∫ (l+1)/q

l/q+{c}−s/q

dx
∑

k∈Z

q−1
∑

v=s

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g2(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

6

q−1
∑

l=0

∫ l/q+{c}−s/q

l/q

dx
∑

k∈Z

s
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf(x, t)g1(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

+

q−1
∑

l=0

∫ (l+1)/q

l/q+{c}−s/q

dx
∑

k∈Z

s−1
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g1(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

(3.8)

+

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf(x, t)g2(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

.

Similarly to estimating the first term of (3.4) on the right, the last term of the above

satisfies

q−1
∑

l=0

∫ (l+1)/q

l/q

dx
∑

k∈Z

q−1
∑

v=0

∣

∣

∣

∣

∫ 1

0

Zf (x, t)g2(t)e
−2πi(kp+dljv )t dt

∣

∣

∣

∣

2

6 2
(

1 +
q − 1

p

)

∫

Q

|Zf(x, t)g2(t)|
2 dt.

Now we estimate the term (3.8). Since s < d, for each 0 6 l 6 q − 1 we claim that

there exists ml such that

{e−2πi(kp+dljv−ml)t : k ∈ Z, 0 6 v < s} ⊆ {e−2πi(kp+cα)t : k ∈ Z, 1 6 α 6 d− 1},

where cα ≡ α (mod d) for 1 6 α 6 d − 1. In fact, if dljv ≡ dljv′ (mod d) for some

0 6 v < v′ < d, then (jv′ −jv)p = (dljv −dljv′ )q+v
′−v, and consequently d | (v′−v)

which is impossible. Hence the claim follows.

According to the definition of Iu(δ) for any ε > 0 there exists δ less than

1/(⌊c⌋(⌊c⌋+ 1)) such that

|g2(t)| < ε, for t ∈

⌊c⌋−1
⋃

u=1

Iu(δ).
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Choosing h in Lemma 3.5, for each 0 6 l < q the functions on [0, 1] are defined by

ψl(t) =







h(t)(g1(t)e
2πimlt)−1, if t ∈

⌊c⌋−1
⋃

u=1
Iu(δ);

0, otherwise.

Hence it follows from the Fourier analysis that there exist complex numbers {aln}n∈Z

such that ψl(t) =
∑

n∈Z

alne
−2πint. Define f(x+n) = 0 if x ∈ [l/q, l/q+ {c}− s/q) and

aln if x ∈ [l/q + {c} − s/q, (l + 1)/q) for 0 6 l < q. Then for 0 6 l < q,

Zf (x, t) =

{

0, if x ∈ [l/q, l/q + {c} − s/q);

ψl(t), if x ∈ [l/q + {c} − s/q, (l + 1)/q).

Let f in (3.7) be the function just defined. Then we have from (3.7) and Lemma 3.5

that

∑

m,n∈Z

|〈f, EmTnaϕ〉|
2 6 2

(

1 +
q − 1

p

)

∫

Q

|Zf (x, t)g2(t)|
2 dt 6 2

(

1 +
q − 1

p

)

ε2‖f‖2.

Due to the arbitrariness of ε, we conclude that the upper condition in (1.1) is violated.

Hence the result follows. �

Similarly, the other part of Theorem 2.4 follows from the above theorem and its

proof. Therefore we omit it here.
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