CONTRACTIBLE EDGES IN SOME k-CONNECTED GRAPHS

Yingqiu Yang, Liang Sun, Beijing

(Received November 14, 2010)

Abstract

An edge e of a k-connected graph G is said to be k-contractible (or simply contractible) if the graph obtained from G by contracting e (i.e., deleting e and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still k-connected. In 2002, Kawarabayashi proved that for any odd integer $k \geqslant 5$, if G is a k-connected graph and G contains no subgraph $D=K_{1}+\left(K_{2} \cup K_{1,2}\right)$, then G has a k-contractible edge. In this paper, by generalizing this result, we prove that for any integer $t \geqslant 3$ and any odd integer $k \geqslant 2 t+1$, if a k-connected graph G contains neither $K_{1}+\left(K_{2} \cup K_{1, t}\right)$, nor $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$, then G has a k-contractible edge.

Keywords: component, contractible edge, k-connected graph, minimally k-connected graph

MSC 2010: 05C40

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set V and edge set E. For a vertex $v \in V$, we denote the neighborhood of v by $N_{G}(v)$ and let $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a subset $X \subseteq V, N_{G}(X)=\left(\bigcup_{x \in X} N_{G}(x)\right)-X$ is the neighborhood of X in G, and $G[X]$ is the subgraph of G induced by X. We write $d_{G}(v)$ for the degree of the vertex $v \in V(G)$ and $\delta(G)$ for the minimum degree of G. Let $E(x)$ denote the set of edges incident to the vertex x. For disjoint nonempty subsets A and B of V, the set of edges of G joining a vertex in A to a vertex in B is denoted by $E_{G}(A, B)$. We denote the union of two graphs G and H by $G \cup H$, and the union of m copies of G by $m G$. The join $G+H$ of disjoint graphs G and H is the graph obtained from $G \cup H$ by joining each vertex of G to each vertex of H. We use K_{n} and $K_{1, n}$ to denote the complete graphs and stars, respectively.

The project is supported by National Natural Science Foundation of China (Grant number: 11071016).

A maximal connected subgraph of G is a component of G. Let G be a k-connected graph. For $T \subset V(G)$, if there are at least two components in $G-T$, then T is said to be a cutset of G. A k-cutset of G is a cutset of G with k vertices.

Let $k \geqslant 2$ be an integer. An edge e of a k-connected graph G is said to be k contractible (or simply contractible) if the graph obtained from G by contracting e (i.e., deleting e and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still k-connected. An edge that is not k-contractible is said to be a noncontractible edge. Clearly, for a noncomplete k-connected graph G, the edge $x y$ is a noncontractible edge of G if and only if there is a k-cutset T of G such that $\{x, y\} \subseteq T$.

A k-connected graph G is said to be minimally k-connected if $G-e$ is no longer k connected for any $e \in E(G)$. If G is not minimally k-connected, we may delete some edges of G without changing the k connectivity of G until G becomes a minimally k-connected graph. Hence, every k-connected graph has a minimally k-connected spanning subgraph.

If any subgraph of G is not isomorphic to a given graph H, then G is H-free.
The following are some results about the contractible edges in a k-connected graph.

Theorem 1.1 ([10]). If G is a k-connected triangle-free graph, then G contains an edge e such that the contraction of e results in a k-connected graph.

Egawa et al. [3] proved that a k-connected triangle-free graph G contains $\min \left\{|V(G)|+\frac{3}{2} k^{2}-3 k,|E(G)|\right\} \quad k$-contractible edges. Therefore, a k-connected graph G without triangle has many contractible edges. Hence, the condition "without triangle" is too strong. Recently, some weaker conditions "without some specified subgraphs" for a k-connected graph to have a contractible edge was obtained.

Let K_{4}^{-}denote the graph obtained from K_{4} by removing just one edge.
Kawarabayashi proved the following result.

Theorem 1.2 ([5]). Let $k \geqslant 3$ be an odd integer, and G be a k-connected graph. If G does not contain K_{4}^{-}, then G has a k-contractible edge.

Theorem 1.3 ([2]). Let $k \geqslant 4$ be an integer. If G is a k-connected graph not containing $K_{1}+2 K_{2}$, then G contains a k-contractible edge.

Clearly, Theorem 1.2 and Theorem 1.3 are extensions of Theorem 1.1.
For odd k, Kawarabayashi got the following stronger result.

Theorem 1.4 ([6]). Let G be a k-connected graph with $k \geqslant 5$. If k is odd and G does not contain $D=K_{1}+\left(K_{2} \cup K_{1,2}\right)$, then G has a k-contractible edge.

Clearly, D contains K_{4}^{-}and $K_{1}+2 K_{2}$. Hence, when k is odd, Theorem 1.4 is an extension of Theorem 1.2 and Theorem 1.3. Of course, it is also an extension of Theorem 1.1.

In this paper, we are going to prove that for any integer $t \geqslant 3$ and any odd integer $k \geqslant 2 t+1$, if a k-connected graph G contains neither $K_{1}+\left(K_{2} \cup K_{1, t}\right)$, nor $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$, then G has a k-contractible edge.

It is easy to see that both $K_{1}+\left(K_{2} \cup K_{1, t}\right)$ and $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$ contain $D=K_{1}+\left(K_{2} \cup K_{1,2}\right)$. Hence, we generalize the result of Theorem 1.4 under the condition that $k \geqslant 2 t+1$ is an odd integer at least 7 .

2. Several lemmas

Let G be a noncomplete k-connected graph. Let T be a k-cutset of G, and M be a component of $G-T$. For an edge $e=x y$ of the k-connected graph G, if $\{x, y\} \subseteq N_{G}(M)=T$ (i.e., $N_{G}(M)$ is a k-cutset of G), then we say that M is a component with respect to e. For a nonempty subset F of $E(G)$, if A is a component with respect to some edge $e \in F$, then A is called a component with respect to F or simply an F-component. If A is a component with respect to e with minimum cardinality, then A is called a minimum component with respect to e. The minimum F-component is defined similarly. For an edge e of a k-connected graph G, if there is a k-cutset T of G such that T contains the end vertices of e, then we denote the cardinality of a minimum component with respect to e by $\varphi(e)$. Set $J(G)=\{e \in$ $\left.E(G): \varphi(e) \geqslant \frac{1}{2}(k+1)\right\}$.

Lemma 2.1 ([1], [8], [9]). Let G be a k-connected graph with $J(G) \neq \emptyset$. If for every minimum $J(G)$-component A, we have $\left(E(A) \cup E_{G}\left(V(A), N_{G}(A)\right)\right) \cap J(G) \neq \emptyset$, then G has a k-contractible edge.

Lemma 2.2 ([4]). Every minimally k-connected graph has a vertex of degree k.
Lemma 2.3 ([7]). If T is a k-cutset in a minimally k-connected graph G, then every component of $G-T$ contains a vertex x with $d_{G}(x)=k$.

Lemma 2.4 ([1]). If W is a subset of $V(G)$, then

$$
\sum_{x \in V(G)-W}\left|N_{G}(x) \cap W\right|=\sum_{y \in W} d_{G}(y)-2|E(W)| .
$$

Lemma 2.5. Let $t \geqslant 3$ be an integer. Let H be a graph of odd order which has no isolated vertices and $|H| \geqslant 2 t+1$. If H is not a star, then H contains $K_{2} \cup K_{1, t}$ or $2 K_{2} \cup K_{1,2}$.

Proof. Denote the cardinality of a maximum edge independent set of H by m. Then, $m \geqslant 1$. If $m=1$, it is easy to see that H is a star. Assume that $m=2$, and $x_{1} x_{2}, x_{3} x_{4}$ are two independent edges of H. Denote $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Then every vertex of $V(H)-X$ is adjacent to at least one vertex in X. Thus there are at least $|H|-4$ edges between $V(H)-X$ and X. Since $m=2$, there is a vertex in X which is adjacent to at least $t-1$ vertices in $V(H)-X$. Therefore, H contains a subgraph $K_{2} \cup K_{1, t}$. Now assume that $m \geqslant 3$ and U is a maximum edge independent set of H. Since $|H|$ is odd, every vertex in $V(H)-V(U)$ is adjacent to at least one vertex of $V(U)$. Hence, H contains a subgraph $2 K_{2} \cup K_{1,2}$. This completes the proof.

3. Main result

Now we prove the main result of this paper.

Theorem 3.1. Let $t \geqslant 3$ be an integer, and $k \geqslant 2 t+1$ be an odd integer. If G is a k-connected graph which contains neither $K_{1}+\left(K_{2} \cup K_{1, t}\right)$ nor $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$, then G has a k-contractible edge.

Proof. The proof is by contradiction. Clearly, if the conclusion is true for minimally k-connected graphs, then it is also true for general k-connected graphs. Therefore we suppose that G is a minimally k-connected graph and G contains neither $K_{1}+\left(K_{2} \cup K_{1, t}\right)$ nor $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$ but G contains no contractible edges. Thus for every edge $e=x y$ in G, there is a k-cutset S of G such that $\{x, y\} \subseteq S$.

Claim 1. Let S be a k-cutset of G. If A is a component of $G-S$, then $|A| \in\{1,2\}$, or $|A| \geqslant \frac{1}{2}(k+1)$.

Proof. Clearly, we have $|A| \in\{1,2\}$ or $|A| \geqslant 3$. Now, we prove that if $|A| \geqslant 3$, then $|A| \geqslant \frac{1}{2}(k+1)$.

Set $H=G[S \cup V(A)]$. It is obvious that for every $w \in V(A)$, we have $N_{G}(w)=$ $N_{H}(w)$, and $d_{G}(w)=d_{H}(w)$. Since A is a component of $G-S$, and $|A| \geqslant 3, A$ has a P_{3} (i.e., a path of order 3). Suppose that $P_{3}=w_{1} w_{2} w_{3}, W=\left\{w_{1}, w_{2}, w_{3}\right\}$ and $Q=A \cup S-W$.

Denote

$$
\begin{aligned}
\theta & =\left|\left\{u: u \in N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)\right\}\right|, \\
\xi_{1} & =\left|\left\{u: u \in N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)-N_{G}\left[w_{1}\right]\right\}\right|, \\
\xi_{2} & =\left|\left\{u: u \in N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{3}\right)-N_{G}\left[w_{2}\right]\right\}\right|, \\
\xi_{3} & =\left|\left\{u: u \in N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right)-N_{G}\left[w_{3}\right]\right\}\right| .
\end{aligned}
$$

Now we discuss two cases:
Case 1. $\theta \geqslant 1$. If $\theta \geqslant t+1$, then $G\left[W \cup\left(N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)\right)\right]$ contains a subgraph $K_{1}+\left(K_{2} \cup K_{1, t}\right)$, a contradiction. Therefore, $1 \leqslant \theta \leqslant t$.

Similarly, we have that $1 \leqslant \theta+\xi_{i} \leqslant t, i=1,2,3$, when $w_{1} w_{3} \in E(G)$, and that $1 \leqslant \theta+\xi_{i} \leqslant t, i=1,3$, when $w_{1} w_{3} \notin E(G)$.

Case 1.1. $w_{1} w_{3} \in E(G)$. By Lemma 2.4, we have

$$
\begin{align*}
3 k & \leqslant \sum_{w \in W} d_{G}(w)=2|E(W)|+|E(W, Q)| \tag{1}\\
& \leqslant 3 \times 2+3 \theta+2\left(\xi_{1}+\xi_{2}+\xi_{3}\right)+\left(|A|+k-3-\theta-\left(\xi_{1}+\xi_{2}+\xi_{3}\right)\right) \\
& =3+2 \theta+\xi_{1}+\xi_{2}+\xi_{3}+|A|+k
\end{align*}
$$

Suppose that $\theta+\xi_{1}=t$. If $\xi_{2} \neq 0$, then H contains $K_{1}+\left(K_{2} \cup K_{1, t}\right)$, a contradiction. Thus $\xi_{2}=\xi_{3}=0$. By (1), we have

$$
3 k \leqslant 3+2 \theta+\xi_{1}+|A|+k=3+\theta+t+|A|+k
$$

This implies $|A| \geqslant 2 k-t-\theta-3 \geqslant 2 k-2 t-3 \geqslant \frac{1}{2}(k+1)$.
We may suppose $1 \leqslant \theta+\xi_{i} \leqslant t-1$ for $i=1,2,3$. By (1), we have

$$
3 k+\theta \leqslant 3+\left(\theta+\xi_{1}\right)+\left(\theta+\xi_{2}\right)+\left(\theta+\xi_{3}\right)+|A|+k \leqslant 3+3(t-1)+|A|+k
$$

Hence $|A| \geqslant 2 k-3 t+\theta \geqslant 2 k-3 t+1 \geqslant \frac{1}{2}(k+1)$.
Case 1.2. $w_{1} w_{3} \notin E(G)$. First suppose that $\theta+\xi_{1}=t$. Then $\xi_{3}=0$. Consequently,

$$
\begin{aligned}
k+|A| & \geqslant\left|N_{G}\left(w_{1}\right)\right|+\left|N_{G}\left(w_{2}\right)\right|-\left|N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right)\right| \\
& \geqslant 2 k-\theta \\
& \geqslant 2 k-t .
\end{aligned}
$$

Hence, $|A| \geqslant k-t \geqslant \frac{1}{2}(k+1)$.
Next suppose that $1 \leqslant \theta+\xi_{1} \leqslant t-1$. Then we have

$$
\begin{aligned}
k+|A| & \geqslant\left|N_{G}\left(w_{2}\right)\right|+\left|N_{G}\left(w_{3}\right)\right|-\left|N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)\right| \\
& \geqslant 2 k-\theta-\xi_{1} \\
& \geqslant 2 k-t+1
\end{aligned}
$$

Therefore, $|A| \geqslant k-t+1 \geqslant \frac{1}{2}(k+1)$.

Case 2. $\theta=0$. First suppose that $\xi_{1} \geqslant t$. Since G contains neither $K_{1}+\left(K_{2} \cup K_{1, t}\right)$ nor $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$, it is easy to get that $\xi_{3}=0$. Thus we have

$$
|A| \geqslant\left|N_{G}\left(w_{1}\right)\right|+\left|N_{G}\left(w_{2}\right)\right|-\left|N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right)\right|-k \geqslant k \geqslant \frac{k+1}{2} .
$$

Next suppose that $\xi_{1} \leqslant t-1$. Then we have

$$
|A| \geqslant\left|N_{G}\left(w_{2}\right)\right|+\left|N_{G}\left(w_{3}\right)\right|-\left|N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)\right|-k \geqslant k-\xi_{1} \geqslant k-t+1 \geqslant \frac{1}{2}(k+1) .
$$

Claim 2. Let S be a k-cutset of G. If $a b$ is a component of $G-S$, then $N_{G}(a) \cap S$ is independent.

Proof. We suppose that, on the contrary, there are $x, y \in N_{G}(a) \cap S$ such that $x y \in E(G)$. Since $\delta(G) \geqslant k$, we have

$$
\left|N_{G}(a) \cap N_{G}(b) \cap(S-\{x, y\})\right| \geqslant k-4 \geqslant 2 t+1-4 \geqslant t .
$$

Thus G contains $K_{1}+\left(K_{2} \cup K_{1, t}\right)$, a contradiction.

Claim 3. If $e=x y$ is not contained in any triangle, then $E(x) \cap J(G) \neq \emptyset$ and $E(y) \cap J(G) \neq \emptyset$.

Proof. Assume that $x y$ is not contained in any triangle. Let S be a k-cutset of G such that $\{x, y\} \subseteq S$, and A be a minimum component of $G-S$. Since $x y$ is not contained in any triangle, we have $|A| \geqslant 2$. If $|A| \geqslant 3$, then the conclusion holds by Claim 1. Now assume that $|A|=2$ and $A=\{a, b\}$. Further, we may assume that $\{x a, y b\} \subseteq E(G)$, but $\{a y, b x\} \cap E(G)=\emptyset$. By Claim $2, N_{G}(a) \cap S$ is independent. Thus $x a$ is not contained in any triangle. It is obvious that any edge in $E(a)-\{x a\}$ is contained in a triangle. Let S_{1} be a k-cutset such that $\{x, a\} \subseteq S_{1}$ and A_{1} be a minimum component of $G-S_{1}$. Since $x a$ is not contained in any triangle, we have $\left|A_{1}\right| \geqslant 2$. Now we assume that $\left|A_{1}\right|=2$. Denote $N_{G}(a) \cap A_{1}=\{p\}$. By Claim 2, $N_{G}(p) \cap S_{1}$ is independent. But this contradicts the fact that the edge $a p$ is contained in a triangle. Therefore $\left|A_{1}\right| \geqslant 3$. Thus $x a \in J(G)$ by Claim 1. By the same argument, $y b \in J(G)$. This completes the proof.

Claim 4. If $d_{G}(x)=k$, then $E(x) \cap J(G) \neq \emptyset$.
Proof. Suppose that $x \in V(G)$ with $d_{G}(x)=k$. Denote $H=G\left[N_{G}(x)\right]$.
If H contains an isolated vertex y, then $x y$ is not contained in any triangle. By Claim 3, $E(x) \cap J(G) \neq \emptyset$. In the following, we assume that H contains no isolated vertices.

By Lemma 2.5, H is a star or H contains either $K_{2} \cup K_{1, t}$ or $2 K_{2} \cup K_{1,2}$. Thus, if H is not a star, then $G\left[N_{G}[x]\right]$ contains $K_{1}+\left(K_{2} \cup K_{1, t}\right)$ or $K_{1}+\left(2 K_{2} \cup K_{1,2}\right)$, a contradiction. Thus H is a star. So every edge in $E(x)$ is contained in a triangle.

Let v be the vertex of degree $k-1$ in H. Then $d_{G}(v) \geqslant k+1$, otherwise, $N_{G}(x) \cap N_{G}(v)$ is a $k-1$ cutset of G which contradicts that G is k-connected. For any vertex u of degree one in H, xuvx is the only triangle containing both x and u. Let y be a vertex of degree one in H and S be a k-cutset of G such that $\{x, y\} \subseteq S$. Assume that A is a minimum component of $G-S$. If $|A|=1$, then $A=\{v\}$ since $x y v x$ is the only triangle containing both x and y. This contradicts that $d_{G}(v) \geqslant k+1$. So we have that $|A| \geqslant 2$. Assume that $|A|=2$ and $A=\{a, b\}$. Without loss of generality, we assume that $a x \in E(G)$. By Claim 2, we have $v \notin\{a, b\}$. Since $a \in N_{G}(x)$ and $N_{G}(x) \subseteq N_{G}[v]$, we have $v \in S$. This means that $N_{G}(a) \cap S$ is not independent, a contradiction by Claim 2. Thus $|A| \geqslant 3$. So $x y \in J(G)$ by Claim 1 .

Since G is a minimally k-connected graph, by Lemma 2.2 , we have $\delta(G)=k$. Suppose that x is a vertex of degree k in G. Then we have $E(x) \cap J(G) \neq \emptyset$ by Claim 4. Therefore, $J(G) \neq \emptyset$.

Notice that G has no contractible edges. So by Lemma 2.1, there is a minimum $J(G)$-component A such that

$$
\left(E(A) \cup E_{G}\left(V(A), N_{G}(A)\right)\right) \cap J(G)=\emptyset .
$$

By the definition of $J(G)$-component, we have that $N_{G}(A)$ is a k-cutset of G such that $E\left(G\left[N_{G}(A)\right]\right)$ contains some edge $e \in J(G)$. By Lemma 2.3, we have that A contains a vertex s with $d_{G}(s)=k$. Clearly, $E(s) \subseteq\left(E(A) \cup E_{G}\left(V(A), N_{G}(A)\right)\right)$. But by Claim 4, we have $E(s) \cap J(G) \neq \emptyset$, a contradiction. This completes the proof.

Acknowledgement. The authors would like to thank the referee for his (her) valuable suggestions.

References

[1] K. Ando, A. Kaneko, K. Kawarabayashi: Contractible edges in minimally k-connected graphs. Discrete Math. 308 (2008), 597-602.
[2] K. Ando, A. Kaneko, K. Kawarabayashi, K. Yoshiomoto: Contractible edges and bowties in a k-connected graph. Ars Combin. 64 (2002), 239-247.
[3] Y.Egawa, H. Enomoto, A. Saito: Contractible edges in triangle-free graphs. Combinatorica 6 (1986), 269-274.
[4] R. Halin: A theorem on n-connected graphs. J. Combin. Theory 7 (1969), 150-154.
[5] K. Kawarabayashi: Note on k-contractible edges in k-connected graphs. Australasian J. Combin. 24 (2001), 165-168.
[6] K. Kawarabayashi: Contractible edges and triangles in k-connected graphs. J. Combin. Theory, Ser. B 85 (2002), 207-221.
zbl
[7] W. Mader: Ecken vom Grad n in minimalen n-fach zusammenhängenden Graphen. Archiv der Mathematik 23 (1972), 219-224. (In German.)
zbl
[8] W. Mader: Disjunkte Fragmente in kritisch n-fach zusammenhängende Graphen. European J. Combin. 6 (1985), 353-359. (In German.)
[9] W. Mader: Generalizations of critical connectivity of graphs. Discrete Math. 72 (1988), 267-283.
[10] C. Thomassen: Non-separating cycles in k-connected graphs. J. Graph Theory 5 (1981),

Authors' address: Yingqiu Yang, Liang Sun, School of Mathematics, Beijing Institute of Technology, Beijing, 100081, P. R. China, e-mail: yyq0227@yahoo.com.cn, 1sunn @sina.com.

