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Abstract. An edge e of a k-connected graph G is said to be k-contractible (or simply
contractible) if the graph obtained from G by contracting e (i.e., deleting e and identifying
its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is
still k-connected. In 2002, Kawarabayashi proved that for any odd integer k > 5, if G

is a k-connected graph and G contains no subgraph D = K1 + (K2 ∪ K1,2), then G has
a k-contractible edge. In this paper, by generalizing this result, we prove that for any
integer t > 3 and any odd integer k > 2t + 1, if a k-connected graph G contains neither
K1 + (K2 ∪K1,t), nor K1 + (2K2 ∪K1,2), then G has a k-contractible edge.
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V and edge set E. For a vertex

v ∈ V , we denote the neighborhood of v by NG(v) and let NG[v] = NG(v) ∪ {v}.

For a subset X ⊆ V , NG(X) =
(

⋃

x∈X

NG(x)
)

− X is the neighborhood of X in G,

and G[X ] is the subgraph of G induced by X . We write dG(v) for the degree of the

vertex v ∈ V (G) and δ(G) for the minimum degree of G. Let E(x) denote the set

of edges incident to the vertex x. For disjoint nonempty subsets A and B of V , the

set of edges of G joining a vertex in A to a vertex in B is denoted by EG(A, B). We

denote the union of two graphs G and H by G ∪ H , and the union of m copies of

G by mG. The join G + H of disjoint graphs G and H is the graph obtained from

G ∪ H by joining each vertex of G to each vertex of H . We use Kn and K1,n to

denote the complete graphs and stars, respectively.
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A maximal connected subgraph of G is a component of G. Let G be a k-connected

graph. For T ⊂ V (G), if there are at least two components in G− T , then T is said

to be a cutset of G. A k-cutset of G is a cutset of G with k vertices.

Let k > 2 be an integer. An edge e of a k-connected graph G is said to be k-

contractible (or simply contractible) if the graph obtained from G by contracting e

(i.e., deleting e and identifying its ends, finally, replacing each of the resulting pairs of

double edges by a single edge) is still k-connected. An edge that is not k-contractible

is said to be a noncontractible edge. Clearly, for a noncomplete k-connected graph

G, the edge xy is a noncontractible edge of G if and only if there is a k-cutset T of

G such that {x, y} ⊆ T .

A k-connected graph G is said to be minimally k-connected if G−e is no longer k-

connected for any e ∈ E(G). If G is not minimally k-connected, we may delete some

edges of G without changing the k connectivity of G until G becomes a minimally

k-connected graph. Hence, every k-connected graph has a minimally k-connected

spanning subgraph.

If any subgraph of G is not isomorphic to a given graph H , then G is H-free.

The following are some results about the contractible edges in a k-connected graph.

Theorem 1.1 ([10]). If G is a k-connected triangle-free graph, then G contains

an edge e such that the contraction of e results in a k-connected graph.

Egawa et al. [3] proved that a k-connected triangle-free graph G contains

min{|V (G)| + 3
2k2 − 3k, |E(G)|} k-contractible edges. Therefore, a k-connected

graph G without triangle has many contractible edges. Hence, the condition “with-

out triangle” is too strong. Recently, some weaker conditions “without some specified

subgraphs” for a k-connected graph to have a contractible edge was obtained.

Let K−

4 denote the graph obtained from K4 by removing just one edge.

Kawarabayashi proved the following result.

Theorem 1.2 ([5]). Let k > 3 be an odd integer, and G be a k-connected graph.

If G does not contain K−

4 , then G has a k-contractible edge.

Theorem 1.3 ([2]). Let k > 4 be an integer. If G is a k-connected graph not

containing K1 + 2K2, then G contains a k-contractible edge.

Clearly, Theorem 1.2 and Theorem 1.3 are extensions of Theorem 1.1.

For odd k, Kawarabayashi got the following stronger result.
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Theorem 1.4 ([6]). Let G be a k-connected graph with k > 5. If k is odd and G

does not contain D = K1 + (K2 ∪ K1,2), then G has a k-contractible edge.

Clearly, D contains K−

4 and K1 + 2K2. Hence, when k is odd, Theorem 1.4 is

an extension of Theorem 1.2 and Theorem 1.3. Of course, it is also an extension of

Theorem 1.1.

In this paper, we are going to prove that for any integer t > 3 and any odd

integer k > 2t + 1, if a k-connected graph G contains neither K1 + (K2 ∪ K1,t), nor

K1 + (2K2 ∪ K1,2), then G has a k-contractible edge.

It is easy to see that both K1 + (K2 ∪ K1,t) and K1 + (2K2 ∪ K1,2) contain

D = K1 + (K2 ∪ K1,2). Hence, we generalize the result of Theorem 1.4 under the

condition that k > 2t + 1 is an odd integer at least 7.

2. Several lemmas

Let G be a noncomplete k-connected graph. Let T be a k-cutset of G, and M

be a component of G − T . For an edge e = xy of the k-connected graph G, if

{x, y} ⊆ NG(M) = T (i.e., NG(M) is a k-cutset of G), then we say that M is

a component with respect to e. For a nonempty subset F of E(G), if A is a component

with respect to some edge e ∈ F , then A is called a component with respect to F

or simply an F -component. If A is a component with respect to e with minimum

cardinality, then A is called a minimum component with respect to e. The minimum

F -component is defined similarly. For an edge e of a k-connected graph G, if there

is a k-cutset T of G such that T contains the end vertices of e, then we denote the

cardinality of a minimum component with respect to e by ϕ(e). Set J(G) = {e ∈

E(G) : ϕ(e) > 1
2 (k + 1)}.

Lemma 2.1 ([1], [8], [9]). Let G be a k-connected graph with J(G) 6= ∅. If for

every minimum J(G)-component A, we have (E(A)∪EG(V (A), NG(A)))∩J(G) 6= ∅,

then G has a k-contractible edge.

Lemma 2.2 ([4]). Every minimally k-connected graph has a vertex of degree k.

Lemma 2.3 ([7]). If T is a k-cutset in a minimally k-connected graph G, then

every component of G − T contains a vertex x with dG(x) = k.

Lemma 2.4 ([1]). If W is a subset of V (G), then
∑

x∈V (G)−W

|NG(x) ∩ W | =
∑

y∈W

dG(y) − 2|E(W )|.
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Lemma 2.5. Let t > 3 be an integer. Let H be a graph of odd order which has

no isolated vertices and |H | > 2t + 1. If H is not a star, then H contains K2 ∪ K1,t

or 2K2 ∪ K1,2.

P r o o f. Denote the cardinality of a maximum edge independent set of H by m.

Then, m > 1. If m = 1, it is easy to see that H is a star. Assume that m = 2, and

x1x2, x3x4 are two independent edges ofH . Denote X = {x1, x2, x3, x4}. Then every

vertex of V (H) − X is adjacent to at least one vertex in X . Thus there are at least

|H | − 4 edges between V (H)−X and X . Since m = 2, there is a vertex in X which

is adjacent to at least t− 1 vertices in V (H)−X . Therefore, H contains a subgraph

K2 ∪ K1,t. Now assume that m > 3 and U is a maximum edge independent set of

H . Since |H | is odd, every vertex in V (H)− V (U) is adjacent to at least one vertex

of V (U). Hence, H contains a subgraph 2K2 ∪ K1,2. This completes the proof. �

3. Main result

Now we prove the main result of this paper.

Theorem 3.1. Let t > 3 be an integer, and k > 2t + 1 be an odd integer. If G is

a k-connected graph which contains neither K1 +(K2 ∪K1,t) nor K1 +(2K2∪K1,2),

then G has a k-contractible edge.

P r o o f. The proof is by contradiction. Clearly, if the conclusion is true for

minimally k-connected graphs, then it is also true for general k-connected graphs.

Therefore we suppose thatG is a minimally k-connected graph andG contains neither

K1 + (K2 ∪K1,t) nor K1 + (2K2 ∪K1,2) but G contains no contractible edges. Thus

for every edge e = xy in G, there is a k-cutset S of G such that {x, y} ⊆ S. �

Claim 1. Let S be a k-cutset of G. If A is a component of G−S, then |A| ∈ {1, 2},

or |A| > 1
2 (k + 1).

P r o o f. Clearly, we have |A| ∈ {1, 2} or |A| > 3. Now, we prove that if |A| > 3,

then |A| > 1
2 (k + 1).

Set H = G[S ∪ V (A)]. It is obvious that for every w ∈ V (A), we have NG(w) =

NH(w), and dG(w) = dH(w). Since A is a component of G − S, and |A| > 3, A has

a P3 (i.e., a path of order 3). Suppose that P3 = w1w2w3, W = {w1, w2, w3} and

Q = A ∪ S − W .
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Denote
θ = |{u : u ∈ NG(w1) ∩ NG(w2) ∩ NG(w3)}|,

ξ1 = |{u : u ∈ NG(w2) ∩ NG(w3) − NG[w1]}|,

ξ2 = |{u : u ∈ NG(w1) ∩ NG(w3) − NG[w2]}|,

ξ3 = |{u : u ∈ NG(w1) ∩ NG(w2) − NG[w3]}|.

Now we discuss two cases:

Case 1. θ > 1. If θ > t + 1, then G[W ∪ (NG(w1) ∩ NG(w2) ∩ NG(w3))] contains

a subgraph K1 + (K2 ∪ K1,t), a contradiction. Therefore, 1 6 θ 6 t.

Similarly, we have that 1 6 θ + ξi 6 t, i = 1, 2, 3, when w1w3 ∈ E(G), and that

1 6 θ + ξi 6 t, i = 1, 3, when w1w3 6∈ E(G).

Case 1.1. w1w3 ∈ E(G). By Lemma 2.4, we have

3k 6
∑

w∈W

dG(w) = 2|E(W )| + |E(W, Q)|(1)

6 3 × 2 + 3θ + 2(ξ1 + ξ2 + ξ3) + (|A| + k − 3 − θ − (ξ1 + ξ2 + ξ3))

= 3 + 2θ + ξ1 + ξ2 + ξ3 + |A| + k.

Suppose that θ + ξ1 = t. If ξ2 6= 0, then H contains K1 + (K2 ∪ K1,t), a contra-

diction. Thus ξ2 = ξ3 = 0. By (1), we have

3k 6 3 + 2θ + ξ1 + |A| + k = 3 + θ + t + |A| + k.

This implies |A| > 2k − t − θ − 3 > 2k − 2t− 3 > 1
2 (k + 1).

We may suppose 1 6 θ + ξi 6 t − 1 for i = 1, 2, 3. By (1), we have

3k + θ 6 3 + (θ + ξ1) + (θ + ξ2) + (θ + ξ3) + |A| + k 6 3 + 3(t − 1) + |A| + k.

Hence |A| > 2k − 3t + θ > 2k − 3t + 1 > 1
2 (k + 1).

Case 1.2. w1w3 6∈ E(G). First suppose that θ+ξ1 = t. Then ξ3 = 0. Consequently,

k + |A| > |NG(w1)| + |NG(w2)| − |NG(w1) ∩ NG(w2)|

> 2k − θ

> 2k − t.

Hence, |A| > k − t > 1
2 (k + 1).

Next suppose that 1 6 θ + ξ1 6 t − 1. Then we have

k + |A| > |NG(w2)| + |NG(w3)| − |NG(w2) ∩ NG(w3)|

> 2k − θ − ξ1

> 2k − t + 1.

Therefore, |A| > k − t + 1 > 1
2 (k + 1).
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Case 2. θ = 0. First suppose that ξ1 > t. Since G contains neither K1+(K2∪K1,t)

nor K1 + (2K2 ∪ K1,2), it is easy to get that ξ3 = 0. Thus we have

|A| > |NG(w1)| + |NG(w2)| − |NG(w1) ∩ NG(w2)| − k > k >
k + 1

2
.

Next suppose that ξ1 6 t − 1. Then we have

|A| > |NG(w2)|+ |NG(w3)|−|NG(w2)∩NG(w3)|−k > k−ξ1 > k−t+1 > 1
2 (k+1).

�

Claim 2. Let S be a k-cutset of G. If ab is a component of G−S, then NG(a)∩S

is independent.

P r o o f. We suppose that, on the contrary, there are x, y ∈ NG(a)∩S such that

xy ∈ E(G). Since δ(G) > k, we have

|NG(a) ∩ NG(b) ∩ (S − {x, y})| > k − 4 > 2t + 1 − 4 > t .

Thus G contains K1 + (K2 ∪ K1,t), a contradiction. �

Claim 3. If e = xy is not contained in any triangle, then E(x) ∩ J(G) 6= ∅ and

E(y) ∩ J(G) 6= ∅.

P r o o f. Assume that xy is not contained in any triangle. Let S be a k-cutset

of G such that {x, y} ⊆ S, and A be a minimum component of G − S. Since xy is

not contained in any triangle, we have |A| > 2. If |A| > 3, then the conclusion holds

by Claim 1. Now assume that |A| = 2 and A = {a, b}. Further, we may assume that

{xa, yb} ⊆ E(G), but {ay, bx} ∩ E(G) = ∅. By Claim 2, NG(a) ∩ S is independent.

Thus xa is not contained in any triangle. It is obvious that any edge in E(a)−{xa}

is contained in a triangle. Let S1 be a k-cutset such that {x, a} ⊆ S1 and A1 be

a minimum component of G − S1. Since xa is not contained in any triangle, we

have |A1| > 2. Now we assume that |A1| = 2. Denote NG(a) ∩ A1 = {p}. By

Claim 2, NG(p) ∩ S1 is independent. But this contradicts the fact that the edge ap

is contained in a triangle. Therefore |A1| > 3. Thus xa ∈ J(G) by Claim 1. By the

same argument, yb ∈ J(G). This completes the proof. �

Claim 4. If dG(x) = k, then E(x) ∩ J(G) 6= ∅.

P r o o f. Suppose that x ∈ V (G) with dG(x) = k. Denote H = G[NG(x)].

If H contains an isolated vertex y, then xy is not contained in any triangle. By

Claim 3, E(x) ∩ J(G) 6= ∅. In the following, we assume that H contains no isolated

vertices.
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By Lemma 2.5, H is a star or H contains either K2 ∪ K1,t or 2K2 ∪ K1,2. Thus,

if H is not a star, then G[NG[x]] contains K1 + (K2 ∪ K1,t) or K1 + (2K2 ∪ K1,2),

a contradiction. Thus H is a star. So every edge in E(x) is contained in a triangle.

Let v be the vertex of degree k − 1 in H . Then dG(v) > k + 1, otherwise,

NG(x)∩NG(v) is a k−1 cutset of G which contradicts that G is k-connected. For any

vertex u of degree one in H , xuvx is the only triangle containing both x and u. Let y

be a vertex of degree one in H and S be a k-cutset of G such that {x, y} ⊆ S. Assume

that A is a minimum component of G−S. If |A| = 1, then A = {v} since xyvx is the

only triangle containing both x and y. This contradicts that dG(v) > k + 1. So we

have that |A| > 2. Assume that |A| = 2 and A = {a, b}. Without loss of generality,

we assume that ax ∈ E(G). By Claim 2, we have v 6∈ {a, b}. Since a ∈ NG(x) and

NG(x) ⊆ NG[v], we have v ∈ S. This means that NG(a) ∩ S is not independent,

a contradiction by Claim 2. Thus |A| > 3. So xy ∈ J(G) by Claim 1. �

Since G is a minimally k-connected graph, by Lemma 2.2, we have δ(G) = k.

Suppose that x is a vertex of degree k in G. Then we have E(x) ∩ J(G) 6= ∅ by

Claim 4. Therefore, J(G) 6= ∅.

Notice that G has no contractible edges. So by Lemma 2.1, there is a minimum

J(G)-component A such that

(E(A) ∪ EG(V (A), NG(A))) ∩ J(G) = ∅.

By the definition of J(G)-component, we have that NG(A) is a k-cutset of G such

that E(G[NG(A)]) contains some edge e ∈ J(G). By Lemma 2.3, we have that A

contains a vertex s with dG(s) = k. Clearly, E(s) ⊆ (E(A) ∪ EG(V (A), NG(A))).

But by Claim 4, we have E(s) ∩ J(G) 6= ∅, a contradiction. This completes the

proof. �
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