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Abstract. We study improper interval edge colourings, defined by the requirement that
the edge colours around each vertex form an integer interval. For the corresponding chro-
matic invariant (being the maximum number of colours in such a colouring), we present
upper and lower bounds and discuss their qualities; also, we determine its values and esti-
mates for graphs of various families, like wheels, prisms or complete graphs. The study of
this parameter was inspired by the interval colouring, introduced by Asratian, Kamalian
(1987). The difference is that we relax the requirement on the original colouring to be
proper.
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1. Introduction

Throughout this paper, we consider simple connected graphs without loops or

multiple edges; we use standard graph terminology from book [4].

A proper edge colouring c : V (G) → {1, . . . , k} of a graphG which uses each colour

from {1, . . . , k} at least once is called an interval colouring if for each vertex x of G,

the set of colours of edges incident with x (the palette of x) forms an integer interval;

we say that the graph G is interval k-colourable. For an interval colourable graph G,
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let t(G) denote the maximum number of colours used in any interval colouring of G.

The notion of interval colouring was introduced by Asratian and Kamalian in [1]

in connection with specialized scheduling problems and, since then, it was further

investigated in many papers, see for example [3], [5], [6], [7], [8], [9], [10]. Not all

graphs are proper interval colourable (this concerns, for example, graphs of Class 2);

in fact, the problem of determining whether a graph has an interval colouring is

NP-complete, even for bipartite graphs, see [2] and [11].

In our paper, we relax the requirement on the above defined colouring to be

proper and introduce the parameter t̂(G) being the maximum number of colours

in an improper interval colouring of G. Note that t̂(G) is defined for every graph

(which is in sharp contrast with t(G), see [3]) and is at least 3 for all graphs of

order at least 3 different from K3. Also, for a graph G which is interval colourable,

t(G) 6 t̂(G) holds. Compared with the range of results for interval colourings, it

seems that improper interval colourings have not been studied yet. Our aim is to

contribute to this topic by determining the exact values of t̂(G) or their estimates

for graphs of several classic families (this concerns also many graphs which do not

possess proper interval colourings), and to establish upper and lower bounds on t̂(G)

in terms of the graph diameter and the maximum degree.

2. Properties and results

In the analysis of improper interval colourings, the following observations (which

are easy to see) will be useful:

Proposition 2.1. If a graph G is improperly interval k-colourable with k > 3,

then it is also improperly interval k-colourable in such a way that the colours 1 and

k are used exactly once.

Proposition 2.2. A graph G is improperly interval l-colourable for each 1 6

l 6 t̂(G).

First, we present an upper bound on t̂(G) in terms of the maximum degree and

the diameter:

Lemma 2.3. For any connected graph G with maximum degree ∆ = ∆(G) we

have t̂(G) 6 1 + (∆− 1)(diam(G) + 1).

P r o o f. Let uv and xy be edges coloured by 1 and k, respectively, in an improper

interval colouring of G using t̂(G) colours. Observe that in each such colouring, the

colours of each two adjacent edges differ by at most ∆ − 1. Now, take the shortest
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path P between the vertex sets {u, v} and {x, y}. Then P has the length at most

diam(G); note, however, that the edges uv and xy need not belong to P . It follows

that the number of colour changes from uv to xy along P is at most diam(G) + 1,

which implies the result. �

Note that this lemma generalizes the result of [1] where the right hand side of

the above inequality estimates t(G) from above. Using the same arguments, we can

prove an analogous inequality with respect to the diameter of the line graph L(G):

Lemma 2.4. For any connected graph G with maximum degree ∆ = ∆(G) we

have t̂(G) 6 1 + (∆− 1)(diam(L(G)); the bound is sharp.

We also present strengthenings of two theorems from [1]:

Theorem 2.5. For each triangle-free graph G on n vertices, t̂(G) 6 n − 1; the

bound is sharp.

P r o o f. We follow the same reasoning as in the proof of Theorem 1 from [1]; the

difference is only in the estimate of the number of elements of the set A(i) (see the

original proof, page 38): we obtain that for an improper interval t-colouring of G the

inequality |A(i)| > f(ei) − f(ei+1)− 1, i = 1, . . . , k − 1, holds (instead of equality).

Hence, the last argument of the original proof rephrases as

n > k + 1 +
k−1
∑

i=1

|A(i)| > k + 1 +
k−1
∑

i=1

(f(ei)− f(ei+1)− 1)

= k + 1 + t− 1− (k − 1) = 1 + t,

implying t 6 n− 1.

To show the sharpness of the bound, consider the graph of the path on n ver-

tices Pn, n > 2. It is easy to see that t̂(Pn) = n− 1. �

Since the original proof of Proposition 4 of [1], page 39, does not require the

considered interval colourings to be proper, we obtain the following theorem.

Theorem 2.6. For each graph G on n vertices, t̂(G) 6 2n− 1.

For the lower bound on t̂(G), we have the following estimate:

Theorem 2.7. For each graph G, t̂(G) > 1 + diam(L(G)); the bound is sharp.
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P r o o f. Consider the line graph L(G) of G and let x be a vertex of maximum

eccentricity in L(G). Then colour the vertex x with colour 1 and each vertex y ∈

V (L(G)), y 6= x with the colour equal to 1 + distL(G)(x, y). This vertex colouring of

L(G) induces an edge colouring of G. The way the colouring of the vertices of L(G)

was constructed gives that in G, the palette of each vertex consists either of two

consecutive colours or of a single colour; thus, it is an improper interval colouring

of G having the highest colour equal to diam(L(G)) + 1.

To show the sharpness of the lower bound, consider for an integer k > 6 the

graph DBk obtained from a k-vertex path x1x2 . . . xk by adding new edges x1x3 and

xk−2xk. Then it is easy to check that t̂(DBk) = k − 1 and diam(L(DBk)) = k − 2.

�

The difference between t(G) and t̂(G) can be arbitrarily large. This can be seen

on the graph SNk formed from a chain of k copies of the graph K−
4 where both

chain ends are closed with a different triangle, see Figure 1. It is easy to see that

the graph SNk has a proper interval colouring; observe that in each proper interval

colouring of SNk, the difference of colours of two consecutive bridges incident with

the same copy of K−
4 is 0 or 3 while it is possible to construct an improper colouring

of SNk such that the colour difference on consecutive bridges is 4. Thus, we obtain

that t̂(SNk)− t(SNk) > k. A similar construction can be used also for triangle-free

graphs, where instead of copies of K−
4 , the 5-cycle with pendant edges incident with

two nonadjacent vertices is used: the difference of colours on bridges in a proper

interval colouring is at most 3 whereas it is possible to assign the colours in such

a way that the difference is 4 in an improper interval colouring, see Figure 2.

2

1

3

2
3

4

5

4

3

5 3k + 2

3k + 3

3k + 1

3k + 2

1

2

2

3
4

4

5

6

6

7 4k + 3

4k + 4

4k + 4

4k + 5

Figure 1. The graph SNk and its proper and improper interval colourings.

The construction generalizes to classes of graphs of arbitrarily large girth. More-

over, one can consider several other suitable configurations to show that the colour

difference on two selected edges can be greater in an improper version of the colour-

ing rather than in the proper one, and these configurations may be used to form

other graphs (for example 2-connected) with arbitrarily large difference between

t(G) and t̂(G).
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Figure 2. An analogous construction for triangle-free graphs.

There is no known significant upper bound on the difference t̂(G)− t(G) in terms

of the number of vertices of G.

In the following, we establish the exact values and estimates of t̂(G) of graphs

from several standard graph families.

Theorem 2.8. For an n-wheel Wn,

t̂(Wn) =

{

4 if n = 3;

n if n > 4.

P r o o f. Suppose first that n = 3. If t̂(W3) > 5, then the unique edge of W3

which is not adjacent to the edge of maximum colour would have a colour at least 2,

so colour 1 is not used, a contradiction; on the other hand, an improper interval

4-colouring of W3 is easy to find.

Now, let n > 4. An improper interval n-colouring ofWn can be constructed in the

following way: if x is the centre of Wn and x1, . . . , xn are its neighbours in counter

clockwise order, assign to each edge xixi+1, 1 6 i 6 ⌈n/2⌉ colour 2i − 1, to each

edge xixi+1, ⌈n/2⌉ < i 6 n (indices taken modulo n) colour 2n+4− 2i, and to each

edge xxi, i 6∈ {1, ⌈n/2⌉ + 1} the colour equal to the arithmetic mean of colours of

edges xi−1xi, xixi+1, whereas the edge xx1 receives colour 1 and the edge xx⌈n/2⌉+1

receives colour n. It is easy to check that in this colour assignment, the palette of

each vertex forms an integer interval (note that the palette of x1 is [1, 2] and the

palette of x⌈n/2t⌉+1 is [n− 1, n]). See Figure 3 for illustration.

Assume now that for some n, t̂(Wn) > n + 1. Consider first the case when n is

odd. Then at least one of colours 1 and n+1 is used at a rim edge of Wn (otherwise

the palette of the central vertex of Wn would not form an integer interval). Since
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Figure 3. The improper interval n-colouring of a wheel Wn for n = 7 and n = 8.

replacing each colour c by colour n+ 2− c yields also an improper interval (n+ 1)-

colouring of Wn, we can suppose, without loss of generality, that colour 1 is used

on a rim edge uv. Note that the colours of two adjacent rim edges can differ by

at most 2; this means that two edges yw,wz which are—taking into account the

bidirectional distance on the rim—most distant from uv, have the colour at most

1 + 2(n− 1)/2 = n. Thus, colour n + 1 has to appear at a spoke edge of Wn and,

repeating the above colour difference argument, we obtain that this spoke edge is

incident with the vertex w. Due to the fact that in the considered improper interval

colouring, colour 1 is unique, the edge uv is adjacent with at least two edges coloured

by 2 and at least one of them—say, vq—is a rim edge (otherwise again, the palette

of the central vertex would not, an integer interval). Then the colour sequence of

the rim path P from uv through vq ending by one of the rim edges incident to w

is 1, 2, 4, . . . , 2i, 2(i + 1), . . . , n − 1; this implies that one of yw and wz has colour

n − 1 and the other one has colour n. Now, if we take the rim path P ′ starting

at uv, but with the opposite direction to P , we get that its colour sequence is

1, 3, 5, . . . , 2i− 1, 2i+ 1, . . . , n. But then colour n does not appear at a spoke edge,

hence, the palette of the central vertex is not an integer interval, a contradiction.

Consider now the case when n is even. Rephrasing the above arguments, we can

suppose that colour 1 is used on a rim edge uv. According to the possible position

of colour n+ 1, we distinguish two cases:

Case 1 : Colour n + 1 is on a rim edge. Then the colour sequences of both rim

paths starting at uv are 1, 3, 5, . . . , 2i− 1, 2i+ 1, . . . , n+ 1, which gives that colours

of all spoke edges are even numbers, a contradiction.

Case 2 : Colour n + 1 is on a spoke edge xw. Let yw and wz be the rim edges

adjacent to xw; without loss of generality, let yw be closer to uv than wz to uv. Then

the colour sequence of a rim path starting at uv and ending at yw is 1, 3, . . . , 2i− 1,

2i + 1, . . . , n − 1, which yields that wz has colour n. By the same argument as for

n odd, colour 2 has to be used on a rim edge incident with uv, hence, the colour

sequence of the rim path between uv and wz is 2, 4, . . . , 2i, 2(i+ 1), . . . , n. But then

again, colour n is missing at spoke edges, a contradiction. �

1124



Note that by [3] only three wheels are proper interval colourable, namely W3,W6

and W9.

Next, we present the exact value for a graph Yn = Cn � K2, the graph of an

n-sided prism.

Theorem 2.9. For an n-prism graph Yn with n > 3, t̂(Yn) = n+ 2.

P r o o f. Let Yn = Cn � K2. In a plane drawing of Yn, there are two n-gonal faces

x1, x2, . . . , xn and y1, y2, . . . , yn interconnected by the edges xiyi, i = 1, . . . , n (the

side edges); the edges of type xixi+1 or yiyi+1 (i = 1, . . . , n, indices are modulo n)

will be called base edges in the sequel.
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Figure 4. The improper interval (n+ 2)-colouring of a prism Yn for n = 7 and n = 8.

First, we show that there exists an improper interval colouring of graph Yn

with n + 2 colours. It can be constructed as follows: Assign the edge x1y1
colour 1, the edges x1x2, y1y2 colour 2, the edges x1xn, y1yn colour 3 and the

edge x⌈n/2⌉+1y⌈n/2⌉+1 colour n + 2. Now, assign edges xiyi colour 2i − 1 for

i = 2, . . . , ⌈n/2⌉. Assign the remaining side edges xiyi colour 2(n − i) + 4 for

i = n, . . . , ⌈n/2⌉ + 2. The colours of the remaining base edges are now determined

unambiguously, see Figure 4 for illustration.

Now we prove that the colouring is optimal. Observe that diam(L(Yn)) =

⌊n/2⌋ + 1, hence Lemma 2.4 gives an upper bound t̂(Yn) 6 2⌊n/2⌋ + 3. For n odd

this meets the lower bound.

Suppose that n is even and there is an interval edge colouring of Yn with n + 3

colours. From the proof of Lemma 2.4 we know that for any pair of edges in G

coloured with 1 and n + 3, the corresponding vertices in L(G) are at the distance

diam(L(G)). This is possible either for a pair of side edges xiyi and xjyj with

|i − j| = n/2, or for a pair of base edges xixi+1 and yjyj+1 with |i − j| = n/2. In

both the cases all edges incident with the edge assigned colour 1 lie on some path of

the optimal length between the edges assigned 1 and n + 3, so all these edges have
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to be assigned colour 3, which is a contradiction, since there is no colour 2 in the

palettes of vertices incident with the edge assigned colour 1. �

Finally, we discuss the improper interval colourings of complete graphs, which is

of particular interest due to the ongoing intensive research in [9], [10].

Theorem 2.10. For a complete graph Kn with n > 5, we have t̂(Kn) 6 2n− 5.

P r o o f. By contradiction. Assume that there exists a positive integer n > 5 such

that Kn is improperly interval (2n− 4)-colourable. Let xy and uv be edges coloured

by 1 and 2n−4, respectively; note that xy and uv are not adjacent. Then the colour

of xu (xv, yu or yv) is either n − 2 or n − 1. We claim that the palettes of both

x and y contain each of colours 1, . . . , n − 1 exactly once; similarly, the palettes of

both u and v contain each of the colours n− 2, . . . , 2n− 4 exactly once: If both xu

and xv had colour n − 2, then palettes of u and v would contain each of colours

n − 2, . . . , 2n− 4 exactly once, hence, yu and yv would have colour n − 1, which is

impossible.

Let z be a vertex of Kn such that zx has colour 2. Then the colour of the edge zu

is at least n (because of u); note, however, that the difference of the highest and the

lowest colour (which is colour 2) in the palette of z is at most n − 2, which means

that the highest colour in the palette of z is at most n. Therefore, the colour of zu is

equal to n. The same argument can be used for the edge zv, obtaining that its colour

is also n. But then the palette of z is not an integer interval, a contradiction. �

Theorem 2.11. For each n, t̂(Kn) < t̂(Kn+1).

P r o o f. Let c be an improper interval t̂-colouring of Kn with t̂ = t̂(G), and let

w1, . . . , wn be an ordering of vertices of Kn such that w1 is incident with an edge of

colour t̂. Now, add to Kn a new vertex u and for each 1 < i 6 n add a new edge uwi

coloured with colour c(w1wi)+1; the edge uw1 will then be coloured with t̂+ 1. �

Theorem 2.12. For each n, t̂(Kn+2)− t̂(Kn) > 3.

P r o o f. Let c be an improper interval t̂-colouring of Kn with t̂ = t̂(G), and let

w1, . . . , wn be an ordering of vertices of Kn such that w1 and w2 are endvertices of

an edge of colour t̂. Now, add to Kn two new vertices x, y and for each 3 6 i 6 n

add new edges xwi and ywi coloured with colour c(wiw1) + 1 and new edges xw1

and yw2 coloured with t̂+1. In addition, add new edges yw1 and xw2 coloured with

t̂+ 2 and the new edge xy coloured with t̂+ 3. �

Theorem 2.13. For each n, t̂(Kn) > (7n− 17)/4.
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P r o o f. We prove first that t̂(K4k) > 7k− 3 for every k > 1. The general bound

is then implied by Theorems 2.11 and 2.12.

Let n = 4k for k > 1, let G = Kn, and let V (G) = {0, 1, . . . , n − 1}. We define

a colouring of the edges of G in the following manner: The colour of the edge joining

vertices 4i + r and 4j + s with 0 6 i < j 6 k and r, s ∈ {0, 1, 2, 3} is given in

Table 1, the colour of the edge joining vertices 4i+ r and 4i+ s with 0 6 i 6 k and

0 6 r < s 6 3 is given in Table 2. It is easy to observe that this is an (improper)

interval colouring of G.

4j 4j + 1 4j + 2 4j + 3
4i 3i+ 4j 3i+ 4j + 1 3i+ 4j + 2 3i+ 4j + 3
4i+ 1 3i+ 4j + 1 3i+ 4j 3i+ 4j + 3 3i+ 4j + 2
4i+ 2 3i+ 4j + 2 3i+ 4j + 3 3i+ 4j + 1 3i+ 4j + 4
4i+ 3 3i+ 4j + 3 3i+ 4j + 2 3i+ 4j + 4 3i+ 4j + 1

Table 1. The colouring of a complete graph on n = 4k vertices: the colour of an edge joining
vertices 4i+ r and 4j + s with 0 6 i < j 6 k and r, s ∈ {0, 1, 2, 3}.

4i 4i+ 1 4i+ 2 4i+ 3
4i 7i+ 1 7i+ 2 7i+ 3
4i+ 1 7i+ 3 7i+ 2
4i+ 2 7i+ 4
4i+ 3

Table 2. The colouring of a complete graph on n = 4k vertices: the colour of an edge joining
vertices 4i+ r and 4i+ s with 0 6 i 6 k and 0 6 r < s 6 3.

�

Note that for proper interval colourings it is not known whether the sequence

{t(Kn)}
∞
n=1 is monotone; also, any value of n for which t(Kn−1) > t(Kn) yields that

t̂(Kn) > t(Kn) + 2.

To conclude this part, we list the exact values of t̂(Kn) for some small values of n,

see Table 3.

n 2 3 4 5 6 7 8 9 10 11 12

lower bound from Theorem 2.13 4 5 7 8 11 12 14 15 18

t̂(Kn) 1 2 4 5 7 8 11 12 14 16 18

upper bound from Theorem 2.10 5 7 9 11 13 15 17 19

Table 3. Bound and exact values of t̂(Kn) for small values of n.
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