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Abstract: Adaptive Neuro-Fuzzy Inference System (ANFIS) with first order
Sugeno consequent is used widely in modeling applications. Though it has the
advantage of giving good modeling results in many cases, it is not capable of mod-
eling highly non-linear systems with high accuracy. In this paper, an efficient way
for using ANFIS with Sugeno second order consequents is presented. Better ap-
proximation capability of Sugeno second order consequents compared to lower order
Sugeno consequents is shown. Subtractive clustering is used to determine the num-
ber and type of membership functions. A hybrid-learning algorithm that combines
the gradient descent method and the least squares estimate is then used to update
the parameters of the proposed Second Order Sugeno-ANFIS (SOS-ANFIS). Sim-
ulation of the proposed SOS-ANFIS for two examples shows better results than
that of lower order Sugeno consequents. The proposed SOS-ANFIS shows better
initial error, better convergence, quicker convergence and much better final error
value.
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1. Introduction

Jang [1] presented the architecture and learning procedure underlying Adaptive
Neuro-Fuzzy Inference System, which is a fuzzy inference system implemented in
the framework of adaptive networks. By using a hybrid learning procedure, ANFIS
can construct an input-output mapping based on both human knowledge (in the
form of fuzzy if-then rules) and stipulated input-output data pairs which can be
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employed to model nonlinear functions and identify nonlinear components in a
control system yielding remarkable results.

Since its presentation, ANFIS was implemented in many applications [2-7].
ANFIS implements a first order or a zero order Sugeno fuzzy system in an archi-
tecture composed of five layers. Layer 1 consists of membership functions described
by generalized bell function. Layer 2 implements the fuzzy AND operator, while
layer 3 acts to scale or normalize the firing strengths. The output of the fourth
layer is a linear combination of the inputs multiplied by the normalized firing
strength. Layer 5 is a simple summation of the outputs of layer 4. Layer 1 contains
premise modifiable parameters, and layer 4 contains consequent parameters. A
least squares estimator in the forward pass identifies the consequent parameters.
In the backward pass, the consequent parameters are held fixed, and the premise
parameters are modified using gradient descent. The user specified information is
the number of membership functions for each input, the membership type, and the
input-output training information.

Chiu [8] has presented an efficient method for estimating cluster centers of
numerical data. It can be used to determine the number of clusters and their initial
values for initializing iterative optimization-based clustering. It forms a basis of
a fast and robust algorithm for identifying fuzzy models in which the number of
membership functions and type can be generated automatically.

Alata et al. [9] and K. Demirli and P. Muthkumaran [10] showed that higher
order Sugeno Consequent models compared with lower order Sugeno models could
identify systems with less error for the same number of rules. It also might achieve
the required performance with fewer rules due to better approximation capability
of higher order Sugeno consequent models. This important property of Sugeno
fuzzy systems is used in this paper to extend the original ANFIS to work with
second order Sugeno consequents for one input and two input systems. Also, effec-
tive subtractive clustering technique is used to determine the number and type of
membership functions for each input rather than being user specified which would
result in better performance and less approximation error through starting from
optimal initial membership functions generated by the clustering algorithm.

After building a fuzzy inference system using subtractive clustering and Sugeno
second order consequents, a hybrid learning algorithm that combines gradient de-
scent method and the least square estimate is then used to train the generated fuzzy
inference system and update the proposed ANFIS parameters. Each epoch of this
hybrid learning procedure is composed of a forward pass and a backward pass. In
the forward pass, the input data is supplied and functional signals go forward to
calculate each node output and the second order Sugeno consequent parameters
are updated. The functional signals keep going forward till the error measure is
calculated. In the backward pass, the error rates are calculated and the parameters
of input membership functions are updated by gradient descent method.

2. Subtractive Clustering

Chiu [8] proposed subtractive clustering technique with improved computational
effort, in which the data points themselves are considered as candidates for cluster
centers instead of grid points. By using this method, the computation is simply
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proportional to the number of data points and independent of the dimension of the
problem. In this method also, a data point with the highest potential which is a
function of the distance measure, is considered as a cluster center and data points
close to new cluster center are penalized in order to control the emergence of new
cluster centers.

Considering a collection of n data points (x1, x2, . . . , xn) in an M -dimensional
space, subtractive clustering for the these data points can be performed as follows:

1. We consider each data point as a potential cluster center and define a measure
of potential of data point xi as

Pi =
n∑

j=1

e−α‖xi−xj‖2, (1)

where:

α =
4
r2
a

(2)

and ra is a positive constant defining the neighborhood range of the cluster
or simply the radius of hyper sphere cluster in the data space (this radius
also represents the support of fuzzy sets representing the cluster), n is the
total number of data points, and xi, xj are vectors in the combined data
space of input and output dimensions. The potential of a data point is a
function of its distances to all data points including it. The higher number of
neighborhood data points results in higher potential values. After calculating
the potential of each data point, the data point with the highest potential is
selected as the first cluster center.

2. The identification of other cluster centers is carried out through the subtrac-
tion process. In this process the potential of all data points is revised each
time a new cluster center is obtained, by using the following equation:

Pi ⇐ Pi − P ∗k ζ (3)

where:
ζ = e−β‖xi−x∗k‖2 (4)

β =
4
r2
b

(5)

rb = η ∗ ra (6)

and where x∗k and p∗k are position and potential of kth cluster center, respec-
tively, rb is a positive constant representing the radius of penalizing zone for
a given cluster center, η is called a squash factor and is also a positive con-
stant. Chiu [8] proposed rb to be somewhat greater than ra in order to avoid
obtaining closely spaced cluster centers.
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After revising the potential of all the clusters after subtraction, a cluster center
is selected based on its new potential value in relation to an upper acceptance
threshold ε̄ called accept ratio, lower rejection threshold ε called reject ratio, and
a relative distance criterion. The acceptance of a data point with the potential
between the upper and the lower thresholds depends on the smallest of the distances
between that point and all other previously found cluster centers as given by the
following equation:

dmin

ra
+

P ∗k
P ∗1

(7)

where dmin is the smallest of the distances between x∗k and all previously found
cluster centers. This will avoid the emerging of new clusters close to the existing
ones even though they have the potential higher than the lower threshold enhancing
the uniform representation of a system in entire data space. Chiu [8] proposed the
optimum default values of 1.5, 0.5 and 0.15 for η, ε̄, and ε, respectively.

Subtractive clustering is used to generate membership functions in the proposed
SOS-ANFIS. Using subtractive clustering is a better way to determine the num-
ber and type of membership functions than being user specified because the use
of subtractive clustering gives the benefit of automatic generation of membership
functions and rules and hence it gives an optimal solution if its parameters have
been chosen properly using the enumerative search technique [10]. On the other
hand, letting the number and type of input membership functions to be user spec-
ified will result in an under fitted fuzzy inference system (FIS) or over-fitted FIS
which is computationally expensive.

3. Second Order Sugeno Fuzzy Inference System

When the cluster estimation method is applied to a collection of input/output data
points, each cluster center is in essence a prototypical data point that exemplifies
a characteristic behavior of the system. Hence, each cluster center can be used as
the basis of a rule that describes the system behavior. The initial fuzzy inference
system proposed in this paper is built using subtractive clustering and second order
Sugeno consequents. Model identification for fuzzy inference systems with input
membership functions generated by subtractive clustering and second order Sugeno
consequents is derived below.

Consider a set of c cluster centers (x∗1, x∗2, . . . , x∗c) in an M dimensional space.
Let the first N dimensions correspond to input variables and the last M − N
dimensions correspond to output variables. We decompose each vector x∗i into two
components vector y∗i and z∗i , where y∗i contains the first N elements of x∗i (i.e.
the coordinates of the cluster center in the input space).

Each cluster center x∗i is considered as a fuzzy rule that describes the system
behavior. Given an input vector y, the degree to which rule i fulfilled is defined as:

µi = e−α‖y−y∗i ‖2 (8)
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where α is a constant defined by Equation 2. The output vector z is computed via

z =

c∑
i=1

µiz
∗
i

c∑
i=1

µi

(9)

This computational model can be viewed in terms of a fuzzy inference system
employing traditional fuzzy if-then rules. Each rule has the following form:

If Y1 is A1 & Y2 is A2 &. . . .then Z1 is B1 & Z2 is B2. . .

where Yj is the jth input variable and Zj is jth output variable; Aj is an exponential
membership function and Bj is a singleton. For the ith rule that is represented by
cluster center x∗i , Aj and Bj are given by:

Aj(q) = e−α(q−y∗ij)
2

(10)

Bj = z∗ij (11)

where y∗ij is jth element of y∗i and z∗ij is the jth element of z∗i . This computational
scheme is equivalent to an inference method that uses multiplication as the AND
operator, weights the output of each rule by the rule’s firing strength, and computes
the output value as a weighted average of the output of each rule.

Equations 8 and 9 provide a simple way to translate a set of cluster centers into
a fuzzy model. The way used in building fuzzy inference system in this paper is by
allowing z∗i in Equation 9 to be a second order Sugeno form. That is:

z∗i = Giy
2 + Kiy + hi (12)

where Gi is an (M − N)XN constant matrix, Ki is an (M − N)XN constant
matrix, hi is a constant column vector with M-N elements, and y2 is a vector
obtained by squaring each element of y. The equivalent if-then rules become a
second order Sugeno consequent fuzzy inference system. It should be emphasized
here that models that employ Sugeno type rules have been shown to be able to
accurately represent complex behavior with only few rules. It was also shown that
higher order Sugeno consequent models compared with lower order Sugeno models
could identify systems with less error for the same number of rules or could achieve
the required performance with fewer rules due to better approximation capability
of higher order Sugeno consequent models [9, 10].

Expressing z∗i as a second order Sugeno consequent type allows a significant
degree of rule optimization to be performed, as pointed out by Sugeno [11]. Given
a set of rules with fixed premises and optimizing the parameters in the consequent
equations with respect to training data reduces the problem to a linear least square
estimation problem. Such problems can be solved easily and the solution is optimal.

To convert the parameter optimization problem into the linear least square
estimation problem, define

ρi =
µi

c∑
i=1

µi

(13)
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Equation 9 can be rewritten as

z =
c∑

i=1

ρiz
∗
i =

c∑

i=1

ρi(Giy
2 + Kiy + hi) (14)

or

zT = [ρ1(y2)T , ρ1y
T , ρ1, · · · , ρc(y2), ρcy

T , ρc]




GT
1

KT
1

hT
1

...
GT

c

KT
c

hT
c




(15)

where zT , yT are row vectors and (y2)T is a row vector contains the squares of y.
Given a collection of data points (y1, y2,. . . , yn), the resultant collection of the
output is given by:




zT
1

...
zT
n


 =




ρ1(y2
1)T , ρ1y

T
1 , ρ1, · · · , ρc(y2

1)T , ρcy
T
1 , ρc

...
ρ1(y2

n)T , ρ1y
T
n , ρ1, · · · , ρc(y2

n)T , ρcy
T
n , ρc







GT
1

KT
1

hT
1

...
GT

c

KT
c

hT
c




(16)

Note that given (y1, y2, . . . , yn), the first matrix on the right hand side of Equa-
tion 16 is constant, while the second matrix contains all the parameters to be
optimized. To minimize the sum of error squares between the model output and
that of the training data, we solve the linear least square estimation problem given
by Equation 16, replacing the matrix on the left hand side by the actual output
of the training data. Of course, implicit in the least squares estimation problem is
the assumption that the number of training data is greater than the parameters to
be optimized.

Using the standard notation adopted in most of literature, the least squares
estimation problem of Equation 16 has the form

AX = B (17)

where B is a matrix of output values, A is a constant matrix, and X is a ma-
trix of parameters to be estimated. The well-known pseudo-inverse solution that
minimizes ||AX-B||2 is given by

X = (AT A)−1AT B (18)

As a summary, model identification is performed in two steps:

1. Use subtractive clustering to find cluster centers and establish the number of
fuzzy rules and the rule premises.

2. Optimize the rule consequents with second order Sugeno consequents.
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4. Second Order Sugeno-ANFIS

For simplicity, the fuzzy inference system under consideration is assumed to have
two inputs x and y and one output z (the same example that was discussed in
original ANFIS). Suppose also that the rule base contains two fuzzy if-then rules
of second order Sugeno consequent type:

Rule 1: If x is A1 and y is B1, then f 1 = m1x
2+n1y

2+p1x +q1y+r l,
Rule 2: If x is A2 and y is B2, then f 2 = m2x

2+n2y
2+p2x +q2y+r2.

Then the second order Sugeno consequent fuzzy reasoning is illustrated in Fig. 1a
and the corresponding equivalent ANFIS architecture is shown in Fig. 1b.

Fig. 1 (a) Second order Sugeno fuzzy model, (b) Equivalent ANFIS.
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As in the original ANFIS the node functions in the proposed ANFIS who are
in the same layer are of the same function family. Layers of the proposed ANFIS
can be summarized as follows:

• Layer 1:

Every node i in this layer is a square node with a node function

O1
i = µAi(x) (19)

where x is the input to node i and Ai is the linguistic label (small, large, etc.)
associated with this node function. In other words, O1

i is the membership function
of Ai, and it specifies the degree to which the given x satisfies the linguistic label Ai.
In the proposed approach µAi

(x) is selected to be Gaussian membership function
using

µAi
(x) = e

−(x−ci)
2

2σ2
i (20)

where {ci, σi} is the parameter set of the Gaussian membership function. It should
be noted here that we selected this type of membership functions to match the mem-
bership functions types generated from subtractive clustering method. Comparing
this equation to Equation 8, the initial values for the parameter set of the Gaussian
membership function can be found as follows:

ci = y∗i (21)

σ =
√

ra

2
(22)

which means that the initial values of ci equal the cluster centers generated by
applying subtractive clustering technique for input space. Also initial values of
σ are related to ra (radius of hyper sphere cluster in data space) as shown in
Equation 22. As the values of these parameters change, the membership functions
characteristics vary accordingly. It should be noted here that the parameters in
this layer are referred to as premise parameters.

• Layer 2:

Every node in this layer is a circle node labeled Π, which multiplies the incoming
signals and sends the product out as follows:

wi = µAi(x).µBi(x), i = 1, 2 (23)

Each node output represents the firing strength of a rule.

• Layer 3:

Every node in this layer is a circle node labeled N . The ith node calculates the
ratio of the ithrule’s firing strength to the sum of all rules’ firing strengths:

wi =
wi

w1 + w2
(24)

For convenience, the outputs of this layer will be called normalized firing strengths.
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• Layer 4:

Every node i in this layer is a square node with a node function:

O4
i = wifi(mix

2 + niy
2 + pix + qiy + ri) (25)

where wi is the output of layer 3, and {mi, ni, pi, qi, ri} is the parameter set.
Parameters in this layer will be referred to as consequent parameters.

• Layer 5:

The single node in this layer is a circle node labeled by
∑

and it computes the
overall output as the summation of all incoming signals as follows:

O5
1 = overalloutput =

∑

i

wifi =

∑
i

wifi

∑
i

wi
. (26)

5. Hybrid Learning Algorithm in SOS-ANFIS

In the original ANFIS, the gradient method can be applied to identify the param-
eters in an adaptive network; this simple method usually takes a long time. It
may be observed, however, that an adaptive network’s output is linear in some of
the network’s parameters; thus these linear parameters can be identified by the
linear least squares method. This approach leads to a hybrid learning rule, which
combines the gradient descent method and the least square estimator for the fast
identification of parameters. For simplicity, assume that the adaptive network
under consideration has only one output

Output = F (
⇀

I , S) (27)

where I is the set of input variables and S is the set of parameters. If there
exists function H such that the composite function H ◦ F is linear in some of the
elements of S, then these elements can be identified by the least squares method.
More formally, if the parameter set S can be decomposed into two sets

S = S1 ⊕ S2 (28)

such that HoF is linear in the elements of S2, and then upon applying H to
Equation 27, we have

H(Output) = H ◦ F (
⇀

I , S) (29)

This is linear in the elements of S2. Now the given values of elements of S1, P
training data can be plugged into Equation 29 and obtain a matrix equation:

AX = B (30)

where :

• X is an unknown vector whose elements are parameters in S2.
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• A is the matrix of coefficients of parameters in S2 obtained from supplying
the inputs of the training data to the network.

• B is the matrix of outputs of the training data.

Let |S2| = M, then the dimensions of A, X and B areP ∗ M,M ∗ 1 and P ∗
1, respectively. Since P (the number of training data pairs) is usually greater
than M (the number of linear parameters), this is an over determined problem
and, generally, there is no exact solution to Equation 30. Instead, a least squares
estimate (LSE) of X, X* is sought to minimize the squared error ||AX − B||2.
This is a standard problem which forms the grounds for linear regression, adaptive
filtering and signal processing. The most well-known formula for X∗ uses the
pseudo-inverse of X:

X =
(
AT A

)−1
AT B (31)

where AT is the transpose of A, and (AT A)−1AT is the pseudo-inverse of A if
AT A is non-singular.

Now the gradient method and the least squares estimate can be combined to
update the parameters in an adaptive network. Each epoch of this hybrid learning
procedure is composed of a forward pass and a backward pass. In the forward
pass, the input data are supplied and the functional signals go forward to calculate
each node output until the matrices A and B in Equation 30 are obtained, and the
parameters in S2 are identified by the sequential least squares formulas in Equation
31. After identifying the parameters in S2, the functional signals keep going forward
till the error measure is calculated. In the backward pass, the error rates (the
derivative of the error measure with respect to each node output, propagate from
the output end toward the input end, and the parameters in S1 are updated by the
gradient method.

For the given fixed values of parameters in S1, the parameters in S2 thus found
are guaranteed to be the global optimum point in the S2 parameter space due to
the choice of the squared error measure. Not only can this hybrid learning rule
decrease the dimension of the search space in the gradient method, but, in general,
it will also cut down the convergence time substantially.

Let us consider a one-hidden-layer backpropagation neural network with sig-
moid activation functions. If this neural network has p output units, then the
output in Equation 27 is a column vector. Let us suppose H(.) to be the inverse
sigmoid function as follows:

H(x) = ln
(

x

x− 1

)
. (32)

As result Equation 29 becomes a linear (vector) function such that each element
of H(output) is a linear combination of the parameters (weights and thresholds)
pertaining to layer 2. In other words,

S1 = weights and thresholds of a hidden layer
S2 = weights and thresholds of an output layer.

Therefore the back-propagation learning rule can be applied to tune the parameters
in the hidden layer, and the parameters in the output layer can be identified by the
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least squares method. It should be noted here that using the least squares method
on the data transformed by H(.), the obtained parameters are optimal in terms of
the transformed squared error measure instead of the original one.

From the proposed ANFIS architecture (as in Fig. 1), it is observed that given
the values of premise parameters, the overall output can be expressed as a linear
combinations of the consequent parameters. More precisely, the output f in Fig. 1
can be rewritten as

f =
w1

w1 + w2
+

w2

w1 + w2

= w1f1 + w2f2

= (w1x
2)m1 + (w2y

2)n1 + (w1x)p1 + (w1y)q1 + (w1)r1

(w2x
2)m2 + (w2y

2)n2 + (w2x)p2 + (w2y)q2 + (w2)r2 (33)

which is linear with respect to the consequent parameters (m1, n1, p1, q1, r1,m2, n2,
p2, q2, r2). As a result, we have

S = set of total parameters
S1 = set of premise parameters
S2 = set of consequent parameters

It can be noted that the hybrid-learning algorithm can be extended to work with
second order Sugeno Consequents. As in the original ANFIS, in the forward pass
of the hybrid learning algorithm, the functional signals go forward till layer 4 and
the consequent parameters are identified by the least squares estimate. In the
backward pass, the error rates propagate backward and the premise parameters
are updated by the gradient descent.

6. Simulation Results

The best way to introduce the results of the proposed approach in this paper is
through presenting two examples for modeling highly nonlinear functions. Each
example is discussed; results are plotted, tabulated, and compared to formerly
published results.

Example 1 – Modeling a Two Input Nonlinear Function

To test the proposed approach, the same example presented by Jang [1] is consid-
ered. In this example:

z =
sin(x)

x
∗ sin(y)

y
. (34)

From the grid points of the range [-10.5, 10.5]*[-10.5. 10.5] within the input space
of the above equation, 484 data pairs are obtained. SOS-ANFIS is built to model
these points. The proposed ANFIS is built through the following steps:

181



Neural Network World 3/07, 171-187

• Step (1): Model identification:

A fuzzy model is built using subtractive clustering technique and the rules are
optimized using Sugeno second order consequents. The results are compared with
the first order Sugeno fuzzy inference system.

Tab. I shows the root mean square modeling error of the second order Sugeno
fuzzy inference system compared to the first order Sugeno system. It apparently
shows the better modeling capability of the second order system.

Order of Sugeno model RMS modeling error
First order 0.12122
Second order 0.0405977

Tab. I The second order Sugeno RMSE compared to the first order model for
example 1.

• Step (2): Second order Sugeno consequent ANFIS:

The second order Sugeno Consequent ANFIS is built to model and train the above
fuzzy inference system. Based on the results of subtractive clustering for input
space, the proposed ANFIS contains 6 rules with 6 membership functions assigned
to each variable. It’s composed of 28 nodes as shown in Fig. 2:

Fig. 2 SOS-ANFIS structure for example 1.

The proposed ANFIS model is used to train the fuzzy inference system gen-
erated in step 1. Results are superior and the proposed ANFIS shows better and
quicker convergence and much better approximation capabilities. This can be sum-
marized Fig. 3 and Tab. II:

182



Alata M., Moaqet H.: Adaptive neuro-fuzzy inference system with second. . .

Fig. 3 RMSE of original ANFIS compared to SOS-ANFIS for example 1.

Epoch Number RMSE of Original ANFIS RMSE of Second order
Sugeno Consequent ANFIS

50 0.119107 0.0315826
100 0.11178 0.0182965
200 0.0604216 0.0131787
300 0.0570506 0.011042
400 0.0554785 0.009782
500 0.0546667 0.00875871

Tab. II Comparison of RMSE of Original ANFIS and SOS-ANFIS for example 1.

Fig. 3 and Tab. II show clearly better approximation capability of the proposed
ANFIS. It also shows better and quicker convergence of the proposed ANFIS.
RMSE for SOS-ANFIS reaches 0.00875871 at epoch 500 while its only 0.0546667
using Original ANFIS architecture.

Example 2: Modeling a One Input Nonlinear Function

An example to show the proposed SOS-ANFIS capability in modeling one input
nonlinear functions is presented here. A function that was used by Chiu [3] is used
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here. An SOS-ANFIS is built to model the following nonlinear function:

y =
sin(x)

x
(35)

From the grid points of the range [-20.5, 20.5] within the input space of the above
equation, 42 data pairs are obtained. An SOS-ANFIS is built for modeling these
points. The proposed ANFIS is built through the following steps:

• Step (1): Model identification:

A fuzzy model is built using subtractive clustering technique for generating the
number and the type of membership functions and the rules are optimized using
Sugeno second order consequents. The results are compared with the first order
Sugeno fuzzy inference systems. Tab. III shows the root mean square modeling
an error of the second order Sugeno fuzzy inference system compared to first or-
der Sugeno system showing better approximation capabilities of the second order
Sugeno system.

Order of Sugeno model RMS modeling error
First order 0.214914
Second order 0.10653

Tab. III SOS-ANFIS RMSE compared to the first order model for example 2.

• Step (2): second order Sugeno consequent ANFIS:

SOS-ANFIS is built to model and train the above fuzzy inference system. The
proposed ANFIS contains 3 rules with 3 membership functions assigned for the
input. The proposed ANFIS architecture is composed of 12 nodes as in the following
figure:

Fig. 4 Second order Sugeno ANFIS structure for example 3.

184



Alata M., Moaqet H.: Adaptive neuro-fuzzy inference system with second. . .

The total number of fitting parameters for the proposed ANFIS in this example is
15 including 6 premise (non linear) parameters and 9 SOS parameters.

The proposed ANFIS model is used to train the fuzzy inference system gener-
ated in step 1 up to 500 epochs. The results in this example are also better and
the proposed ANFIS shows better convergence and less approximation error.

Fig. 5 RMSE of original ANFIS compared to SOS-ANFIS for example 2.

Epoch Number RMSE of Original ANFIS RMSE of Second order
Sugeno Consequent ANFIS

50 0.212188 0.0971482
100 0.20351 0.0250073
200 0.115582 0.00997567
300 0.11294 0.00938936
400 0.11294 0.00903446
500 0.11294 0.00878385

Tab. IV Comparison between the RMSE of Original ANFIS and SOS-ANFIS for
example 2.

As indicated by Fig. 5 and Tab. IV, this example shows again better results of
the second order Sugeno consequent ANFIS. The proposed ANFIS in this paper
gives the chance to start training from a better initial point and to converge bet-
ter, quicker and with better approximation error during the training epochs. The
RMSE of the second order Sugeno ANFIS reaches 0.00878385 at epoch 500 while
it is only 0.11294 using Original ANFIS Training data, Original ANFIS and second
order Sugeno Consequent ANFIS with 500 epochs are indicated in Fig. 6.
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Fig. 6 Comparison between training data, original ANFIS, and SOS-ANFIS for
example 2.

7. Conclusion

In this paper a modeling approach is presented using ANFIS with Sugeno second
order consequents. Better approximation capability of the Sugeno second order
consequents compared to lower order Sugeno consequents is shown. The original
ANFIS proposed by Jang is extended in this paper to work with the second order
Sugeno consequent models.

An effective subtractive clustering technique is used to determine the number
and the type of membership functions for each input rather than being user specified
which results in better performance and less approximation error. Fuzzy inference
system is constructed using subtractive clustering and Sugeno second order con-
sequents and then a hybrid learning algorithm that combines a gradient descent
method and the least square estimate is used successfully to train and update the
proposed ANFIS parameters.

Simulation of the proposed SOS-ANFIS for two examples shows better results
than that of the original ANFIS. It is strongly recommended to use the SOS-ANFIS
for systems with highly nonlinear behavior, where the use of higher order Sugeno
models is expected to give much better modeling capabilities than lower orders.
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