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Abstract—In this paper we present a new approach to data

analysis based on flow distribution study in a flow network.

Branches of the flow graph are interpreted as decision rules,

whereas the flow graph is supposed to describe a decision

algorithm. We propose to model decision processes as flow

graphs and analyze decisions in terms of flow spreading in the

graph.

Keywords—data mining, data independence, flow graph, Bayes’

rule.

1. Introduction

In this paper we present a new approach to data analysis

based on flow distribution study in a flow network, different

to that proposed by Ford and Fulkerson [2], called here

a flow graph. Branches of the flow graph are interpreted

as decision rules, whereas the flow graph is supposed to

describe a decision algorithm. Thus we propose to model

decision processes as flow graphs and analyze decisions in

terms of flow spreading in the graph.

With every decision rule three coefficients are associated,

called strength, certainty and the coverage factors. These

coefficients have a probabilistic flavor, but it will be shown

in the paper that they can be also interpreted in a de-

terministic way, describing flow distribution in the flow

graph. Moreover, it is shown that these coefficients satisfy

Bayes’ rule. Thus, in the presented approach Bayes’ rule

has entirely deterministic interpretation, without reference

to its probabilistic nature, inherently associated with clas-

sical Bayesian philosophy. This leads to new philosophical

and practical consequences. A simple example, of a tele-

com customer, which is a slight modification of example

given in [4], will be used to illustrate ideas presented in the

paper.

This paper is a continuation of ideas given in [4–7] and

refers to some thoughts presented in [3].

2. Flow graphs

A flow graph is a directed, acyclic, finite graph G =
= (N, B, ϕ), where N is a set of nodes, B ⊆N×N is a set

of directed branches, ϕ : B →R+ is a flow function and R+

is the set of non-negative reals.

If (x, y)∈B then x is an input of y and y is an output of x.

If x ∈ N then I(x) is the set of all inputs of x and O(x) is

the set of all outputs of x.

Input and output of a graph G are defined

I(G) = {x ∈ N : I(x) = ∅}, O(G) = {x ∈ N : O(x) = ∅}.

Inputs and outputs of G are external nodes of G; other

nodes are internal nodes of G.

If (x, y) ∈ B then ϕ(x, y) is a troughflow from x to y.

We will assume in what follows that ϕ(x, y) 6= 0 for ev-

ery (x, y) ∈ B.

With every node x of a flow graph G we associate its inflow:

ϕ+(x) = ∑
y∈I(x)

ϕ(y, x) (1)

and outflow

ϕ−(x) = ∑
y∈O(x)

ϕ(x, y). (2)

Similarly, we define an inflow and an outflow for the whole

flow graph G, which are defined as

ϕ+(G) = ∑
x∈I(G)

ϕ−(x), (3)

ϕ−(G) = ∑
x∈O(G)

ϕ+(x). (4)

We assume that for any internal node x, ϕ+(x) = ϕ−(x) =
= ϕ(x), where ϕ(x)is a troughflow of node x.

Obviously, ϕ+(G) = ϕ−(G) = ϕ(G), where ϕ(G) is

a troughflow of graph G.

The above formulas can be considered as flow conserva-

tion equations [2]. We will define now a normalized flow

graph.

A normalized flow graph is a directed, acyclic, finite graph

G = (N, B, σ), where N is a set of nodes, B ⊆ N ×N is

a set of directed branches and σ : B →< 0,1 > is a nor-

malized flow of (x, y) and

σ(x, y) =
ϕ(x, y)
ϕ(G)

(5)

is strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1. The

strength of the branch expresses simply the percentage of

a total flow through the branch.

In what follows we will use normalized flow graphs only,

therefore by a flow graphs we will understand normalized

flow graphs, unless stated otherwise.

With every node x of a flow graph G we associate its nor-

malized inflow and outflow defined as

σ+(x) =
ϕ+(x)
ϕ(G)

= ∑
y∈I(x)

σ(y, x), (6)

σ−(x) =
ϕ−(x)
ϕ(G)

= ∑
y∈O(x)

σ(x, y). (7)
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Obviously for any internal node x, we have σ+(x) =
= σ−(x) = σ(x), where σ(x) is a normalized troughflow

of x.

Moreover, let

σ+(G) =
ϕ+(G)

ϕ(G)
= ∑

x∈I(G)

σ−(x), (8)

σ−(G) =
ϕ−(G)

ϕ(G)
= ∑

x∈O(G)

σ+(x). (9)

Obviously, σ+(G) = σ−(G) = σ(G) = 1.

3. Certainty and coverage factors

With every branch (x, y) of a flow graph G we associate

the certainty and the coverage factors.

The certainty and the coverage of (x, y) are defined as

cer (x, y) =
σ(x, y)
σ(x)

(10)

and

cov(x, y) =
σ(x, y)
σ(y)

, (11)

respectively, where σ(x) 6= 0 and σ(y) 6= 0.

Below some properties, which are immediate consequences

of definitions given above are presented:

∑
y∈O(x)

cer (x, y) = 1 , (12)

∑
x∈I(y)

cov(x, y) = 1 , (13)

σ(x) = ∑
y∈O(x)

cer (x, y)σ(x) = ∑
y∈O(x)

σ(x, y) , (14)

σ(y) = ∑
x∈I(y)

cov(x, y)σ(y) = ∑
x∈I(y)

σ(x, y) , (15)

cer (x, y) =
cov(x, y)σ(y)

σ(x)
, (16)

cov(x, y) =
cer (x, y)σ(x)

σ(y)
. (17)

Obviously the above properties have a probabilistic flavor,

e.g., Eqs. (14) and (15) have a form of total probability

theorem, whereas formulas (16) and (17) are Bayes’ rules.

However, these properties in our approach are interpreted

in a deterministic way and they describe flow distribution

among branches in the network.

A (directed) path from x to y, x 6= y in G is a sequence of

nodes x1, . . . ,xn such that x1 = x, xn = y and (xi, xi+1) ∈B

for every i, 1 ≤ i ≤ n− 1. A path from x to y is denoted

by [x . . .y].

The certainty, the coverage and the strength of the path

[x1 . . .xn] are defined as

cer [x1 . . .xn] =
n−1

∏
i=1

cer (xi, xi+1) , (18)

cov [x1 . . .xn] =
n−1

∏
i=1

cov(xi, xi+1) , (19)

σ [x . . .y] = σ(x)cer [x . . .y] = σ(y)cov [x . . .y] , (20)

respectively.

The set of all paths from x to y(x 6= y) in G denoted

< x, y >, will be called a connection from x to y in G.

In other words, connection < x, y > is a sub-graph of G
determined by nodes x and y.

For every connection < x, y > we define its certainty, cov-

erage and strength as shown below:

cer < x, y > = ∑
[x...y]∈<x,y>

cer[x . . .y] , (21)

the coverage of the connection < x, y > is

cov < x, y > = ∑
[x...y]∈<x,y>

cov[x . . .y] , (22)

and the strength of the connection < x, y > is

σ < x, y > = ∑
[x...y]∈<x,y>

σ [x . . .y] = σ(x)cer < x, y > =

= σ(y)cov < x, y > . (23)

Let [x . . .y] be a path such that x and y are input and output

of the graph G, respectively. Such a path will be referred

to as complete.

The set of all complete paths from x to y will be called

a complete connection from x to y in G. In what follows we

will consider complete paths and connections only, unless

stated otherwise.

Let x and y be an input and output of a graph G respectively.

If we substitute for every complete connection < x, y >

in G a single branch (x, y) such σ(x, y) = σ < x, y >,

cer (x, y) = cer < x, y >, cov(x, y) = cov < x, y > then we

obtain a new flow graph G′ such that σ(G) = σ(G′). The

new flow graph will be called a combined flow graph. The

combined flow graph for a given flow graph represents a re-

lationship between its inputs and outputs.

4. Flow graph and decision algorithms

Flow graphs can be interpreted as decision algorithm.

Let us assume that the set of node of a graph is interpreted

as a set of formulas, denoted Φ, Ψ, etc. The formulas are

understood as propositional functions.

Then every branch (Φ, Ψ) can be understood as a decision

rule Φ → Ψ, read if Φ then Ψ; Φ will be referred to as

a condition, whereas Ψ—decision of the rule. Such a rule

is characterized by three numbers, σ(Φ, Ψ), cer(Φ, Ψ) and

cov(Φ, Ψ).
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Thus every path [Φ1 . . .Φn] determines a sequence of deci-

sion rules Φ1 → Φ2, Φ2 → Φ3, . . . ,Φn−1 → Φn.

From previous considerations it follows that this sequence

of decision rules can be interpreted as a single deci-

sion rule Φ1 Φ2 . . .Φn−1 → Φn, in short Φ∗ → Φn, where

Φ∗ = Φ1 ∧Φ2 ∧ . . .∧Φn−1, characterized by

cer(Φ∗
, Φn) = cer [Φ1 . . .Φn] , (24)

cov(Φ∗
, Φn) = cov [Φ1 . . .Φn] , (25)

and

σ(Φ∗, Φn) = σ(Φ1)cer [Φ1 . . .Φn] =

= σ(Φn)cov [Φ1 . . .Φn] , (26)

where σ(Φ) is truth value of the formula Φ and σ(Φ, Ψ)
in the strength of the decision rule Φ → Ψ.

Similarly, every connection < Φ, Ψ > can be interpreted as

a single decision rule Φ → Ψ such that:

cer(Φ, Ψ) = cer < Φ, Ψ >, (27)

cov(Φ, Ψ) = cov < Φ, Ψ >, (28)

and

σ(Φ, Ψ) = σ(Φ)cer < Φ, Ψ > =

= σ(Ψ)cov < Φ, Ψ >, (29)

Let [Φ1 . . .Φn] be a path such that Φ1 is an input and Φn an

output of the flow graph G, respectively. Such a path and

the corresponding connection < Φ1, Φn > will be called

complete.

The set of all decision rules Φi1Φi1 . . .Φin−1→ Φin associ-

ated with all complete paths Φi1 . . .Φin will be called a de-

cision algorithm induced by the flow graph.

5. Dependencies in flow graphs

Let (x, y) ∈ B. Nodes x and y are independent on each

other if

σ(x, y) = σ(x)σ(y) . (30)

Consequently

σ(x, y)
σ(x)

= cer(x, y) = σ(y) (31)

and
σ(x, y)
σ(y)

= cov(x, y) = σ(x) . (32)

If

cer(x, y) > σ(y) (33)

or

cov(x, y) > σ(x) , (34)

then x and y depend positively on each other.

Similarly, if

cer(x, y) < σ(y) (35)

or

cov(x, y) < σ(x) (36)

then x and y depend negatively on each other.

Let us observe that relations of independency and depen-

dences are symmetric ones, and are analogous to that used

in statistics.

For every (x, y)∈B we define a dependency factor η(x, y)
defined as

η(x, y) =
cer(x, y)−σ(y)
cer(x, y)+σ(y)

=
cov(x, y)−σ(x)
cov(x, y)+σ(x)

. (37)

It is easy to check that if η(x, y) = 0, then x and y are

independent on each other, if −1 < η(x, y) < 0, then x
and y are negatively dependent and if 0 < η(x, y) < 1 then

x and y are positively dependent on each other.

6. Illustrative example

We will illustrate the above ideas by means of a simple tuto-

rial example concerning a telecom provider. This example

is a modification of the example given in [4].

Suppose we have three groups of telecom customers clas-

sified with respect to age: young (students), middle aged

(workers) and old (pensioners). Moreover, suppose we have

data concerning place of residence of customers: town, vil-

lage and country.

Let us assume that the customers are buying a telecom

service in vacation promotion and some of the customers

are leaving the telecom provider in 3 months.

The initial data are presented in Fig. 1.

Fig. 1. Initial data.
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Fig. 2. Final results.

That means that these are 25% young customers, 60%—

middle aged and 15% old—in the data base. Moreover,

we know that 75% of young customers are living in towns,

20%—in villages and 5%—in the country, etc. We also

Fig. 3. Simplified flow graph.

have from the database that 75% town customers are not

leaving the provider, whereas 25% are leaving the provider

after 3 month, etc.

We want to find a relationship between the customer’s

group and the final result of the promotion after three

month.

Applying the ideas presented in previous sections we get

the results presented in Fig. 2.

Figure 2 shows general structure of patterns between cus-

tomers and promotion results. Many interesting conclu-

Fig. 4. Dependency coefficient.

sions can be drawn from the picture, but we leave them for

the interested reader.

We might be also interested in finding the relationship be-

tween age group and final result of the promotion. To this

end we have to eliminate from the flow graph residence.

In other words we have to compute all connections between
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age groups and the results, or—the relationship between

input and output of the flow graph. The result is shown

in Fig. 3.

Many interesting decision rules can be obtained from

Figs. 2 and 3. Again we leave the task for the interested

reader.

Dependences in flow graph presented in Fig. 3 are shown

in Fig. 4.

It can be seen from the flow graph that all the dependency

factors are very low and almost close to zero. That means,

that in view of the data, practically, there is no relationship

between groups of customers and the final result.

7. Conclusions

The paper presents a new approach to decision algorithm

analysis. It is revealed that certain classes of decision algo-

rithms can be represented as flow networks, and basic prop-

erties of such algorithms can be expressed in terms of flow

distribution in a corresponding flow network. A method of

simplification of such algorithms is presented.
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