PRZEGLĄD ELEKTROTECHNICZNY

ORGAN STOWARZYSZENIA ELEKTRYKÓW POLSKICH

pod naczelnym kierunkiem prof. M. POŻARYSKIEGO.

Rok XV.

1 Lutego 1933 r.

Zeszyt 3.

Redaktor inż. WACŁAW PAWŁOWSKI

Warszawa, Czackiego 5, tel. 690-23.

O DOKŁADNOŚCI METODY PROSTOWNIKOWEJ PRZY POMIARACH WYSOKIEGO NAPIĘCIA.

Prof. K. Drewnowski i inż. J. L. Jakubowski.

Wskutek istnienia skomplikowanych źródeł uchybów metody prostownikowej nie można określić ich wielkości. Natomiast nietrudno jest wyznaczyć górną granicę uchybu w sposób opisany w niniejszej pracy, co może posiadać duże znaczenie praktyczne. Metoda określania granicy uchybu nie obejmuje uchybów skutkiem występowania wielu ekstremów krzywej napięcia w ciągu ¹/₂ okresu. Sposoby praktycznego usuwania tych ostatnich uchybów dotychczas nie są znane.

1. Zasada metody i jej uchyby.

Metoda prostownikowa (rys. 1a) pozwala, jak wiadomo [1]¹), określić wartość maksymalną wysokiego napięcia (U_m) przy pomocy jednego odczytu, jeśli 1) znana jest pojemność C i częstotliwość f mierzonego napięcia; 2) krzywa napięcia posiada w ciągu okresu tylko 2 ekstrema, przyczem wartości maksymalne napięcia (ujemna i dodatnia) są jednakowe. Wzór na U_m można wyprowadzić dla przypadku idealnego, t. j. gdy 3) wentyle nie działają jednocześnie; 4) spadek napięcia na wentylach i mikroamperomierzu jest zawsze równy zeru; 5) niema upływności i pojemności między osłoną a doprowadzeniem.

Dla przypadku idealnego zależność między U_m , C, f oraz wskazaniem (J) mikroamperomierza, mierzącego wartość średnią, jest:

$$U_m = \frac{J}{2fC} \quad \dots \quad \dots \quad (1)$$

Jeśli którykolwiek z warunków 3) do 5) nie jest spełniony, wzór (1) przestaje być ścisły, a posługując się nim, popełniamy uchyb.

Przez dobór odpowiednich kenotronów można zmniejszyć napięcie na układzie kenotronów przy przepływie prądu z kondensatora C. Do 0 nie doprowadzimy go nigdy, musimy zatem uważać kenotrony za zmienną oporność rzeczywistą. Również oporności mikroamperomierza nie możemy zmniejszyć do 0, ani też pozbyć się pojemności i upływności między osłoną a doprowadzeniem. Warunek 3) może być spełniony praktycznie przez stosowanie odpowiednich kenotronów ciemnożarzących się, przez które płynie prąd = 0 dla napięcia anodowego = 0 (por. [1]).

Biorąc pod uwagę te czynniki, które zawsze występują, możemy ułożyć równania różniczkowe dla rozpływu prądów w układzie praktycznym (rys. 1b). Przvimując potencjał punktu N za zero, otrzymamy

$$i_{c} = C \frac{d}{dt} (u - u_{k})$$

$$i_{c} = i + C_{k} \frac{du_{k}}{dt} + \frac{u_{k}}{R_{k}}$$

$$i = C \frac{du}{dt} - (C + C_{k}) \frac{du_{k}}{dt} - \frac{u_{k}}{R_{k}} \quad . \quad (2)$$

W powyższem równaniu u_k zawiera spadek napięcia na kenotronach i na mikroamperomierzu,

Wskazanie mikroamperomierza

$$J = \frac{1}{T} \int_{o}^{t} (i > 0) \, \mathrm{d}t.$$

Uchyb wskazania

$$\Delta J = 2 f C U_m - f \int_o^1 (i > 0) dt.$$

Uchybu tego nie można określić analitycznie, nawet znając zależność u_k od *i* oraz wielkość C_k , R_k , ponieważ $\int_{a}^{T} (i > 0) dt$ zależy od przebiegu krzywej u = f(t), naogół nieznanego.

Rys. 1a. Rys. 1b. Rys. 1c. Układ idealny (1a), praktyczny (1b) i idealny zmodyfikowany przez Königa (1c). Na rys. 1c + baterji V należy połączyć z katodą kenotronu Kı.

¹) Liczby w nawiasach [] odnoszą się do literatury, podanej na końcu,

2. Określenie uchybu metodą H. Königa.

H. König w nader głęboko ujętej pracy [2] zajmował się wielkością uchybu ΔJ , gdy spełnione są warunki 2), 3) i 4) oraz gdy $R_k = \infty$, ale $C_k \neq 0$. Rozważał on przebieg krzywych u_c , u_k , i = f(t) dla dowolnie założonej krzywej u = f(t)odpowiadającej warunkowi 2). W układzie Königa w szereg z jednym z kenotronów jest włączona baterja o napięciu V (rys. 1c). Rys. 2 przedstawia krzywe, gdy napięcie włączono w chwili t_0 ; od chwili t_1 wartości napięć i prądów powtarzają się co 1 okres. Od tej chwili mamy więc do czynienia ze stanem ustalonym. Omawiane krzywe można wyznaczyć, pamiętając, że 1) zawsze, gdy działa wentyl K, lub K_2 (rys. 1c), prąd ładowania C_k równa się 0; 2) gdy nie może działać żaden z wentyli, prąd płynie przez C_k ; 3) wentyl K_1 może zacząć działać tylko wtedy, gdy $u_k = V$ i gdy u rośnie, a wentyl K_2 —gdy $u_k = 0$ i gdy u maleje²).

Z rys. 2 wynika, że dla tego przypadku wartość średnia prądu, płynącego przez mikroamperomierz (pole zakreskowane na rys. 2)

$$J = fC\left(2U_m - \frac{C+C_k}{C}V\right) \quad . \quad . \quad (3)$$

Znając f, C, C_k i V, można więc w opisywanym przypadku idealnym przy pomocy jednego odczytu J określić U_m .

Wychodząc z założenia, że układ praktyczny odpowiada w przybliżeniu idealnemu, do którego stosuje się równanie (3), König wyznaczył doświadczalnie (wentyle = kenotrony, R_k b. duże) zależność J od V dla szeregu krzywych u=f(t). Jako napięcie V na wykresach przyjmujemy napięcie baterji rzeczywiście włączonej do układu; część tego napięcia to V', wielkość niezbędna do

²) Rozumowań prowadzących do wyznaczenia przebiegu krzywej $u_c = f(t)$ König [2] nie podaje, mimo iż odznaczają się dużą oryginalnością. Dla chcących przestudjować w oryginale trudno ujętą pracę Königa będzie dużem ułatwieniem zapoznanie się z metodą omawianych rozumowań. Jako przykład podajemy ich fragment: wytłomaczenie przebiegu krzywych w czasie od t_2 do t_3 .

Przed chwilą t_2 prąd płynął przez K₁, napięcie na C było więc równe $u_c = u - u_k = u - V$. Od chwili t_2 prąd nie może płynąć ani przez K₁, ani przez K₂. Gdyby prąd popłynął przez K₂, to musiałoby u_k stać się = 0, czyli $u_c = u$; aby u_c było = u musiałoby u_c wzrosnąć od wartości dla t_2 , co przeczy założeniu, bo wzrost u_c połączony jest z przepłynięciem prądu przez K₁, a nie przez K₂. Zatem prąd przez K₂ popłynąć nie może. Podobnie popłynąć nie może przez K₁, bo przez K₁ płynie wtedy, gdy u_c rośnie i gdy $u_k = V$, co jest tutaj niemożliwe wobec malenia u(u małeje, a więc i (u - V) musiałoby małeć). Jedyną możliwością jest popłynięcie prądu ładowania kondensatora C_k , co nastąpi według wzorów: $C [u_c - (U_m - V)] = C_k (u_k - V)$ i $u_c + u_k = u$.

Gdy u_c stanie się równe u (chwila t_3), ziawią się warunki możności pracy wentyla K_2 : przez ten wentyl zacznie płynąć prąd taki, jakgdyby C_k nie istniało $\left(i_2 = C - \frac{du}{dt}\right)$. Dla t_3 $u = u_c = U_m - \frac{C+C_k}{C} V$; wielkość ta wchodzi do wzoru (3). rozdzielenia zakresu wspólnej pracy kenotronów (König używał lamp jasnożarzących się). Wykresy, otrzymane przez Königa, są bardzo ciekawe; wynika z nich, że krzywe J = f(V) dla róż-

nych $C_k = \text{const}$ są prawie prostemi i że przecinają się w jednym punkcie na le wo od osi V=0(rys. 3).

König wnioskuje stąd, że rzeczywiście działające napięcie V jest większe, niż napięcie baterji, włączonej do układu i tłomaczy to w ten sposób, że układ kenotronów można zastąpić 2 wentylami idealnemi o stałych opornościach i napięciem $V_o + V'$, włączonem w szereg z jednym z nich (rys. 4). Przy takiem założeniu prąd, zmierzony w warunkach normalnych (V = V'), będzie

$$J \cong 2 \, f C U_m \left[1 + w - \frac{V_0 + V'}{2 \, U_m} \left(1 + \frac{C_k}{C} \right) \right], \quad (4)$$

przyczem w oznacza uchyb wskutek oporności zaworów, $\frac{1}{2}V_0$ – napięcie własne 1 zaworu.

Wyniki pomiarów Königa można ująć jeszcze innym wzorem:

$$J = 2 f C U_{mf} \left[1 - \frac{V_{0f} + V'}{2U_{mf}} \left(1 + \frac{C_k}{C} \right) \right]. \quad (5)$$

Wzór powyższy stanowi analogię matematyczną do (3). Wielkości U_{mi} i V_{0i} są fikcyjne, nie posiają znaczenia fizycznego, ale zato można je łatwo wyznaczyć doświadczalnie. W U_{mt} i V_{0t} ukryty jest uchyb w, różnią się więc one od U_m i V_0^{-3}). Według pomiarów Königa U_{mt} jednak bardzo mało odbiega od U_m ; dlatego König zaleca także w przypadku, gdy V wystarcza tylko do rozdziału pracy kenotronów (normalna praca układu; V = V'), wyznaczanie $2CtU_{mt}$, jako rzędnej przecięcia się 2 prostych J = f(V) dla 2 różnych wartości C_k , i utożsamianie U_{mt} z U_m .

Rezultaty Königa, dotyczące przybliżonej równości U_{mt} i U_m , jak również istnienia zależności J = f(V) pod postacią równania (5)⁴) posiadają charakter wyłącznie empiryczny. Błąd ΔJ w rzeczywistości zależy od kombinacji 5 czynników: C, C_k, R_k, przebiegu u = f(t) i $i = f(u_k)$. [porównaj równanie (2)]. Oczywiście König nie mógł zbadać wszystkich kombinacyj praktycznie możliwych, zatem nie jest wykluczone, że poprawki, oparte na równaniu (5), mogą zawieść w szeregu przypadków praktycznych.

Przy ocenie metody Königa należy zwłaszcza wziąć pod uwagę, że w praktyce używa się różnych kenotronów (ograniczenie metody Königa tylko do kenotronów przez niego używanych) i że R_k bardzo często nie jest = ∞ , a nawet może osiągnąć rząd wielkości $\frac{1}{\omega C_k}$ przy 50 okr.⁵). Wskutek powyższych zastrzeżeń b. cenne wyniki pomiarów Königa posiadają znaczenie częściowo lokalne.

3. Wyznaczenie górnej granicy uchybu.

Względy, omówione na końcu poprzedniego rozdziału, skłoniły autorów do pójścia w kierunku opracowania metody, któraby pozwoliła określać górną granicę uchybu mierzonego napięcia. Wyznaczenie tej granicy dla różnych napięć. po uruchomieniu metody prostownikowej w laboratorjum przemysłowem, pozwala usunąć elementy nieprawidłowe i zwiększyć w ten sposób dokładność pomiaru.

Punktem wyjściowym tej metody jest wzór (2). Wyrażenie na granicę uchybu, wyprowadzone niżej, można stosować tylko do kenotronów ciemnożarzących się, dla których $u_k = 0$, gdy i = 0. Przy stosowaniu kenotronów jasnożarzących się należy w tem wyrażeniu wprowadzić zmiany, czem nie zajmujemy się, ponieważ naszem zdaniem takich kenotronów stosować nie należy [1]. Dla kenotronów, wykazujących $u_k = 0$ dla i = 0, baterja dla rozdzielenia zakresu pracy jest zbędna, V'=0. a więc w myśl rozważań K ö n i g a możemy mówić

³) Według bardzo dokładnych badań Königa nawet V_0 nie jest, ściśle biorąc, wielkością stałą. Dla danego kenotronu V_0 zależy przy J = const, a różnych U_m od C oraz przy C = const od wykorzystania charakterystyki kenotronu, czyli od U_m . Świadczy to, że i V_0 jest wielkością do pewnego stopnia fikcyjną.

⁴) Trzeba pamiętać, że przebieg J = f(V) doświadczalnie możemy wyznaczyć tylko dla V > V': dla V < V'przedłużamy krzywe J = f(V) w założeniu, że są to proste.

⁵) Oporność powierzchniowa izolacji między osloną kondensatora wysokiego napięcia, a częścią pomiarową może spaść nawet do 5 M Ω w warunkach wybitnie niekorzystnych (kurz, wilgoć). tylko o V_0 , wielkości dość nieokreślonej. Możność określenia uchybu metodą Königa dla tego przypadku zdaje się być całkowicie złudzeniem.

Aby określić granicę uchybu, zauważmy najpierw, że krzywa mierzonego napięcia posiada z założenia w ciągu okresu tylko 2 ekstrema. Nie jest prawdopodobne, nawet dla krzywych u=f(t)bardzo odkształconych, dla których np. $\frac{du}{dt}$ zbliża się do 0 kilka razy w ciągu ¹/₂ okresu, że prąd *i* będzie zmieniał znak częściej, niż jeden raz w ciągu ¹/₂ okresu. Prościej jednak, niż udowodnić to, będzie założyć, że prąd *i* posiada kilka przejść przez 0 w ciągu ¹/₂ okresu, gdyż nawet przy tem założeniu uchyb graniczny wypadnie taki sam, jak dla jednego przejścia przez 0. Dla przyjętego przez nas przebiegu prądu istnieje więc w ciągu okresu kilka nie zachodzących na siebie zakresów *t*, w których prąd jest dodatni. Początek każdego takiego zakresu oznaczymy przez *t'*, koniec przez *t''*.

Wskazanie mikroamperomierza będzie:

$$J = \frac{1}{T} \int_{o}^{T} (i > 0) dt =$$

$$= \frac{1}{T} \sum_{v} \int_{v}^{t''} \left[C \frac{du}{dt} - (C + C_k) \frac{du_k}{dt} - \frac{u_k}{R_k} \right] dt =$$

$$= \frac{1}{T} \sum_{v} \int_{v}^{t''} C du - \frac{1}{T} \sum_{v} \int_{t'}^{t''} (C + C_k) du_k - \frac{1}{T} \sum_{v} \int_{v}^{t''} \frac{u_k dt}{R_k} = \hat{r}C \sum_{v} (u'' - u') +$$

$$= \hat{r}(C + C_k) \sum_{v} (u_k'' - u_k') - \frac{\hat{r}}{R_k} \sum_{v} \int_{v}^{t''} u_k dt.$$

Z założenia $u_k = 0$, gdy i = 0, a więc $u_k' = u_k'' = 0$. Następnie suma różnic (u'' - u') nie może być nigdy większa od 2 U_m , jeżeli, jak tutaj, zakresy t'' - t' nie zachodzą na siebie. $\sum_{t'} \int_{t'}^{t'} u_k dt$ jest zawsze większa od 0, bo u_k ma taki sam znak, jak *i*. Ostatecznie

Wzór (6) pokazuje, że wskazanie mikroamperomierza w układzie idealnym jest górną granicą wskazań w układzie praktycznym.

Aby wyznaczyć dolną granicę J, określamy najpierw wielkość całki $\int_{t''}^{t'''} i \, dt$ przyczem chwile t''' i t'''' odpowiadają kolejnym przejściom $C \frac{du}{dt}$ przez 0.

$$J' = \int_{t'''}^{t''''} i \, dt = 2 f C U_m - f (C + C_k) \, (u_k'''' - u_k''') - \\ - f \int_{t'''}^{t''''} \frac{u_k}{R_k} \, dt$$
min $I' > 2 f C U_m - 2 f (C + C_k) |u_k| - \frac{|u_{km}|}{(7)^{6}}$

 $\min J' > 2 f C U_m - 2 f (C + C_k) |u_{km}| - \frac{|u_{km}|}{2R_k} \cdot (7)^6$

⁶) Zakładając, że $u_k = \pm u_{km}$, gdy $C \frac{du}{dt} = 0$, naogół przeceniamy znacznie wielkość uchybu, gdyż w większości przypadków praktycznych u_k w chwili, gdy $C \frac{du}{dt} = 0$, jest bliższe 0, niż u_{km} .

Nr 3

We wzorze (7) przez $|u_{km}|$ oznaczono bezwzględną wielkość największej chwilowej wartości u_k .

Zważywszy, że całka
$$\sum_{t''} \int_{t'}^{t} i \, dt = \int_{0}^{1} (i \ge 0) \, dt$$

jest większa od całki $\int_{t''}^{t''''} i \, dt$, otrzymamy $J \ge J'$
oraz $J \ge \min J'$.

Ostatecznie

A 7

$$J \langle 2 f C U_m \\ J \rangle 2 f C U_m - 2 f (C + C_k) |u_{km}| - \frac{|u_{km}|}{2R_k}.$$

Określając U_m ze wzoru (1), jako granicę górną uchybu otrzymamy:

$$\pm \frac{\Delta U_m}{U_m} = \frac{\Delta f}{f} + \frac{\Delta C}{C} + \frac{\Delta J}{J} \quad . \quad . \quad (8)$$

przyczem

$$+\frac{\Delta U_m}{U_m} = \frac{\Delta f}{f} + \frac{\Delta C}{C} + \frac{2f(C+C_k)|u_{km}|}{J} + \frac{|u_{km}|}{J} + \frac{|u_{km}|}{J} + \frac{\Delta \alpha}{J}$$
(8a)

$$\begin{array}{c|c} R_k J & \alpha \\ \hline \\ \Lambda f & \Lambda C & J \\ \hline \\ \Lambda f & \Lambda C \\ \hline \\ \Lambda f & \Lambda G \\ \hline \\ \end{array}$$

$$-\frac{\Delta U_m}{U_m} = \frac{\Delta T}{f} + \frac{\Delta C}{C} + \frac{J_0}{J} + \frac{\Delta \alpha}{\alpha} \quad . \tag{8b}$$

We wzorach powyższych $\Delta \alpha$ oznacza uchyb odczytu i wskazania mikroamperomierza. Osobne omówienie należy się wielkości J_0 . Jest to znikomo mała wielkość prądu, który płynie przy zwarciu kenotronu. Rząd jego wielkości — kilka 10⁻⁵ A dla odpowiednio połączonych lamp B.409 (rys. 1b). Obliczając uchyb graniczny w założeniu, że J_0 płynie przez cały okres (niemożliwe) przeceniamy znacznie jego wielkość; mimo to składowy uchyb graniczny $\frac{J_0}{J}$ jest do pominięcia wobec innych. Wielkość ta może grać pewną rolę przy użyciu innych kenotronów, niż zastosowane przez autorów; dlatego włączamy ją do wzoru na uchyb graniczny.

Wzór (8) na uchyb może mieć znaczenie praktyczne, o ile 1) granice uchybu nie wypadają zbyt duże w stosunku do rzeczywistego uchybu (uchyb nie jest przeceniony); 2) wielkość u_{km} , C_k , R_k można zmierzyć.

Górna granica uchybu ze względu na C_k jest osiągnięta w przypadku, gdy $R_k = \infty$ i wentyle są idealne, oraz gdy w szereg z każdym wentylem jest włączona baterja o napięciu $V_1 = V_2$ (rys. 5a). Górna granica uchybu wynosi wtedy

$$\Delta J = 2 f C U_m - J = f (C + C_k) \cdot 2 V_1.$$

To samo otrzymujemy ze wzoru Königa (3), jeśli założyć w nim $V = 2V_1$. Założenie to jest słu-

szne, gdyż układ z rys. 5a ma ten sam uchyb, co układ z rys. 5b. Równość uchybu granicznego i rzeczywistego wskazuje, że, jeśli wzór na uchyb graniczny ma obejmować wszystkie przypadki, nie może być zastąpiony innym, dającym mniejsze wartości uchybu.

Do zmierzenia u_{km} nie możemy użyć zwykłego woltomierza, gdyż spowodowałby on praktycznie zupełne zwarcie układu kenotronów i napięcie u_k zniknęłoby. W Laboratorjum Wysokich Napięć P. W. stosowano do tego celu zerowy układ kenotronowy (rys. 6). składający się z kenotronu dodatkowego K₀, baterji B i galwanometru G. Aby zrozumieć zasadę jego działania, przypuśćmy najpierw, że charakterystyka u = f(i) kenotronu K₀ przechodzi przez punkt (u = 0, i = 0). Gdy na-

pięcie baterji B jest rowne 0, kenotron Ko przejmie częściowo rolę kenotronu K1. Jeśli napięcie U_B baterji B zwię-kszyć, to dodatni (przy połączeniu, jak na rys. 6) prąd w Ko zmaleje, gdyż płynie on tylko wtedy, gdy $u_k - U_B$ jest dodatnie. Gdy prąd ten stanie się równy 0, UB będzie równe u_{km}. Ponieważ wtedy Ko nie pobiera prądu, ukm ma tę samą wartość, jaką miało, gdy Ko nie było włączone. Po zastosowaniu prostej modyfikacji postępowania można użyć jako Ko

kenotronu, dla którego $i \pm 0$ dla u = 0.

Pomiar u_{km} nie jest dokładny, gdyż właściwie nie ustawiamy prądu woltomierza kenotronowego na 0 (ze względu na styczny przebieg charakterystyki i = f(u) kenotronu K_0 do osi u), ale na niewielką wartość, która bardzo mało zmienia wskazanie badanego układu prostownikowego. Uchyb pomiaru u_{km} może osiągnąć np. 10%, co jednak jest bez wielkiego znaczenia, bo powoduje tylko uchyb uchybu.

Biorąc za podstawę do obliczenia uchybu C_k określone np. mostkiem Seibta i R_k zmierzone prądem stałym, popełniamy nieścisłość dzięki temu, że tak otrzymane C_k i R_k są tylko wtedy dokładne, gdy nie występują straty w izolacji z materjału stałego. Ściśle biorąc dielektryk stały stanowi złożony układ kilku pojemności i oporności. Układ ten można zastąpić przez R_k i C_k , połączone równolegle, ale inne dla różnych częstotliwości (wyższych harmonicznych u_k). To zastrzeżenie natury teoretycznej nie odgrywa dużej roli w praktyce; możemy tutaj powtórzyć to samo, co przy omawianiu dokładności pomiaru u_{km} : uchyb określenia C_k i R_k powoduje tylko uchyb uchybu.

Znając u_{km} , C_k , R_k możemy określić granicę uchybu. Przykład obliczenia tej granicy przy pomiarze 100 k V_{max} podaje poniższe zestawienie:

 $\frac{\Delta f}{f}$ 100 (częstościomierz sprężynkowy) · ± 0,5% ΔC

$$\overline{C}$$
 100 (orjentacyjnie) \pm 0,1%

 $\frac{2 f(C+C_k) |u_{km}|}{J} 100 =$ $= \frac{2.50 \cdot (8+784) \cdot 10^{-12} \cdot 1.2}{81 \cdot 10^{+6}} 100 \cdot +0.12^{0}/_{0}$

 $\frac{|u_{km}|}{2R_k J} 100 = \frac{1.2}{2.(16.5.10^{-6}).(81.10^{-6})} 100. +0.05^{0}/_{0}$

 $\frac{\Delta \alpha}{\alpha} 100^{7}) \qquad \pm \qquad 0.2^{0}/_{0}$

 $\frac{J_{o}}{J} 100 = \frac{0.028 \cdot 10^{-6}}{81 \cdot 10^{-6}} 100 \cdot \cdots \cdot \cdots \cdot \cdots -0.03^{0}/_{0}$

Górna granica uchybu dodatniego:

0,5+0,1+0,12+0,05+0,2=0,97%.

Górna granica uchybu ujemnego

0,5+0,1+0,2+0,03=0,83%.

⁷) Mikroamperomierz firmy Hartmann i Braun, $1^{\circ} = 0.88.10^{-6}$ A.

Z przykładu powyższego widać, że uchyb wskutek istnienia C_k i $\frac{1}{R_k}$ gra bardzo małą rolę; dotyczy to wszystkich układów prawidłowo żestawionych. W omawianym przykładzie, chcąc zwiększyć dokładność, należałoby przedewszystkiem poprawić dokładność pomiaru f, następnie zmiejszyć C_k .

4. Wnioski.

1. Stosowanie metody Königa nie daje pewności, czy wielkość określana jest rzeczywiście szukanym uchybem.

2. Metoda autorów pozwala określić w sposób pewny górną granicę uchybu.
3. Dla układów prawidłowo zestawionych

3. Dla układów prawidłowo zestawionych uchyby graniczne wskutek istnienia C_k i $\frac{1}{R_k}$ są pomijalne wobec innych.

LITERATURA.

[1] J. L. Jakubowski, Pomiar wysokiego napięcia w laboratorjach przemysłowych metodą prostownikową. (Przegl. El. 1933, Nr. 1 i 2, publikacja Z. M. E. i W. N. Nr. 28).

[2] H. König, Ueber die Fehler der Scheitelspannungs-Messung vermittelst röhrengleichgerichtetem Kondensatorstrom, (Helvetica Physica Acta, 1929, Vol. II, str. 357-410).

Dalsza literatura, zresztą nieliczna, podana jest w pracach wymienionych wyżej.

Praca powyższa została wykonana w Zakładzie Miernictwa Elektrotechnicznego i Wysokich Napięć Politechniki Warszawskiej w roku 1931.

RTĘCIOWE ZAWORY ELEKTRONOWE Z SIATKĄ STERUJĄCĄ I ICH ZASTOSOWANIE PRAKTYCZNE*).

Inż. August Smolański.

Przedmiotem niniejszego artykułu jest nowy, szybko rozwijający się dział spółczesnej elektrotechniki, obejmujący rtęciowe zawory elektronowe, wyposażone w siatki sterujące. Podana jest zasada działania siatki sterującej i regulacji zaworów, następnie schematy i krótki opis zasadniczych ukladów z sterowanemi zaworami rtęciowemi.

Wstęp.

Pierwszy pomysł regulacji zaworów rtęciowych przez oddziaływanie na wzniecanie i przebieg wyładowania łukowego w zaworach pochodzi od wynalazcy zaworów rtęciowych Peter Cooper Hewitt'a, który podał kilka sposobów uskutecznienia tej regulacji. Pierwszy sposób, polegający na wzbudzaniu plamy świetlnej na powierzchni katody przez przesuwalne w fazie wzniecanie pomocniczego wyładowania łukowego w obwodzie osobnej anody wzbudzającej, w zależności od czego powstawałoby opóźnianie chwili włączania prądu anodowego w każdej otwartej części okresu poszczególnych anod, czyli tak zwane initialne sterowanie przy pomocy elektrody zapalającej, — nie okazał się praktycznym i poza laboratorjum nie znalazł szerszego zastosowamia. Natomiast pomysł sterowania zaworów rtęciowych przy pomocy siatki o regulowanym potencjale względem katody, która w wykonaniu Hewitt'a z r. 1905 miała postać koszyka drucianego, otaczającego anodę, okazał się bardzo szczęśliwym i pchnął rozwój

57

^{*)} Odczyt, wygłoszony na zebraniu Energetyków w Katowicach dnia 20.IX. 1932,