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PREFACE

The aim of this book is to build the capacity of applying statistical methods and
tools in the professional practice of an engineer. Therefore, the focus is on
understanding and the development of relevant skills.

This book covers a selection of statistical methods and tools. Their theoretical
description is provided together with examples of application in solving engineering
problems. When advantageous, hints for using statistical software are given.

From the scientific point of view, the presented methods and tools are elements of
more advanced methodologies in engineering statistics which are subject to
continuous development. It is intended that in the course of studying this book the
Reader learns the appropriate language and lays the foundation for further
development of knowledge and skills in the domain of engineering applications of
statistics.



ORGANISATION OF THE BOOK

This book consists of several chapters with their order corresponding to the
increasing complexity of the discussed statistical methods and tools as well as
engineering problems which may be solved with their application. The following is
a brief overview of the content found in the chapters.

e Random variable and its variability

A random variable is a principal entity in statistics. The concept of a random
variable is presented and different types of random variables are described.

e Data collection

Data collection is necessary for obtaining values of random variables. Selected
strategies of data collection are reported.

e Descriptive statistics

The statistical description of data may be used for characterizing real objects. Basic
tools for the statistical description of data sets are presented.

e Theoretical distributions of discrete variables

Theoretical variables are available which may be used as models of real random

discrete variables. A selection of distributions of theoretical discrete variables is
presented.

e Theoretical distributions of continuous variables

Theoretical variables are available which may be used as models of real random
continuous variables. A selection of distributions of theoretical continuous
variables is presented.

e Confidence interval and confidence level

The confidence level represents the trust that a parameter of statistical distribution
of a random variable remains within certain limits. The method of calculating
confidence intervals on the mean and on the variance is explained.

e Statistical hypotheses and their testing

The testing of statistical hypotheses allows for comparing objects. Statistical tests
are presented which allow for comparing the average states of objects and for
comparing variabilities of the states of objects.

e Analysis of variance

The analysis of variance is used for detecting the change of objects due to the
influence of nonrandom factors. The demonstrated methodology refers to cases
when one or two nonrandom factors are considered simultaneously.

e Regression analysis

Regression analysis allows for the quantitative description of object change, which
results from the influence of nonrandom factors. The principles of building
regression models and their diagnostics are provided.



INTRODUCTION

The ENCYCLOPEDIA BRITANNICA defines engineering in the following way: “Engineering
is the application of science to the optimum conversion of the resources of nature
to the uses of humankind”. The definition of statistics provided by ENCYCLOPEDIA
BRITANNICA states “Statistics is a branch of mathematics dealing with gathering,
analyzing, and making inferences from data”. Statistics enters engineering by being
a substantial fragment of mathematical knowledge applied in engineering. It is
used for analyzing measurement/observation data concerning objects. Objects are
fragments of the world, e.g. materials, structures, machines, devices, systems,
phenomena and processes. They are studied by engineers in order to design,
implement and control the ‘use’ of nature by humankind.

For an engineer, statistics provides aid in solving a number of problems, for
instance

e characterizing objects,

e comparing objects,

e detecting change in objects,

describing relationships within and between objects.

The engineering application of statistics consists of using statistical analysis for
solving engineering problems. The following steps are required to implement this
approach: (1) an engineering problem is expressed as a statistical problem, (2) a
solution of the statistical problem is obtained, (3) the solution of the statistical
problem is translated to the solution of the engineering problem. These principal
elements of the approach are shown in Fig.1.

SOLUTION SOLUTION
ENGINEERING STATISTICAL STATISTICAL OF OF
PROBLEM PROBLEM ANALYSIS STATISTICAL ENGINEERING
PROBLEM PROBLEM

Figure 1 Pathway for solving engineering problems using statistical analysis.

For making use of engineering statistics, it is necessary that an engineer, a specialist
in his/her own field, is additionally familiar with statistical methodology and is able
to fuse these two domains in a proper way.



1 VARIABLE AND VARIABILITY

A variable may be used for representing a feature of an object or its surroundings.
For example, let the object be a chemical substance. Such an object has many
features, for instance volatility. This feature may be represented by the variable
saturated vapor pressure.

A variable has a name, takes values or levels and is usually expressed in some units.
For example, the levels of the variable saturated vapor pressure may be expressed
in [Pa].

A variable taking a value or level is called realization. For example, the realization of
the variable saturated vapor pressure may be 10150 Pa. There must be a possibility
to observe/measure and record realizations of a variable.

The recorded realizations of variables are data. As already stated, statistical
analysis operates on data.

Establishing the correspondence between features of an object and variables is the
key point for transitioning between an engineering problem and a statistical
problem.

1.1 SCALES AND TYPES OF VARIABLES

There are different types of variables. One of the most useful classifications divides
variables according to scale providing levels/values of a variable. The following
scales are available:

1. Nominal scale,
2. Ordinal scale,

3. Interval scale,

4. Ratio scale.

The nominal scale has levels that are different, but incomparable. There is no way
to judge the size or direction of the difference. An example of a variable which
takes levels from the interval scale is sex. Another example is race.

The ordinal scale also has levels. Levels of the ordinal scale are different and
comparable. It is possible to rank the levels of an ordinal variable and to order
them; however, it is not possible to measure the difference between the levels. An
example of an ordinal variable is the freshness of air. Provided the air in room A is
very fresh, the air in room B is medium fresh and the air in room C is not fresh, the
rooms may be put in order according to the increasing freshness of air. However,
the difference between the freshness of air in the rooms is unknown.

An interval scale has values that are different. It is possible to order the values and
calculate the difference between levels. However, it is not possible to use the ratio
of levels from the interval scale. In other words, the starting point of the interval
scale is not absolute zero. The classical example of an interval variable is
temperature measured in degrees Celsius. For example, assume liquid A has a



temperature of 40 °C and liquid B has a temperature of 70 °C. Clearly, the
temperatures of liquid A and B are different. The temperature of liquid A is lower
than the temperature of liquid B. The difference between the temperatures of
liquids A and B is 30 °C. However, the ratio of the temperatures is not 40/70. It is
313/343. The ratio may be calculated if the absolute, Kelvin temperature scale is
used.

The ratio scale has values and is an absolute scale with an absolute origin. Values
from the ratio scale are different, can be ordered and subtracted and additionally
their ratios can be calculated. An example of a ratio variable is the distance from a
fixed point. Assume the distance between points A and O is 10 m and the distance
between points B and O is 2 m. The following is concluded: the distances of points
A and B from point O are different. Point A is located farther from point O than
point B. There is an 8 m difference in the distance of points A and B from point O.
Point A is located five times farther from point O than point B. The ratio scale is the
most informative scale. The interval scale may be transformed into the ratio scale if
the absolute reference point is defined.

Another method of classification uses qualitative and quantitative variables.
Quialitative variables have levels and nominal or ordinate variables are qualitative.
Quantitative variables have values and include interval or ratio variables. In
general, statistics operates on quantitative variables. Qualitative variables may be
used for representing features which have qualitative character. Oftentimes, they
are applied for labeling classes, groups or sets of elements.

It is important to distinguish discrete and continuous variables. Discrete variables
take values/levels from finite or countably infinite sets. Continuous variables take
values from infinite sets. There are substantial differences in the logic of statistical
analysis for discrete variables and continuous variables (see Chapter 4 and Chapter
5).

Using still another classification system, one may describe independent and
dependent/response variables. Independent variables represent factors which
influence the investigated objects. Dependent variables represent features of
objects which are influenced by the factors. If jointly considered, symbol X is used
for indicating the independent variables and letter Y refers to the dependent
variables.

The type of variable determines the selection of methods which may be used in its
statistical analysis. Therefore, it is very important to correctly identify the type of
variable before attempting the analysis.
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1.2 VARIABILITY OF VARIABLES

Variables exhibit variability in their values. There are two sources of variability
considered in statistics: random factors and nonrandom factors.

Random factors are always present and there is no way to eliminate or control
them. The magnitude and direction of their influence on objects changes in a
nondeterministic manner. Contrarily, nonrandom factors may be controlled. It is
possible to change the magnitude and direction of their influence on objects in a
deterministic manner.

The random variable is represented by the following formal model:
X=u+e

The first element of the sum, u represents the influence of nonrandom factors on
the variable. The second element of the sum, € represents the influence of random
factors. There are the two following possibilities:

1. Nonrandom factors remain at a constant level. In such circumstances
variable X shows the variability exclusively caused by random factors which
is equal to €. Variable X does not show the variability caused by
nonrandom factors. The value of yis constant. Observed values of the
variable randomly change around the constant level u.

2. The level of a nonrandom factor is changed but the object is insensitive to
this factor. See case 1.

3. The level of a nonrandom factor is changed and the object is sensitive to
this factor. In such circumstances X shows the variability caused by
nonrandom and random factors together. The variability caused by random
factors is equal to . The variability caused by nonrandom factors is
observed as the change of u. Observed values of the variable randomly
change around various levels of u.

Statistics provides a means of detecting and analyzing the variability of variables. In
this way, it is possible to make inferences about objects with analysis performed on
a number of values/levels of variables. The set of actions aimed at their acquisition
is usually referred to as data collection.

11



2 DATA COLLECTION

An elementary step of data collection is a single observation or measurement from
which a single value of a variable is acquired.

There are different strategies for collecting data that depend on many factors, for
example: the purpose of data collection, the constraints associated with the object,
available methods and techniques of observation/measurement.

From an engineering point of view, it is particularly important to distinguish
between a passive and an active strategy for data collection.

The data collected in a passive way provide extensive information about the
‘natural’ behavior of an object and may be used for characterizing the object.
However, it is not possible to study the cause-response relationship between the
object and its surroundings using data collected in a passive manner. Only a
relationship which has a correlation character may be analyzed. The exception is
the availability of the theory which describes the relationship.

With passive data collection the object is just observed. Its surroundings change
without any deliberate action aimed at influencing the object. The recorded
changes of the object (variability of the observed variable) usually result from a
wide range of random and nonrandom factors. Nevertheless, the observed
variability may not be undoubtedly attributed to changes of particular factors.

The data collected in an active manner provide information about the object being
influenced by known nonrandom factors. Active data collection allows for studying
cause-response relationships between the object and its surroundings.

Active data collection consists of observing the object while it is deliberately
influenced by known nonrandom factors. The observer is in control of selected
factors which may influence the object and manipulates these factors to see
whether and how the object responds to their change.

The discipline of science that develops the methodology of planning active data
collection is called Experimental Design. The reader will be presented with selected
elements of experimental design in the chapter dedicated to the Analysis of
Variance (see Chapter 8)

Another important distinction is made between collecting data for the entire
population and sampling, i.e. collecting data for a part of a population.

In statistics, population is understood as the total set. The population can be fully
characterized if each element of the set is known. However, populations usually
consist of a large or even an infinite number of elements. This makes the
investigation of every element impractical or even impossible. In such cases only a
representation of the population is considered. A sample is a set of elements
drawn from the population. The set shall be small enough to investigate each of its
elements. Furthermore, it is expected that the sample is representative of the
population.

12



The representative character of a sample is assured by the appropriate strategy of
drawing with various strategies available. The most frequently used is called
random drawing. In order to secure random drawing, the likelihood of pulling out
an element from the population has to be the same for all elements. It is not
known in advance which element will turn out from the draw, although the
respective likelihood may be known.

Tables of random numbers and random number generators implemented in
computer software are helpful in selecting random samples.

The majority of statistical methods and tools were developed for analyzing data
provided by random sampling.

2.1.1 EXAMPLE.

Problem. A factory employs 700 workers. They all work in similar conditions. An
employer was asked to select 50 workers who will be subject to a very detailed
medical examination. The sample shall be representative for the entire group of
employees.

Solution. In the considered problem the best representativeness is secured by
random drawing. In order to solve the problem, we are going to use the generator
of pseudorandom numbers, which is available in the DATA ANALYSIS TOOL in Excel. The
path for obtaining the solution is the following:

e There is one variable — the id of the worker.

e The variable takes values of ordinal numbers between 1 and 700.

e There has to be a random sample drawn consisting of 50 elements, i.e.
there are 50 requested values of the variable.

e The probability of drawing any single worker shall be constant and identical
for all workers; therefore, the distribution of the variable is uniform.

Random numbers provided by the generator shall be rounded to integers. The
results obtained by the author are shown in Table 2.1. The reader is encouraged to
generate his/her own solution.

Table 2.1 Sample of 50 randomly selected numbers. The population consisted of 700
numbers from 1 to 700.

87 503 45 364 389 62 362 577 410 243
104 239 631 358 120 94 483 276 386 433
191 566 693 504 189 152 457 587 225 477
621 551 625 404 526 253 146 652 421 479
570 571 375 699 599 488 687 36 374 105

13




3 DESCRIPTIVE STATISTICS

An important category of engineering problems which may be addressed by the
statistical methods and tools is related to characterizing objects. The realization of
this task is possible by applying descriptive statistics to data sets. The data shall be
realizations of variable, which represents a selected feature of the characterized
object.

A number of numerical, graphical and combined tools allows for describing the
principal features of the data set. Their use is recommended if nothing is known in
advance about the variable represented by the recorded data. Otherwise,
theoretical variables may be applied for representing the empirical variable (see
Chapter 4 and Chapter 5) and the statistical analysis is performed in a different
way.

The following tools are presented in this chapter: measures of centre in the data
set, measures of spread in the data set, histogram, box and whisker plot.

3.1 CENTER

The center is a value representing the middle of a data set. There are a number of
possibilities concerning the location of this feature. Three of the most frequently
applied measures are the following:

e Median — The value of a variable such that 50 % of all recorded values are
smaller than the median and 50 % of them are larger than the median. If
the values of a variable are ordered decreasingly or increasingly, the
median is the value from the middle. For an even number of measured
values, the median is located half way between the two adjacent middle
values. The median is a very good measure of center location and it is
robust regarding extreme values of the variable.

e Mode or modal value — The value of a variable which occurs most
frequently. It may happen that there are two or more modes. The mode is
an adequate measure only in the case of discrete variables.

e Mean —The mean is calculated in the following way:
n
1
X = —Z xi
n .
i=1
where: x; is a single observation of variable X, n is the number of
observations in the sample.

The symbol 1 denotes the mean of the variable in the entire population.
The symbol X denotes the arithmetic mean of the variable in the sample.

14



Oftentimes, the mean is automatically used as the indication of center in a
set of data. However, this measure is sensitive to extreme values of the
variable which may result in a false evaluation of center when the extreme
values are actually faulty measurements.

3.2 SPREAD

The spread indicates the range of variability in the data set. There are a number of
possibilities concerning the evaluation of spread. Three of the most frequently
applied measures are the following:

Minimum and maximum — The minimum is the smallest and the maximum
is the largest value of the variable. These two limits indicate the range of
recorded values of the variable. Minimum and maximum are very sensitive
to extreme values of the variable. If the largest and the smallest values
originate from faulty measurements, the actual variability of the variable
may be much smaller than delimited by the < min, max > range in the
data set. Minimum and maximum values may be used together with any
measure of center.

k" order percentile — A value of a variable such that k % of all recorded
values are smaller than the percentile. This definition strictly refers to the
so called lower percentile. For the case of the k" upper percentile, k % of
variable values exceeds the percentile. The spread is indicated by the pair
of symmetric ki percentiles: lower and upper.

Most popular is the 25" percentile, called the quartile. The minimum and
maximum are actually the 0" and 100" percentiles, respectively.
Percentiles are usually used together with the median. The distance from
the center to the k" order lower and upper percentiles indicates whether
values of the variable are symmetrically distributed around the center of
the data set.

Standard deviation — Standard deviation is calculated in the following way:

n

1 )2

s = n_lz(xi—x)
=1

where: x; is a single observation of variable X, n is the number of
observations in the sample.

The symbol odenotes the standard deviation of a variable in the entire
population. The symbol s denotes the standard deviation of a variable in
the sample.

Oftentimes, standard deviation is automatically used as the indicator of
spread in a data set and it is considered together with the mean. Standard

15



deviation does not indicate the symmetry or asymmetry of the distribution
of variable values around the center.

e Outliers — These are observations which lie an abnormal distance from
other values in a data set. There are mild and extreme outliers. Using the
following notation: Q; is the lower quartile, @, is the upper quartile and
1Q = Qy — Q,, is the inter-quartile range, the following holds:

0 mild outliers belong to the interval {(Q;, — 1.5/Q) U (Q,, + 1.51Q)
0 extreme outliers belong to the interval {(Q;, — 31Q) U (Q,, + 31Q).

An outlier is a ‘strange’ observation. The engineer has to decide whether it
resulted from a faulty measurement or is a trace of abnormal object
behavior. In the first case, the outlier shall be removed from the data set
prior to any statistical analysis. Otherwise, the outlier shall be considered
with special care.

3.3 HISTOGRAM

By quoting the measures of center and spread in a data set, the essential
information is provided about the variable thus also about the investigated object.
Namely, the value is known around which the variable varies and the magnitude of
variation is given. In other words, the usual state of the object is indicated and it is
also known how far from this state the object wanders.

Still a more detailed picture may be obtained by means of a histogram. In order to
build a histogram, the range of values of the variable < min, max > is divided into
intervals of the same size. The number of intervals depends on the size of the data
set. It is recommended to use odd numbers for the number of intervals. The
histogram of frequency shows the frequency of occurrence, i.e. the number of
times the values of the variable fall into different intervals. The frequency
histogram is convertible into a histogram of relative frequency. The relative
frequency histogram shows the relative frequency of occurrence, i.e. the
percentage of values of the variable which fall into different intervals. In addition,
the histogram of cumulative frequency is sometimes used. This shows the
cumulative frequency of occurrence, i.e. the number of values of the variable which
are smaller or equal to the right limit of the particular interval. The histogram of
cumulative relative frequency is built similarly by using the cumulative relative
frequency of occurrence. The principles of construction for the frequency
histogram, relative frequency histogram, cumulative frequency histogram and
cumulative relative frequency histogram are summarized in Table 3.1.

16



Table 3.1 The principles of constructing the frequency histogram, relative frequency
histogram, cumulative frequency histogram and cumulative relative frequency histogram.

Indicator K
of interval 1 m
Limits .
of interval (xmiwxmin + 1Ax) (xmin + (k - 1)Axr Xmin + LAX) (xmin + (m - 1)Ax, xmux)
Frequency of ny e .
occurrence
Relative n n n
frequency a Tk m
of occurrence n n n
Cumulative m
frequency ny ny+n, ++ny Z g
of occurrence -
k=1
Cumul.atlve m
relative ny ny Ny Ny Z Ny
frequency n n n n n
of occurrence k=1
Probability nq 0 Ny
nax nAx nAx

The following notation was used in Table 3.1: m is the number of intervals; x,,i, and X
are minimum and maximum values of variable X, Ax = Zmax~Imin jo the size of a single
interval, n; is the number of values of the variable which fall into the k" interval, n is the
number of all observations of variable X.

Histograms are plotted using a bar plot. The x axis represents variable X and the
limits of the intervals are marked on this axis. A bar is plotted for each interval. The
height of the bar represents the frequency of occurrence, relative frequency of
occurrence, cumulative frequency of occurrence or cumulative relative frequency
of occurrence, depending on the type of histogram. Graphical representations of
frequency histograms and cumulative frequency histograms are shown in Fig. 3.1
and Fig. 3.2, respectively.

17
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Figure 3.1 Graphical representation of (a) frequency histogram, (b) relative frequency
histogram.
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Figure 3.2 Graphical representation of (a) cumulative frequency histogram, (b) cumulative
relative frequency histogram.

The relative frequency histogram provides the basis for calculating the probability
distribution of a variable. The probability associated with an interval is calculated
as the ratio between the relative frequency of occurrence in the interval and the
interval length.

The cumulative relative frequency histogram is synonymous with the cumulative
probability distribution of the variable. The height of the bar over the interval on
the histogram plot is the probability that the value of the variable is smaller or
equal to the right limit of that interval. The height of rightmost bar is always 1. It
represents the fact that all the values in the sample are lower or equal to the
maximum value of the variable. The associated probability is equal to one.

The principle of calculating probability distribution is shown in the last row in Table
3.1.

18
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Figure 3.3 Graphical representation of empirical probability distribution.

A graphical representation of empirical probability distribution is shown in Fig. 3.3.
Please note that the probability variable X takes a value from a selected interval is
equal to the surface of the bar over this interval in the probability distribution plot.
The total surface under the probability distribution plot is 1. It is the probability
that all values of the variable in the sample fall between the minimum and the
maximum value.
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3.4 BOX AND WHISKER PLOT

The box and whisker plot is a convenient synthetic graphical presentation for the
empirical distribution of a variable including measures of center and spread for the
data set. The main components of the box and whisker plot are shown in Fig. 3.4.
The bottom axis displays values of the considered variable. The plot itself consists
of a rectangle (box) and two horizontal lines (whiskers) which stretch left and right
from the box. The vertical line inside the box represents the median. Two sides of
the box represent quartiles. The left side refers to the lower quartile and the right
side refers to the upper quartile. The left part of the box contains 25 % of the
values of the variable while the other 25 % of values belong to the right part of the
box. The left horizontal line extends between the minimum value of the variable
and the lower quartile while the right horizontal line extends between the upper
quartile and the maximum value of the variable. 25 % of the values of the variable
are contained in the left whisker while another 25 % belong to the right whisker.
The minimum and maximum are calculated for the data set after excluding outliers
which are marked with crosses on the box and whisker plot.

— T -

1 ! | L I -
T T T >

t t }
min 25" perc. median 75" perc. max outliers X

Figure 3.4 Principle of constructing a box and whisker plot.

The box and whisker plot is much more comprehensive compared to numerical
representations of population center and spread. It is also more synthetic than a
histogram. With this plot the empirical distributions of different variables may be
easily compared. An example of such a comparison is shown in Fig. 3.5 using three
imaginary variables X, Xz and X.

Xa, X3, )?c

Figure 3.5 Comparison of the empirical distributions of three variables X4, Xy and X using
box and whisker plots.

20



The distribution of variable X4, shown in Fig. 3.5, is rather symmetric. The distance
of both quartiles from the median is the same. So is the distance of minimum and
maximum from the median. Contrarily, the distribution of variable X, also shown
in Fig. 3.5, is asymmetric. The median is not located in the middle between the
minimum and maximum value or half way between the lower and upper quartile.
The distance between the median and the lower quartile is shorter than between
the median and the upper quartile. Similarly, the distance between the median and
the minimum is shorter than between the median and the maximum. That is 50 %
of values, those which are greater than the median, belong to a longer interval
than 50 % of the values which are smaller than the median. The box and whisker
plot is ‘longer’ on the right side. The variable has right skewed or positive skewed
distribution. An analogical plot but ‘longer’ on the left side would represent the
left-skewed or negative skew distribution. The comparison between the box and
whisker plot of variable X and variable X, (Fig. 3.5) reveals another aspect of
probability distribution. The inter-quartile range in the case of variable X is
smaller as compared to X,, although by definition in both cases 50 % of
observations fall into that interval. The distribution of variable X is more 'peaked’
as compared to X4. The indicator of ‘peakedness’ is a quantity called kurtiosis. A
larger kurtosis indicates a more peaked distribution.

3.4.1 EXAMPLE

Problem. Measurements of daily concentrations of NO,, performed in June 2009 by
the air pollution monitoring station located in Wroctaw at Wisniowa Street are
given in Table 3.2. Characterize the level of pollution regarding NO, at this location
in Wroctaw in June 2009 based on the provided data set.

Table 3.2 Daily concentration of NO, measured by the air pollution monitoring station
located in Wroctaw, at Wisniowa Street, in June 2009.

day NO,/ pg/m’ Day NO,/ pg/m’ day NO,/ pg/m’
1 194 11 180 21 195
2 196 12 110 22 175
3 79 13 79 23 183
4 167 14 224 24 192
5 151 15 275 25 192
6 96 16 166 26 139
7 214 17 181 27 98
8 185 18 175 28 230
9 202 19 144 29 259
10 152 20 131 30 231
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Solution. The basic components of the statistical description of the data set are the
measures of center and spread. Nothing is known in advance about the kind of
distribution of the variable: daily concentration of NO, at Wisniowa Street in
Woroctaw. Therefore, we are going to use the median in order to indicate the center
and percentiles (minimum, maximum, upper and lower quartiles) for the
representation of spread. The numerical values of these measures are given in
Table 3.3.

Table 3.3 Measures of center and spread for the data set given in Table 3.2.

Median 180.5
Minimum 79
Maximum 259

lower quartile 144
upper quartile 196

Also, the graphical representation of major features of the data set is shown in Fig.
3.6 using a box and whisker plot. Additionally, the relative frequency histogram is
displayed in Fig. 3.7.

Figure 3.6 Box and whisker plot for the data set shown in Table 3.2.
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Figure 3.7 Relative frequency histogram for the data set shown in Table 3.2.

Based on the provided descriptors, the following may be concluded about the level
of NO, pollution in June 2009 at Wisniowa Street in Wroctaw:

e the daily concentration of NO, varied around the level of 180.5 pg/m?,

e 50 % of the time the concentration remained in a range between 144 and
195 pg/m’,

e the minimum observed concentration was 79 pg/m® and the maximum
concentration was 259 pug/m?,

e the observed maximum concentration of 275 pug/m?® was considered as an
outlier, which may indicate faulty measurement,

e the distribution of data around the center is not clearly symmetric, but also
a definite asymmetry was not observed.
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4 DISCRETE VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS

4.1 DISCRETE VARIABLES

An important group of variables encountered in engineering practice have discrete
character. Statistics provides a description for a number of theoretical discrete
variables, in particular regarding their probability distributions. Theoretical discrete
variables are actually formalized representations of certain categories of real
discrete variables. The most commonly encountered categories of real discrete
variables, which have their theoretical counterparts, represent

(1) the number of elements which have a particular attribute in a sample
drawn from a population, for example the number of faulty pumps in the
sample from the production lot;

(2) the size of a sample in which a defined fraction of elements has a particular
attribute, for example the size of a sample of students in which there are
two students with the best grade;

(3) the number of times that a particular event occurs, for example the
number of car crashes on the crossing during the average weekend; the
number of times the engine starts before it fails to start for the first time;
the number of times a batch of microprocessors has to be sampled before
the first wrong microprocessor is found.

Discrete variable X takes values x; from a finite i = 1, 2, ..., n or countably infinite
i=1,2,..set.
Each value x; has a probability of occurrence assigned to it. The probability of
occurrence is denoted by p(x;).
Discrete variable X has its probability distribution function, P(X) = p(X = x;).
The probability p(X = x;) fulfills the following conditions:
e forafinite set of values n
(Vx) p(X =x;) = 0and XL, p(x) = 1
e for an infinite set of values
(Vx) p(X =x) =2 0and T2, p(x;) =1
Discrete variable X has its cumulative distribution function, F(X) = p(X <= x).
Graphical representations of the probability distribution function and the
cumulative distribution function of discrete variable are shown in Fig. 4.1. The stem
plot is used for plotting the probability distribution function of a discrete variable
(Fig. 4.1 a). The height of each stem indicates the probability of occurrence for a
single value of X. The stair-like plot is used for plotting the cumulative distribution
function of a discrete variable (Fig. 4.1 b). Stairs climb from zero, which indicates

zero probability that X is smaller than the minimum value, up to one, which
indicates that all values of X are smaller or equal to its maximum.
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Figure 4.1 Graphical representation of (a) probability distribution function and (b)
cumulative distribution function of a discrete variable.

The mean of a random variable which has a discrete character is calculated using

the following formula:
u= Z xip(x;)
i

The variance of a discrete random variable is calculated by the formula:
0% =Y — W*p(xy).

The following distributions of theoretical discrete variables were selected for
presentation in this book: Binomial, Poisson, Negative Binomial, Geometric, and
Multinomial. The choice was guided by their applicability to solving practical
engineering problems.

4.2 BINOMIAL DISTRIBUTION

Variable X which has binomial distribution may be described in the following way:

e the number of successes in a defined number of trails,
e the number of elements which have a particular attribute in the sample of
defined size.
The probability distribution of a binomial variable P(X) is described by the
following formula:

PX) = (z) p*q "

where: n is the number of trails/size of the sample; p is the probability of success in
one trail/probability that a single element in a set has a particular attribute;
q = 1 — pis the probability of failure in one trail/ probability that a single element
does not have the certain attribute.
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The mean p and variance ¢ of variable X are calculated as follows:

p=np
a? =npq.

4.2.1 EXAMPLE 1

Problem. The supplier is allowed to provide no more than 2 % defective parts per
lot. Lots are huge and consist of 1000 items each. Every lot is randomly sampled
for testing. It is technically possible to take a sample which consists of 10 elements.
If the number of defective parts in the sample is 0, the lot is passed. Otherwise the
lot it is rejected. Find the probability that a lot which contains: (a) 2 % defective
parts is accepted, (b) 10 % defective parts is accepted.

Solution. Let us consider a theoretical discrete random variable X described as the
number of elements in the sample which have a particular attribute. This well
represents a real random variable which is encountered in our problem, namely the
number of defective parts in the sample. The variable X has binomial distribution.
Based on the problem description, the size of the sample is n = 10, the probability
p that a single part is defective is: (a) p = 0.02 and (b) p = 0.1, respectively. The
probability of accepting a lot of parts is equivalent to the probability that X = 0 in
the sample of size n = 10. The following are calculations for cases (a) and (b).

(@) P(X) = (;‘) pXqh* = (100) 0.02°0.9810 = 0.82

It is quite unlikely to reject a lot which contains 2 % faulty parts based on a 10
element random sample. The probability of lot rejectionisp = 1 — 0.82 = 0.18.

) P& = (1) p g™ = (100) 0.1°0.910 = 0.35

It is quite likely to reject a lot which contains 10 % faulty parts based on a 10
element random sample. The probability of rejectionisp = 1 — 0.35 = 0.75.

The reader is encouraged to investigate how the size of a sample influences P(X)
by calculating solutions forn = 5 and n = 20.

4.2.2 EXAMPLE 2

Problem. The installation is equipped with 10 pumps. Based on the information
from the producer, the probability that a single pump fails in one year of operation
is approximately 0.05. Answer the following questions:

(a) What is the probability that none of the pumps fail during one year?

(b) What is the probability that all 10 pumps fail during one year?

(c) What is the probability that a single pump does not fail during 10
years?
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(d) What is the probability that a single pump fails once every year during
10 years?

Solution.

. Let us consider a theoretical discrete random variable X described as the
number of elements in a sample which have a particular attribute. This well
represents a real random variable which is encountered in our problem, in case (a)
and (b), namely the fraction of pumps which fail during one year of operation. The
variable X has binomial distribution. The size of the sample isn = 10 and the
probability that a single pump fails in one year isp = 0.05. We search for the
probability that X takes a defined value: (a) X =0, (b) X = 10. The relevant
calculations are the following:

@ P = (3)poam = (1)) 0.05°0.95%° = 0.60
The probability that none of the 10 pumps fail during year 1 is 0.60.
_ (™, x n-x _ (10 10 10-10 _ L 10-14
(o) P(X) = () p¥q" > = (10) 0.05100.9510-10 = 9.76 - 10

The probability that 10 of 10 pumps fail during 1 year is 9.76 - 10714,

. Let us consider a theoretical discrete random variable X described as the
number of successes in a defined number of trails. This well represents a real
random variable which is encountered in our problem, in cases (c) and (d), namely
the number of times a single pump fails during 10 years of operation. The variable
X has binomial distribution. The size of the sample isn = 10 and the probability
that a single pump fails in one year is p = 0.05. We search for the probability that X
takes a defined value: (a) X = 0, (b) X = 10. The relevant calculations are the
following:

@ P@x) = (1)p g = (100) 0.0520.9519-0 = 0,60
The probability that a single pump does not fail during 10 years is 0.60.
@ P@) = (1) p g™ = (18) 0.05100.9510-10 — 9 7. 1014
The probability that a single pump fails ten times in course of 10 years is

9,76 - 10714,

Please note that we ignore the possibility of a single pump failing more often than
once a year.

As shown by the obtained results, identical probabilities were obtained in cases (a)
and (c), as well as in cases (b) and (d), although the paired cases represent
conceptually different problems.

27



4.3 POISSON DISTRIBUTION

The Poisson distribution is a special case of the Binomial distribution. The Poisson
distribution shall be employed when the sample is large and the probability of
success in a single trail is very small.

Variable X which has binomial distribution may be described as

e the number of successes,
e the number of elements which have a particular attribute.

The probability distribution of a Poisson variable P(X) is described by the following
formula:

P(X) =e L, x=0,1,2,..

x!
where: A is the parameter of the distribution.
The mean p and variance ¢ of variable X are calculated as follows:

p=4
o2 =1

4.3.1 EXAMPLE

Problem. There are 10 000 joints in a very complicated installation. The probability
that a single joint fails in two years time is 0.1 %. The producer gives a 2 year
guarantee for the installation. Calculate the probability that a) none of the joints, b)
no more than 10 joints fail in that period of time.

Solution. Let us consider a theoretical discrete random variable X described as the
number of elements which have a particular attribute. This well represents a real
random variable encountered in our problem, namely the number of joints which
fail during two years of installation life. The variable X has Poisson distribution. In
order to utilize the probability distribution of a Poisson variable, the parameter A
has to be calculated. Using the formula for the mean, which holds for Binomial
distribution (§4.2.1), the mean number of parts which fail during two years is

u=np=10000-0.001 =10
The requested parameter A of Poisson distribution is A = ¢ = 10.
(a) The probability that none of the parts fail during two years of installation

life is the probability that X = 0:

A* 10°
_ -1l _ -10_2"
PX)=e i e o1
The probability that none of the parts fail during two years of installation life is
4,54 - 1073 Such a situation is very unlikely.

=e 10 =454.1075
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(b) The probability that no more than 10 parts fail during two years of
installation life is the probability that 0 or 1 or 2, ..., or 10 parts fail. That is
X=0o0rX=1,.,orX =10.

X 1
X=1PX) = e-i% =e 10 = 454107

X 2
X=2,P(X)=e*t =101 _527.1073

x! 20

X 10
X =10, P(X) = e*X = ~1022_ _ 125.10"1
x! 10!

PX=0X=1,.,X=10)=PX=0)+PX=1)+--+PX=10)
=454-107°+454-107%+227-103 + -+ 1.25-1071
=0.583

The probability that no more than 10 parts fail during two years of installation life is
0.583.

The reader is invited to perform the additional calculations and to plot the
probability distribution of variable X, P(X) for X =0, 1, ..., 30.

4.4 NEGATIVE BINOMIAL DISTRIBUTION

Variable X which has negative binomial distribution may be described in the
following way:

e the number trials which are needed to obtain a success r-times,
e the size of a sample needed to find r elements which have a particular
attribute.

The probability distribution of a negative binomial variable P(X) is described by the
following formula:

=3

where: r is the number of successes requested in x trails (number of elements
which have a particular attribute); p is the probability of success in one
trail/probability that a single element has the attribute; andq=1—p s the
probability of failure in one trail/probability that a single element does not have
the attribute.

The mean p and variance ¢ of variable X are calculated as follows:
u=-

p
, r(1—p)
T
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A special case of Negative Binomial distribution is the Geometric distribution. The
variable X, which has Geometric distribution describes the number of trails needed
to obtain success for the first time (the size of the sample needed to find 1 element
which has a certain attribute). Therefore, the Geometric distribution is the
Negative Binomial distribution with r = 1. The Reader is invited to develop the
formulas describing P(x), i and ofor the Geometric distribution.

4.4.1 EXAMPLE

Problem. The supplier is allowed to provide no more than 2 % defective parts per
lot. Lots are huge and consist of 1000 items each. The delivered lot is randomly
sampled for testing. Answer the following questions:

(a) What is the average size of the test sample which contains one faulty

element?
(b) What is the average size of the test sample which contains three faulty
elements?
(c) What is the probability that the first faulty element is found in the 10™
trial?
(d) What is the probability that the third faulty element is found in the 10"
trial?
Solution:
. Let us consider a theoretical discrete random variable X described as the

size of the sample needed to find r elements which have certain attribute. This well
represents a real random variable encountered in our problem, in cases (a) and (b),
namely the size of the sample needed to find a defined number of faulty parts. The
variable X has negative binomial distribution. The probability that a single element
is faulty is p = 0.02 while the requested number of faulty partsris (a) r = 1 and
(b) r = 3, respectively. Calculations for the average value of variable X in cases (a)
and (b) are given as follows.
T 1
(@) p=2=55;=50
The average sample size containing 1 faulty element is 50.

(b) p=1=-2=150

The average sample size containing 3 faulty elements is 150.

. Let us consider a theoretical discrete random variable X described as the
number of trials which are needed to obtain success r-times. This well represents a
real random variable encountered in our problem, in cases (c) and (d), namely the
ordinal trial number in which the " faulty element is found. The variable X has
negative binomial distribution. The probability of finding a faulty element in one
trial is p = 0.02 while the success expected is (c) r =1 and (d) r = 3 times,

30



respectively in the course of 10 trials. The relevant probability calculations are
given as follows:

_(x—=1\ r xr_(10-1 1 10-1 —
(c) P(X) = (r_ 1)p T = ( L )0.02 0.9810-1 = 0.017
The probability that the first wrong part is drawn in the 10" draw is 0.017.
_(x—1\ y x—r_(10—-1 3 10-3 _
(d) P(X) = (r B 1)p T = ( s 1 )0.02 0.9819-3 = 0.000025
The probability that the third wrong part is drawn in the 10™ draw is 0.000025.
Such a situation is very unlikely.

4.5 MULTINOMIAL DISTRIBUTION

The binomial distribution is the special case of multinomial distribution.
Multinomial distribution refers to m variables X1, X5, ..., Xp,.

With multinomial distribution the probability is calculated that X; = x;, and
X, = x5, .., and X;, = X;,. This may be described in the following way.

e The event of the 15¢ type occurs x; times, and the event of the 24 type
occurs x, times, ..., and the event of the mt" type occurs x,,, times. There
are n events in total.

e There are x; elements of the 15¢ type and there are x, elements of the 2™¢
type, ..., and there are x,,, elements of the m‘" type. The sample consist of
n-elements.

Multinomial probability distribution P(X) is described by the following formula:

n!

— — — X1 x m —
PXy=x1, 0 Xy =% ) = P Dy e P and Yl xp=n
oo X!

where: x;, is the number of times the k" event occurs during n trials, py, is the
probability that the k" event occurs in a single trial, k = 1 ...m.

4.5.1 EXAMPLE.

Problem. A construction element is produced which has 2 delicate holders. Based
on experience, there is a 75 % chance that a randomly selected user will not
destroy any holder, a 15 % chance that the user will destroy one holder, and
a 10 % chance that the user will break two holders while fixing the element during
construction.

(a) What is the probability that among 20 randomly selected users there
are 15 who fixed the element successfully, 3 who broke 1 holder and 2
who damaged 2 holders?

(b) Is the probability calculated in case (a) different from the one
associated with the following conditions: the sample consists of 100
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users and we expect 75 successful users, 15 users who broke 1 holder
and 10 users who broke 2 holders?

Solution. Let us consider multinomial distribution referring to the following case:
there are x; elements of the 15¢ type, x, elements of the 2% type, ..., and there
are x,,, elements of the mt" type in the n-element sample. This well represents our
problem if the following assignment is performed: X; is the number of users who
did not do any harm to the holders, X, is number of users who broke 1 holder, X5 is
number of users who damaged 2 holders, p; is the probability that a randomly
selected user will mount the element successfully and p, and p3 are probabilities
that the user will damage 1 and 2 holders, respectively. Based on the problem
formulation, the probabilities are the following: p; = 0.75, p, = 0.15and p; =
0.1. The following calculations for cases (a) and (b) are provided.

(@) In this case the probability is calculated for X; = 15,X; = 3, X3 =2
and n = 20.

n! 20!

P(X1,X2,X3) = pytpyt eyt = m0.7515o.1530.102

X1! * xZ! * x3!
= 0.070

The probability that the proportions of users who break none of the holders, one
holder and two holders are 15:3:2 in a 20 element sample of users is 0.07.
(b) In this case, the probability is calculated for X; =75, X, =15,
X3 =10andn = 100.
P(Xy, Xy Xy) = — T pF R s
1,442,443 x1! . xz! . x3! pl pZ p3
100!

- 75 15 10 _
= 75!15!10!0.75 0.15-°0.10*" = 0.015

The probability that the proportions of users who break none of the holders, one
holder and two holders are 15:3:2 in a 100 element sample of users is 0.015. The
probabilities calculated in cases (a) and (b) are different.

32



5 CONTINUOUS VARIABLES AND THEIR PROBABILITY

DISTRIBUTIONS

5.1 CONTINUOUS VARIABLES

A substantial group of variables encountered in engineering practice have
continuous character. Considering their applicability, the most commonly used
continuous variables represent physical and chemical properties of physical
objects. Their examples are the following: temperature, humidity, concentration,
content, age, speed, height and many others.

Continuous variable X takes values from an infinite set.

In the case of continuous variables, a probability of occurrence is not assigned to a
single value of variable X. The probability is instead assigned to an interval of
values of variable X. This is a so called interval estimation.

A continuous variable has a probability density function f(x), with the following
properties:

(Vx)f(x) >0
f:f(x)dx=P(a<XSb),foranya< b

jwf(x)dx =P(-o<X<w)=1

A continuous variable has a cumulative distribution function F(X), with the
following properties:

Fx)=PX <x)= jx fx)dx

Graphical representations of the probability density function (PDF) and cumulative
distribution function (CPDF) of continuous variable are shown in Fig. 5.1.

(b)

o PO oo

0s}
o7 P(a<X<bh)

F(a)

Figure 5.1 Grapbhical representations of (a) probability density function, (b) cumulative
distribution function, of a continuous variable.
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Both the PDF and CPDF of a variable are useful for finding the probability that
values of the variable belong to a defined interval.

The following features of PDF are most frequently exploited in practice:

. f_aoof(x)dx, i.e. the surface under the PDF, between X = —wand X = a,

(Fig. 5.1a) is the probability P(X < a) that variable X has values smaller or
equal to a;

. f; f(x)dx, i.e. the surface under the PDF, between X = a and X = b, (Fig.
5.1a) is the probability P(X e(a, b)) that variable X has values in the
interval {a, b);

. fbwf(x)dx, i.e. the surface under the PDF, betweenX = b and X = o,
(Fig. 5.1a) is the probability P(X > b) that variable X has values greater
than or equal to b.

The following features of CPDF are most frequently exploited in practice:

e F(a), i.e. the value of CPDF, for X = a, (Fig. 5.1b) is the probability

P(X < a) that variable X has values smaller or equal to a

e F(b)— F(a), i.e. the difference between values of CPDF, for X = b and
X = a, (Fig. 5.1b) is the probability P(X €(a, b) that variable X has values in
the interval (a, b)

e 1— F(b), i.e. the difference between one and the value of CPDF, for
X = b, (Fig. 5.1b) is the probability P(X > b) that variable X has values
greater than b.

The mean of a continuous random variable is calculated by the following formula:

U= fixf(x)dx

The variance of a continuous random variable is calculated as follows:

o = [ i@ = [ xfeod -

There are a number of theoretical continuous variables which have well defined
probability density functions. Their PDF's are known as equations, but they are also
available in the form of statistical tables (see Appendix 1-5, 7).

The following theoretical PDFs of continuous variables were selected for
presentation in this book: normal, t-Student, Chi? and F-Snedecore. This choice was
guided by their practical applicability in solving engineering problems.
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5.2 NORMAL DISTRIBUTION

The Normal distribution is the most desired distribution of the observed random
variable.

Variable X, which has the probability distribution described by the following
probability density function:
(x—p)?

f(x) Zéa“"_ 207, for x € (—o0,0)

where: zzis the mean of X, ois the standard deviation of X, is considered as having
normal distribution.

The PDF of normal distribution has two parameters: 4 and o. This fact is
represented using the following notation: N (y, o).

A selection of probability density functions for normal variables is presented in Fig.
5.2.

Figure 5.2 Examples of normal probability density functions.

The probability density function of normal distribution has a bell shape, as shown in
Fig. 5.2. This shape is also called Gaussian. The normal PDF function is symmetric.
The location of the function maximum is determined by z, whereas its flatness
depends on o.

The special case of normal distribution is the standardized normal distribution,
N(0,1). It is the normal distribution with the mean # = 0 and the standard
deviation o= 1. The variable having standardized normal distribution is called Z.
The Z variable is obtained by transforming the X variable, which has normal
distribution N (g, o), in the following way:

X —uX)
T o)
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The Z variable is very useful in practical applications of statistics.

When using normal distribution for describing the distribution of the observed
variable X, X is used as the estimate of the mean , and s2is used as the estimate
of variance ¢ of variable X (see §3.1 and §3.2).

Statistical tables of normal distribution refer to the Z variable. The most commonly
used form of Z distribution tables is provided in Appendix 1. Due to the symmetric
character of the distribution, just the right part of it, i.e. for ze < 0, «) is described
in Z tables.

It is very convenient to deal with a variable having normal distribution. Many
statistical methods require that the analyzed variable has normal distribution and
fulfilling this assumption is required for the valid use of such methods. There are a
number of statistical tests available for checking the normality of variables (see
§7.7).

5.2.1 EXAMPLE

Problem. It is known that variable X has normal distribution N(150,5). What is the
probability that values of variable X

(a) are greater than 1577
(b) arelessthan 1467
(c) belong to the following intervals: 150 + 5; 150 + 10; 150 + 15.

Solution. Considering that variable X has normal distribution, Z distribution may be
used to solve the problem. First, the normal variable X has to be converted to the
standardized variable Z. In the next step, Z statistical tables shall be used
(Appendix 1). Solutions for cases (a), (b) and (c) are given as the following.

(a)

P(Zcar<Z)

7 Za-06 T Zatnsz
Figure 5.3 Graphical illustration of problem 5.2.1.

x—p(X) _ 157-150
(@) zeqr = s - 5 0.6

In order to use the Z tables, the calculated value of z.;; = 0.6 shall be substituted
for Z,. In the Z distribution tables one finds P(Z < z,) = P(Z < 0.6) = 0.7257.
Therefore, the requested probability is

P(Z>06)=1— P(Z<06)=1-0.7257 = 0.2743
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The probability that the value of variable X, is greater than 157 is 0.2743.

The graphical interpretation of the probability P, = P(X > 157) = P(Z > 0.6) is
shown in Fig. 5.3a.

x—pu(X)  146-150
(b) zew == - =5 =

In order to use Z tables, the negative value Z = —0.8 shall be reflected in order to
produce a positive value —Z = 0.8. This is allowed due to the symmetry of normal
distribution. Next, the calculated value —z.,; = 0.8 is substituted for z,. From the
table of Z distribution one reads P(Z < z,) = P(Z < 0.8) = 0.7881. Therefore,
the requested probability is

P(Z<-08)=P(Z>08)=1-P(Z<08)=1-0.7881=0.2119
The probability that the value of variable X is less than 146 is 0.2119.

The graphical interpretation of the probability P, = P(X < 146) = P(Z < —0.8) is
shown in Fig. 5.3b.

-0.8

(c) Two limits between which the X variable is supposed to fall are (i)
(150 — 5,150 + 5), (i) (150 — 10,150 + 10) and (iii) (150 — 15,150 +
15). Please note that intervals (i), (i) and (iii) represent the so called 10,
2cand 3ointervals (see §6.1).

To make use of Z tables, right limits of the intervals of the X variable are
transformed into Z. Next, the calculated values z.,; are substituted for z, in order
to read the probability P(Z < z,). The following are calculations for cases (i), (ii)
and (iii).

. X— (X) 150+5-150
i) Za="g ="t =1

P(—Zo < Z < Zy) = 2(P(Z < Zy) — 0.5) = 2(0.8413 — 0.5)
= 0.6826

The probability that variable X belongs to the interval (150 — 5,150 + 5) is
68.26 %. In general, the probability that variable X, which has normal distribution,
belongs to the interval (# — o; 1 + o) is 0.6826.

.. x—u(X) 150+2-5—-150
(ii) Zecal = O'?X) = S =2

P(—Zy < Z < Zy) = 2(P(Z < Zy) — 0.5) = 2(0.97725 — 0.5)
= 0.9545

The probability that variable X belongs to the interval (150 — 25,150 + 2-5) is
0.9545. In general, the probability that variable X, which has normal distribution,
belongs to the interval (¢ — 20, 4+ 20) is 0.9545.

x—u(X) 150+3-5—-150
(“I) ZCG.l = O'(X) = 5 = 3
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P(—z4 <7Z < 2zy) =2(P(Z < zy) —0.5) = 2(0.99865 — 0.5)
= 0.9973
The probability that variable X belongs to the interval (150 — 35,150 + 3-5) is
0.9973. In general, the probability that variable X, which has normal distribution,
belongs to the interval (¢ — 30, 1+ 30) is 0.9973.
The graphical interpretation of the probability P, = P(—x, < X < x,) = P(—z, <
Z < z,) is shown in Fig. 5.3c for case (i).

5.3 t-STUDENT DISTRIBUTION

The t-Student distribution is mainly applied for reasoning about the mean.

If variable X has normal distribution N(x, 0), and an n-element sample is drawn
from the population of values of X, the variable:
X—u

S

Vn

has t -Student distribution, shortly, t distribution with v=n —1 degrees of
freedom.

t =

The probability distribution of variable t is described by the following probability
density function:

) e
— 2 i —
f(t)—mr(zv)(1+ )  for t e(—ag, )
where: I"is the gamma function, vare the degrees of freedom.

The PDF of the t-Student distribution has one parameter v. This fact is
represented using the following notation t(v).

Examples of probability density functions of the t variable are shown in Fig. 5.4 for
selected degrees of freedom v=1, 15, and 35 together with the normal
distribution N(0,1) as a reference.
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Figure 5.4 Examples of t-Student probability density functions.

The probability density function of t-Student distributions has a bell shape, as
shown in Fig. 5.4 with the function being symmetric. The location of the function
maximum is fixed, whereas its flatness depends on v. With increasing degrees of
freedom, the t-Student distribution approaches standard normal distribution. It is
usually assumed that for v> 30, normal distribution shall be used instead of t-
Student distribution.

The mean p and variance ¢® of variable t are calculated using the following
formulas:
up=0
v
v—2

There are statistical tables available for t-Student distributions (see Appendix 2).

% =

5.3.1 EXAMPLE

Problem. A variable has t-Student distribution with v = 7 degrees of freedom.
What is the probability that the variable takes values which are

(a) greater than or equal to 2.365,
(b) belong to the interval (—2.365,2.365).

Solution. In order to solve the problem, statistical tables of t-Student distribution
are needed (Appendix 2). The following are solutions for cases (a) and (b).
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[ 1 2 3 4 4 a3 2 4 [] 1 2 3 4
t t.a=2.365 -fea=-2.365 lea=2.365

Figure 5.5 Graphical illustration of problem 5.3. 1.

(@) In order to use t tables, t,;; = 2.365 shall be substituted fort,,. One
reads the probability ¢, associated witht,, = 2.365, i.e. P(|t|2t,,,) and
the following is calculated:

P(t > ty,) = 0.5P(|t| = tx,,) = 0.5P(|t| > 2.365) = 0.5 - 0.05 = 0.025

The probability that t is greater than or equal to 2.365 is 0.025.
The graphical representation of the requested probability is shown in Fig. 5.5a.

(b) Knowing that P(|t|=t, ) for t,, = 2.365, the following is calculated:
P(lt] < ty,) =1—P(|t] = t«,) =1 —P(|t] = 2.365) =1 —0.05 = 0.95

The probability that t belongs to the interval (—2.365,2.365) is 0.95.
The graphical representation of the requested probability is shown in Fig. 5.5b.

5.4 CHI SQUARE DISTRIBUTION

The ¥* distribution is mainly applied for reasoning about the variance.

If variable X has normal distribution N(x, o) and an n-element sample is drawn
from the population of values of X, the variable:

,  (m—1)s?
X=——2
o

has Chi square distribution with v=mn — 1 degrees of freedom. The s2 is the
estimate of 6% based on the sample.

The probability distribution of variable y? is described by the following probability
density function:

f(x*) =0, for y? <0
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where: I"is the gamma function, vare degrees of freedom.

The PDF of the Chi-square distribution has one parameter v. This fact is
represented using the following notation: y2(v).

Examples of the probability density function for the x? variable are shown in Fig.
5.6 for the selected degrees of freedom v =5, 10 and 35.

50 60 70

Figure 5.6 Examples of )(2 probability density functions.

The probability density function of the ¥’ variable is asymmetric for small degrees
of freedom, as shown in Fig. 5.6. With increasing degrees of freedom, the
distribution loses its asymmetric character. It becomes quite well represented by

the normal distribution for v > 30.

The mean u and variance ¢® of variable y? are calculated by the following

formulas:

ag

14

2v

There are statistical tables available for y? distributions (Appendix 3).

5.4.1 EXAMPLE

Problem. A variable has y2distribution with v = 20 degrees of freedom. What is
the probability that values of the variable are

(a) greater than or equal to 10.851,
(b) less than 7.434.
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Solution. In order to solve the problem, statistical tables of y? distribution are
needed (Appendix 3). The following are calculations for cases (a) and (b).

(a) (b)

P <A cal)

0 50 (S T 0 20
X ea=7.434 2

, 10 20 30
r‘.‘,/=f0, 851 12 ¥

Figure 5.7 Graphical interpretation of problem 5.4.1.

(a) In order to use Chi’ distribution tables, y2,, = 10.851 shall be substituted
for x4 ,. Then, one reads the probability a, associated with yZ , = 10.851,
i.e. the probability P(x?2> x2,):

P(x* = x*,,) = P(x* 210.851) = 0.95
The probability that the value of the variable is greater than or equal to 10.851 is
0.95.
The graphical interpretation of the requested probability is shown in Fig. 5.7a.

(b) In order to use Chi® distribution tables, X%, is substituted with X2 =
7.434 . Next, one reads the probability ¢, associated with )(é,‘, =7.434,i.e.
the probability P(x*>x2 ), and the following is calculated:

P(X* <x?y,,)=1-P(x*=2x*,,)=1-P(x*=27434)=1-0.995
= 0.005

The probability that the value of the variable is less than 7.434 is 0.005.
The graphical interpretation of the requested probability is shown in Fig. 5.7b.
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5.5 F-SNEDECORE DISTRIBUTION

F-Snedecore distribution is mainly applied for comparing variances.

Let variable X have normal distribution N(4,, 01) in one population and normal
distribution N (4, o) in another population. If a sample consisting of n, elements
is drawn from the first population and a sample consisting of n, elements is drawn
from the second population, the variable:

>
Il
Nqume | r—lq Nl.-({’,\,

has F-Snedecore distribution with the following degrees of freedom v; = n; — 1
and v, =n, — 1.
The probability distribution of variable F is described by the following probability
density function:

f(F)=0,for F<0

vi 2 s itva

vi vy r("1 2 ) F%ﬂ

f(F) - 2 2 Lvivy)
f(vlz )I(V22> (N F+yy)20" 1772

where: I" is the gamma function, v; and v, are degrees of freedom.

>—-N|

,forF >0

The PDF of F-Snedecore distribution has two parameters v; and v,. This fact is
represented using the following notation: F (v4, v;).

Plots of exemplary F-Snedecore distributions are shown in Fig. 5.8 for the selected
pairs of degrees of freedom F (5, 5), F(5, 35), F(35,5).

0.8

—F(55)
s F(5,35)
-+ F(35,5)

Figure 5.8 Examples of F-Snedecore probability density functions.
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The probability density function of variable F is asymmetric for small degrees of
freedom. With the increasing degrees of freedom the distribution loses its
asymmetric character, as shown in Fig. 5.8.

The mean u and variance ¢® of variable F are calculated using the following
formulas:

V2

HZVZ—Z

2 _ 2vi(vy + v, — 2)
(v, —2)%(1, — 4)
There are statistical tables available for the F distribution (Appendix 4, 5). A single

table refers to a fixed probability « = P(F2F,,, ,,) and all different pairs of
degrees of freedom 14 and v,.

g

5.5.1 EXAMPLE

Problem. A variable has F-Snedecore distribution with v; = 15 and v, = 23
degrees of freedom. What value of variable F is neither reached nor exceeded with
the probability p = 0.95.

Solution. The graphical interpretation of the problem is shown in Fig. 5.9.

f(F)

P(F<Fa)

FFw=2.13 =

Figure 5.9 Graphical interpretation of problem 5.5.1.
In order to solve the problem, statistical tables of the F distribution are needed
(Appendix 4, 5).
Tables of F,,, ,, distribution are constructed for the probability & that F exceeds
oris equal to a certain value F,,,, ., thatis a = p(F2F,,, ,,)-
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To solve the problem, we are going to use the probability that a certain value of the
F variable is neither reached nor exceeded p(F < Fa‘vl‘VZ) in the following way:

a=p(F=F,,,)=1-p(F<FE,,,,)=1-095=0.05.

The obtained value of «indicates that one shall refer to F-Snedecore distribution
which was constructed for a = 0.05. In the table one reads Fy g5 15,3 = 2.13, for
vy = 15 and v, = 23 degrees of freedom.

The value of variable F, which is neither reached nor exceeded with the probability
0.05is 2.13.
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6 CONFIDENCE INTERVAL AND TOLERANCE INTERVAL

One of the basic engineering problems is to evaluate the confidence in the
information  about  objects which is obtained by means of
measurement/observation. Examples of simple problems of that kind are

e What is the probability that the observed/measured value of a variable, the
mean of the variable or its spread do not deviate from their real values by
more than a certain limit?

e What is the range of values that contains the true value of the variable,
true mean, or true spread with the defined probability?

The above engineering problems may be translated into statistical problems of
defining tolerance level and tolerance interval for a variable or defining a
confidence level and confidence interval for the parameters of probability
distribution of a random variable.

6.1 CONFIDENCE INTERVAL

Confidence level for variable V is the probability that values of the variable fall into
the interval (a, b), which is called the confidence interval. The confidence level is
usually denoted by P, and the following holds:

P,=P(a<V<b) and P, =1-«a

where «a is the significance level, as explained in §7.2. Confidence level refers to the
parameters of statistical distribution of the observed variable X, e.g. the mean, the
variance or standard deviation, and it does not refer to values of variable X. Those
parameters are also random variables and have their probability distributions. They
are represented by V in the above definition of confidence level.

The graphical interpretation of the confidence level and the confidence interval is
shown in Fig. 6.1.

Confidence level: |
P.=P(a<V<b)

fv)

a vb

confidence interval
Figure 6.1 Graphical interpretation of the confidence level and the confidence interval.
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Based on its definition, confidence level is the surface under the PDF between the
left and right limit of the confidence interval. If the confidence interval is extended,
the associated surface, i.e. the confidence level increases. The confidence level and
confidence interval are related to each other. The confidence interval defines the
confidence level in an unequivocal manner, but the opposite is not true. There are
many possible confidence intervals for a defined confidence level. Statistics is
interested in the narrowest of all confidence intervals at a particular confidence
level.

In statistics, less confidence is associated with a narrower interval and more
confidence is associated with a wider interval. This is counterintuitive, as one tends
to associate confidence with something precise (narrow interval) rather than with
something vague (wide interval). However, statistical confidence is a probability.
For a defined PDF, a larger probability (surface under the PDF) is associated with
longer intervals (range of X) while a smaller probability is associated with shorter
intervals.

The most commonly used confidence levels are P, = 0.95, and P, = 0.99.

In engineering applications, there are two ways of using confidence level and
confidence interval. Either confidence level is known and confidence interval is
asked for or the interval is known and the confidence level is in question.

This chapter presents methods of calculating the
e confidence interval on the mean,
e confidence interval on the variance and standard deviation,

e tolerance interval.

6.2 CONFIDENCE INTERVAL ON THE MEAN

There are three possibilities of calculating confidence interval on the mean of
variable X:
1. Variable X has normal distribution and variance o2 is known.
In this case the following variable is utilized for confidence interval calculation:
X—u
Z=—%

Vn

As Z distribution is symmetric, the confidence interval stretches symmetrically
around the mean. The confidence level is the probability P, that

Pa=P(—Zg<Z<Zg)
2 2

Therefore, the following transformations are allowed:

—Za<Z<Za
2 2
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X—u

—Za < <Za
2 2

g
n

X—"Za
2

<u< X+Za—
2

§|°

The confidence interval on the mean of variable X is <X Za— ,X + Za ) at the
zVn zVn)’

confidence level P,.
2. Variable X has normal distribution and variance &2 is unknown. It has to be
estimated using s2, based on a sample drawn from the population.

In this case, the following variable is utilized for confidence interval calculation:
X—u
S

Vn

As t -Student distribution is symmetric, the confidence interval stretches
symmetrically around the mean. The confidence level is the probability P, that

t =

Pa=P<—ta <t<ta )
TV TV

Therefore, the following transformations are allowed:

—ta <t<ta
i,V 7,\/

s
X —ta <pu<X+ta —

2"’\/ﬁ ! 7 Vn
The confidence interval on the mean of variable X is (X - t”‘,v\/—'X + t“,v\/_—) at
the confidence level P,.

For big samples, i.e. n > 30, the solution converges with the solution described in
possibility 1 since the t-Student distribution converges with the normal distribution
forn > 30.

3. The variable X has unknown distribution and either variance o® or its
estimate s? is known.
In this case the following variable is utilized for confidence interval calculation:
X—u
S

Vn

where s is the estimate of standard deviation based on an n element sample.

7 =
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The calculation of confidence interval is identical as in the case when variable X
has normal distribution and variance o is known. The confidence interval on the

mean of variable X is ()? - Zgin,)? + Zgin>, at the confidence level P,; however,
2 2

the obtained solution has an approximate character. The size of the sample used
for estimating X, and s shall be big (n > 120).

Examples of confidence interval calculation are given regarding cases 2 and 3. Case
1 occurs quite rarely in practice and the solution strategy is identical with case 3;
therefore, it was not analyzed.

6.2.1 EXAMPLE

Problem. It is known that the monthly concentration of NO, in city A has normal
distribution. The monthly concentration of NO, was measured in the city over one
year and it was found that the average monthly concentration was 100 ug/m3 with
a standard deviation of 50 ug/m>®. What is the confidence interval on the mean
monthly concentration of NO, at the confidence level of 0.98?

Solution. The considered variable has normal distribution, but the parameters of

the distribution are unknown. They were estimated based on ann = 12 element

sample (12 monthly averages) and they are X = 100 and s = 50. The problem falls

into the category: the confidence interval on the mean of variable X which has a

normal distribution in population and the variance ¢® is unknown (case 2).

Therefore, the formula describing the confidence interval on the mean is the
following:

_ s _ s

—<u<X+te —

7,V

R Vi
The only missing value in the formula is ta It is found in the t-Student distribution
table (Appendix 2) fora=1-P, =1 2— 0.98 = 0.02, g =00landv=n—-1=
12 — 1 = 11. The missing value is tg 9111 = 3.106. As a result of substitution

50 50
100 - 3.106— < u <100+ 3.106 —
vz Viz

55.17 < u < 144.83.

the confidence interval on the mean monthly concentration of NO, in the city is
(53.17,144.83) pg/m? at the confidence level P = 0.98.

6.2.2 EXAMPLE

Problem. The probability distribution of the daily SO, concentration in the city in
winter is not known. The daily concentration of SO, was measured in the city over
a period of 5 winter months. It was found that the average daily concentration was
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60 pg/m® with a standard deviation of 20 pg/m?®. What is the confidence interval
on the mean monthly concentration of SO, at the confidence level of 0.99.

Solution. The considered variable has unknown distribution. The mean value of
variable X = 60 and its standard deviation s = 20 were estimated based on an
n = 150 element sample (30 daily average concentrations for 5 months). The
problem falls within the category: the variable X has unknown distribution in
population and the estimate of variance s? is available, the size of sample is big
(case 3). The following formula describes the confidence interval on the mean:

_ s _ s
X—Za—<u<X+Za—

ivn " 7 vn
The only missing value in the formula is Za. It is found in the Z table (Appendix 1)

2
for @(Z) = 0.5+ 0.5P, = 0.5+ 0.5-0.99 = 0.995. The value is Zy g95 = 2.58. As
a result of substitution

20 20
60 —2.58—=< u <60+ 258——
V150 : V150

55.79 < u < 64.21

the confidence interval on the average daily concentration of SO, is (55.79, 64.21)
ug/m? at the confidence level of P, = 0.99.
6.3 CONFIDENCE INTERVAL ON THE VARIANCE

The assumption about the normality of variable X is required for calculating the
confidence interval on the variance.

The following variable is utilized for the confidence interval calculation:

_(n-1s?

2
X
o2

As the 42 distribution is asymmetric, the confidence interval is not symmetric with
respect to the mean. The confidence level is the probability P, that

2 2
P, =P (X1—5,v< x:< Xﬁ.v)
2 2
Therefore, the following transformations are allowed:

2 2
A
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a X «a

. . . . . -1)s? (n-1)s?
The confidence interval on the variance of variable X is <(an s ,(nz s )at the
7,1/ 1—7,1/

confidence level P,.

The confidence interval on the standard deviation of variable X is

— 2
(nz s at the confidence level P,,.

a
1—?1/

6.3.1 EXAMPLE

Problem. The temperature control system is expected to stabilize the temperature
around 50 = 1 °C. In order to evaluate the performance of the system, the
temperature was measured in the course of n = 15 independent measurements.
The obtained results are provided in Table 6.1. What is the confidence interval on
the spread of temperature at the confidence level of 0.95? Does the confidence
interval satisfy the requirements? It is correct to assume that the temperature has
normal distribution?

Table 6.1 Results of temperature measurements.

Measurement 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15

Temperature 50 | 50.1 | 50.3 | 49.8 50 | 50.6 | 48.7 | 49.1 | 50.4 | 50.1 51 | 49.9 | 50.7 49

50.3

Solution. The standard deviation may be used as the measure of spread of
temperature values. Based on the data provided in Table 6.1 and the relevant
formula (see §3.2), the estimate of standard deviation is

m.(x; — X
s = Zisa (i = %) 0.64
n—1
As the considered variable X (here, temperature) has normal distribution, the
following formula describes the confidence interval for standard deviation:
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The missing values )(évand )(f_gvare found in the Chi square distribution table
2’ 2’

(Appendix 3) for% =0.5(1-P,) =0.025,1— g =0.975, and v=n—1= 14.
They are x& 92514 = 26.119 and xZ 47514 = 5.629.

(15-1D064 _ (15 - 1)0.642
26119 ? 5.629

047<0<11

The confidence interval on the spread of temperature is (0.47,1.1), at the
confidence level 0.95. It does not fully satisfy the requirements because the
accepted value of spread was 1, which is less than the right limit of the confidence
interval.

In fact, the assumption concerning normality of temperature should be confirmed
using the normality test (see §7.7).

6.4 TOLERANCE INTERVAL

Tolerance level and tolerance interval are calculated for variable X. These are
notions corresponding to confidence level and confidence interval which refer to
parameters of the statistical distribution of variable X. Tolerance level g is a
probability described by the following formula:

q=P(FX2)-F(X1)=Q)

where F(X2) and F(X1) are values of the cumulative distribution function of
variable X. X1 is the lower tolerance limit while X2 is the upper tolerance limit.

The tolerance interval (X1, X2) hosts at least Q100 % values of variable X with the
probability g. Q is the smallest fraction of values of X which fall into the tolerance
interval with the probability q.

In practical applications, it is most frequently assumed that variable X has normal
distribution and in such case the tolerance interval for a single value of variable X is
the following:

f - Kn,q,QS S X S 7C + Kn,q,QS

where X is the estimate of the mean of X, based on an n-element sample, s is the
estimate of the standard deviation of X, based on an n-element sample and K;, 4 o
is available in statistical tables. Tables are available for the most frequently used
values of n, q and Q (see Appendix 6).

6.4.1 EXAMPLE

Problem. It is known that the length X of screws delivered by the production line
follows a normal distribution. Based on a randomly selected sample of 70 screws,
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the average screw length is X = 10 mm and the standard deviation of screw
length is s = 0.2 mm. What is the tolerance interval which hosts at least 99 % of
randomly selected screws at the tolerance level ¢ = 0.9?

Solution. The tolerance interval is to be found for a single value of the variable
which is known to have normal distribution. The estimates of parameters of
distribution are known based on the sample of known size. The tolerance interval is
given by the following formula:

X — Kn,q,QS <X<x+ Kn,q,QS

The value of K is found in K-value tables (Appendix 6) forn = 70,q = 0.9 and
Q = 0.99 K70‘0_9'0.99 = 2.92. After SubStItUtiOﬂ'

10 -29202<X<10+292.0.2
9.42 <X <10.58

The 99 % tolerance interval for the screw length is (9.42,10.58) at the tolerance
level 0.9.

In other words, one can be 90 % sure that 99 % of screws have their lengths in the
tolerance interval (9.42,10.58) mm.
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7 STATISTICAL HYPOTHESES AND THEIR TESTING

A number of engineering tasks consist of comparing objects including comparing an
object with a reference, comparing a single object with itself in different conditions
and comparing different objects.

Various kinds of comparisons may be translated into statistical hypotheses.
Especially useful hypotheses include

e hypothesis on the mean value of a variable; this is applicable for comparing
average states of objects,

e hypothesis on the variance of a variable; this may be used for comparing
the variability of object states.

The methodology of statistical hypothesis testing is presented in this chapter
regarding

e testonone mean,

e testontwo means,

e test on the variance,
e test on two variances,

e normality test.

7.1 STATISTICAL HYPOTHESIS

A statistical hypothesis is a supposition concerning the statistical distribution of a
variable. There are two main types of suppositions. Suppositions of the first type
are called parametric hypotheses. They refer to parameters of distribution for the
observed variable, e.g. the mean and the variance. These hypotheses require the
preliminary assumption about the kind of distribution of the original variable.
Suppositions of the second type are called nonparametric hypotheses. Most
important classes of nonparametric hypotheses refer to the randomness of a
sample, the independence of variables or the kind of variable distribution. These
hypotheses do not require any assumption about the kind of distribution of the
original variable.

A particular statistical hypothesis actually consists of a pair of complementary
hypotheses. These are the null hypothesis and the alternative hypothesis. The
supposition called the null hypothesis is indicated by H,. It usually states that two
entities are equal. The contradictory supposition, denoted with Hy, is called the
alternative hypothesis. It usually states that two entities are unequal or that one
entity is greater than the other. These two cases represent two—sided and
one-sided alternative hypotheses, respectively.
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7.2 STATISTICAL HYPOTHESIS TESTING

Statistical hypotheses are subject to testing. The tools designed for testing
statistical hypotheses are called statistical tests. There are parametric and
nonparametric tests corresponding to the types of statistical hypotheses. The main
groups of parametric statistical tests are tests on the mean, tests of variance and
tests for proportion. The main groups of nonparametric statistical tests are tests of
the randomness of a sample, tests on the independence of variables and the
goodness of fit test between the probability distribution of a variable and another
distribution.

The basis for statistical hypothesis testing is a random sample of variable values
drawn from the population. The statistical test is a set of rules which allow for the
acceptance or rejection of a hypothesis for a particular sample. In reality,
hypotheses are either false or true. However, statistical testing is not able to
provide such judgment. With statistical methodology, one can either reject the null
hypothesis or accept it.

The decision concerning the null hypothesis is not absolute. It takes into account
the possibility that a null hypothesis which is actually true is rejected. The individual
testing the hypothesis has to decide about the acceptable probability of rejecting a
true hypothesis. This probability is called the significance level and it is denoted
with a. The rejection of a true hypothesis is called a | type error. This error shall be
low. Therefore, the typically used values of « are 0.01, 0.05 and 0.1. The
significance level is selected arbitrarily for testing particular hypotheses.

The test statistic is used for testing statistical hypotheses. The test statistic is a
variable V, which has a known distribution f(V), if the null hypothesis is true. The
value V,,; of the test statistic is calculated for a random sample of the original
variable X. The general rule is that the more extreme is V., regarding the
statistical distribution of V, the more likely that the null hypothesis is rejected. This
is because the null hypothesis assumes that V,.,; well represents the V distribution.
Therefore, if the null hypothesis is true, V., is expected to match well theV
distribution and not be too extreme.
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i)

Fa(V)

Vcal 1 4 Vcal 2

Figure 7.1 Illustration of the conception of a test statistic and its distribution in statistical
hypothesis testing.

This idea is illustrated in Fig. 7.1. It is quite likely that if the test statistic V,,; has the
distribution f; (V), the calculated value of the test statistic is V,4;1. Contrarily, it is
quite unlikely that if the test statistic V,4; has the distribution f; (V), the calculated
value of the test statistic is V4. Therefore, if the test statistic takes the value
Veai1, the hypothesis that V,,; originates from the distribution f; (V) would rather
be accepted. On the other hand, if the test statistic takes the value V4, the
hypothesis that V,,; originates from the distribution f;(V) would rather be
rejected. The reader is invited to carry out the analogue reasoning concerning
f2(V).

There are two possible approaches in the domain of statistical hypothesis testing.
The classical approach utilizes the conception of critical interval. It is elegant and
well suited for manual calculations. The second approach utilizes the conception of
the p-value, which is also called the critical significance level. The possibility of
using this approach is thanks to the development of computing.

fv)

f(v)

; -— —_—
v null hypothesis rejected null hypothesis rejected
critical interval critical interval null hypothesis accepted

Figure 7.2 lllustration of the conception of the critical interval in statistical hypothesis
testing.
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In the framework of the first approach, the status of the hypothesis is judged based
on checking whether the value V,,; belongs to the critical interval. The critical
interval is the interval of extreme values of the test statistic V. The probability that
values of variable VV belong to the critical interval is equal to the significance level.
Therefore, the size of the critical interval depends on a. If the calculated value of
the test statistic V,4; belongs to the critical interval, the null hypothesis is rejected
at the significance level a. If the calculated value of the test statistic V,,; remains
outside the critical interval, the null hypothesis is accepted at the significance level

a. The concept of using a critical interval for testing a statistical hypothesis is
illustrated in Fig. 7.2.

A N A

null hypothesis \ null hypothesis
\ \ rejacted \ accepted

V)
V)

fv)

\
\

— p- value
[ BN e
A

Ve ¥

p- value

VeV

Figure 7.3 lllustration of the conception of the p-value in statistical hypothesis testing.

In the framework of the second approach, the status of the null hypothesis is
judged based on a comparison between the p-value and the significance level a.
The p-value is the probability that variable V takes values at least as extreme as the
calculated value of the test statistic V4;. In other words, the p-value is the smallest
probability of null hypothesis rejection. The significance level ais actually the
largest acceptable probability of null hypothesis rejection. In case the p-value is
smaller than ¢, the probability that variable V takes values at least as extreme as
V. is lower than acceptable. In other words, V,,; is too extreme. Therefore, the
null hypothesis is rejected. Contrarily, if the p-value is larger than ¢, the probability
that values of variable V are at least as extreme as V_,; is greater than acceptable.
In other words, V.4, is not too extreme. In such case the null hypothesis is

accepted. The concept of using the p-value for testing a statistical hypothesis is
illustrated in Fig. 7.3.
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7.3 TEST ON ONE MEAN

The null hypothesis H in the case of a test on one mean states that the mean y of
variable X in the general population is equal to a defined reference value . The
formal notation of the null hypothesis is the following:

Ho: 1= po
The null hypothesis is tested versus one of three different alternative hypotheses:
. Hg: pu+ Uy two—sided hypothesis
. Hg:pu>pg one—sided hypothesis
M. Hg: p <y one-sided hypothesis

The form of the test statistic depends on the assumption concerning the
distribution of variable X. In this book two cases are considered: (1) variable X has
normal distribution N (g, o) and o is unknown(§7.3.1), (2) variable X has unknown
distribution (§7.3.2).

The criteria of null hypothesis rejection depend on the kind of alternative
hypothesis which is considered together with the null hypothesis.

7.3.1 VARIABLE X HAS NORMAL DISTRIBUTION AND o IS
UNKNOWN

The test statistic is the following:

where: X is the estimate of zzand it is calculated based on a random sample, Uy is
the reference value, s is the estimate of oand it is calculated based on a random
sample, n is the number of elements in the random sample.

If the null hypothesis is true, the test statistic t.4; has t-Student distribution, with
v=n — 1 degrees of freedom.

I.  Criterion of null hypothesis rejection on one mean versus H,: pu # pg.

e Criterion of the critical interval

The criterion of null hypothesis rejection is the following:

P<ta < Itl) =a
7,V

P(tS—ta V ta St>=a
E,V 7"/
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Therefore, the critical interval ist € (—00, —ta YU (ta , 00).
2’ 2’

The null hypothesis is rejected at the significance level a if the calculated value of
the test statistic t;4; belongs to the critical interval, i.e. if the following holds:
teal € (—OO, —ta v) U (ta V,OO).

2’ 2’

The null hypothesis is accepted at the significance level o if the calculated value of
the test statistic t.4; falls outside the critical interval, i.e. if the following is true:

teal € (—t;v,tg"/).

=
-ta,Q t ta/?
critical interval critical interval

outside critical interval

Figure 7.4 Graphical interpretation of null hypothesis rejection based on the critical interval
criterion. Test on one mean. Hy: u = po. Hy: p # py.

The graphical interpretation of null hypothesis rejection based on the critical
interval criterion is shown in Fig. 7.4.

e Criterion of the p-value
The criterion of null hypothesis rejection is the following:p < a = % < %, where

p = P(|t] = tq) is the probability that the absolute value of the t variable, which
has t-Student distribution with v=n — 1 degrees of freedom, is greater than or
equal to the calculated value of the test statistic t.4;-

The null hypothesis is rejected if the significance level « is greater than or equal to
p.
The null hypothesis is accepted if the significance level « is less than p.
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(@ (b}

p=c a<p
null hupothesis | null hupothesis
rejected accepted

fit)
fit)

a2
pl2

'-fce.‘ t tc;{ ‘ ;fca! t I(‘:al
Figure 7.5 Graphical interpretation of null hypothesis rejection based on the p-value
criterion. Test on one mean. Hy: p = uo. Hy: p # py.
The graphical interpretation of the p-value criterion of null hypothesis
rejection is shown in Fig. 7.5.
Il.  Criterion of null hypothesis rejection on one mean versus H,: p > p,.
e Criterion of the critical interval
The criterion of null hypothesis rejection is P(t > ta‘v) = «a. Therefore, the
critical interval is t € (t,,, 00).

The null hypothesis is rejected at the significance level a if the calculated
value of test statistic t.,; belongs to the critical interval, i.e. if the following
holds: t.q; € (ta‘V,OO).

There is no reason for rejecting the null hypothesis at the significance level
@, if the calculated value of test statistic t.,; remains outside the critical
interval, i.e. if the following is true: t.4; € (0, ta,v)-

f(t)

critical interval

outside critical interval

Figure 7.6 Graphical interpretation of null hypothesis rejection based on the critical interval
criterion. Teston one mean. Hy: pt = po. Hy: > Hy.
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The graphical interpretation of the critical interval criterion of null hypothesis
rejection is shown in Fig. 7.6.
e Criterion of the p-value

The criterion of null hypothesis rejection is the following: p < @, wherep =
P(t = t.q;) is the probability that the t variable, which has t-Student distribution
with v=n — 1 degrees of freedom, is greater than or equal to the calculated value
of the test statistic t.q;:

The null hypothesis is rejected if the significance level « is greater than or equal to
p.

The null hypothesis is accepted if the significance level « is less than p.

(a) (b)

p=a ) a<p
null hupothesis null hupothesis |
rejected accepted

ft)
fit)

t lear t tcal

Figure 7.7 Graphical interpretation of null hypothesis rejection based on the p-value
criterion. Teston one mean. Hy: = po. Hy: > Hy.

The graphical interpretation of the p-value criterion of null hypothesis rejection is
shown in Fig. 7.7.

Ill.  Criterion of null hypothesis rejection on one mean versus H,: p < .

e Criterion of the critical interval

The criterion of null hypothesis rejection is P(t < —t,,) = a. Therefore, the
critical interval is t € (—00, —ty )

The null hypothesis is rejected at the significance level a if the calculated value of
test statistic t.4; belongs to the critical interval, i.e. if the following holds:
tcal € (_Oo'_ta,\/)-

There is no reason for rejecting the null hypothesis at the significance level ¢, if the
calculated value of test statistic t.,; remains outside the critical interval, i.e. if the
following is true: toq; € (—tq,,, 0).
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f( 1)

'ta t
critical interval

outside critical interval

Figure 7.8 Graphical interpretation of null hypothesis rejection based on the critical interval
criterion. Teston one mean. Hy: = po. Hy: p < Hy.

The graphical interpretation of the critical interval criterion of null hypothesis
rejection is shown in Fig. 7.8.
e Criterion of the p-value

The criterion of null hypothesis rejection is the following: p < @, wherep =
P(t < t.q;) is the probability that the t variable, which has t-Student distribution
with v=n — 1 degrees of freedom, is less than the calculated value of test
statistic t q;-

The null hypothesis is rejected if the significance level « is greater than or equal to
p.

The null hypothesis is accepted if the significance level « is less than p.

(a) (b)

p=o a<p
null hupothesis null hupothesis |
rejected accepted

fit)
ft)

fear t V toal t

Figure 7.9 Graphical interpretation of null hypothesis rejection based on the p-value
criterion. Teston one mean. Hy: = po. Hy: p < Hy.

The graphical interpretation of the p-value criterion of null hypothesis rejection is
shown in Fig. 7.9.
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7.3.1.1 EXAMPLE

Problem. There were n = 7 measurements of pressure inside the combustion
chamber of a rocket engine. The measurement results are shown in Table 7.1.

Table 7.1 Results of pressure measurements inside the combustion chamber of an engine.

number 1 2 3 4 5 6 7

pressure/ kPa | 3123.41 | 3075.35 | 2973.36 | 3030.24 | 3108.70 | 3177.34 | 3098.89

It is known that the pressure has normal distribution. Is the mean pressure inside
the chamber equal to 3000 kPa at the significance level « = 0.01?

Solution. The problem may be solved using a test on one mean regarding variable
X, which is the pressure inside the combustion chamber of an engine. It is worth to
consider the null hypothesis which states that the average pressure is equal to
3000 kPa, Hy: t = 3000. The null hypothesis is tested versus the two-sided
alternative hypothesis that the mean pressure is different than 3000 kPa,
Hg:p # 3000. The distribution of variable X is normal and parameters of the
distribution are estimated based on measurement results in the following way:
n
1
X = —Z x; = 3083.90
n

i=1

1
n—1

S =

n
Z(xi —%)? = 6621
i=1

The corresponding test statistic is the following:
X—po 3083.90—3000

tcal = S = 6621 = 335
Vn N
e The criterion of null hypothesis rejection based on the critical
interval.

Considering the two-sided alternative hypothesis, the critical interval is described

by the following formula: (—00, —ta YU (ta V.oo>. ta is found in statistical tables
2’ 2’ 2’

of t -Student distribution (Appendix 2) for a =0.01 and v=n—-1=6.

Numerically, the critical interval is (—o0, —3.707) U (3.707, o).

The value of test statistic t.,; = 3.35 is located outside the critical interval;
therefore, the null hypothesis is accepted at the significance level a = 0.01.

e The criterion of null hypothesis rejection based on the p-value.

The p-value was calculated using the T.DISTRIBUTION function available in Excel.
Considering t.q; = 3.35, the associated p = 0.0154.
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The value of p = 0.0154 is greater than the value of @ = 0.01; therefore, the null
hypothesis is accepted at the significance level 0.01.

Based on the obtained results of hypothesis testing, the engineer has good reason
to claim that the average pressure in the combustion chamber is equal 3000 kPa at
the significance level a = 0.01.

7.3.2 VARIABLE X HAS UNKNOWN DISTRIBUTION

If the probability distribution of variable X is unknown and one needs to test the
hypothesis on one mean, the size of the random sample should be big. It is
recommended that the number of sampled values of X exceeds 20 — 30 elements.

The test statistic is the following:

where: X is the estimate of 2 and is calculated based on a random sample, g s the
reference value, s is the estimate of oand is calculated based on a random sample,
n is the number of elements in the random sample.
If the null hypothesis is true, the test statistic Z.,; has normal distribution N(0,1)
with the 4 = 0 and the o= 1.
I.  Criterion of rejection of null hypothesis on one mean versus H,: p # p.
e Criterion of critical interval

The criterion of null hypothesis rejection is the following:

P<2gS |Z|)=a
2

P(ZS—ZQVZQSZ>=CZ
2 2

Therefore, the critical interval is Z € (—oo, —za) U (Za, 00).
2 2
The null hypothesis is rejected at the significance level ¢, if the calculated value of
test statistic Z.4; belongs to the critical interval, i.e. if the following holds:
anl € (—OO, _ZZ) Y (Zﬁv OO)

2 2
The null hypothesis is accepted at the significance level o if the calculated value of
test statistic Z4; falls outside the critical interval, i.e. if the following is true:

Zeal € <_Zﬂ ;ZE)-

2 2
For the graphical interpretation of the critical interval criteria of null hypothesis
rejection refer to Fig. 7.4. While analyzing replace t with Z and ignore v. The
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principle of interpretation is identical in case of t-Student distribution and normal
distribution as both are symmetric.

e Criterion of the p-value

The criterion of null hypothesis rejection is
pLa= % < %, wherep = P(|Z| = z.q;)

is the probability that the absolute value of the Z variable is greater than or equal
to the calculated value of the test statistic z.,;.
The null hypothesis is rejected if the significance level a is greater than or equal to
p.
The null hypothesis is accepted if the significance level a is less than p.

For the graphical interpretation of the p-value criterion of null hypothesis rejection
refer to Fig. 7.5. While analyzing replace t with Z and ignore v. The principle of
interpretation is identical in case of t-Student distribution and normal distribution
as both are symmetric.

II.  Null hypothesis rejection criterion on one mean versus Hy: pu > .
e Criterion of the critical interval

The criterion of null hypothesis rejection is P(Z = z,) = a. Therefore, the critical
interval isZ € (z,, ).

The null hypothesis is rejected at the significance level ¢, if the calculated value of
test statistic Z.,; belongs to the critical interval, i.e. if the following holds:
anl € <Zm oo)

The null hypothesis is accepted at the significance level ¢, if the calculated value of
test statistic z,; falls outside the critical interval, i.e. if the following is true:
Zear € (0,24).

For the graphical interpretation of the critical interval criterion of null hypothesis
rejection refer to Fig. 7.6. While analyzing replace t with Z and ignore v. The
principle of interpretation is identical in case of t-Student distribution and normal
distribution as both are symmetric.

e Criterion of the p-value
The criterion of null hypothesis rejection is the following:
p < a,wherep = P(Z = z.4;)

is the probability that the Z variable is greater than or equal to the calculated value
of test statistic z.g;-

The null hypothesis is rejected if the significance level a is greater than or equal to
p.
The null hypothesis is accepted if the significance level « is less than p.

For the graphical interpretation of the critical interval criteria of null hypothesis
rejection refer to Fig. 7.7. While analyzing replace t with Z and ignore v. The
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principle of interpretation is identical in case of t-Student distribution and normal
distribution as both are symmetric.

. Criterion of null hypothesis rejection on one mean versus H,: p < .
e Criterion of the critical interval

The criterion of null hypothesis rejection is P(Z < —z,) = a. Therefore, the critical
interval is Z € (—o0,—2z,).

The null hypothesis is rejected at the significance level ¢, if the calculated value of
test statistic Z.,; belongs to the critical interval, i.e. if the following holds:
anl € (—00’ _sz)'

There is no reason for rejecting the null hypothesis at the significance level a if the
calculated value of test statistic Z,; falls outside the critical interval, i.e. if the
following is true: Z.4; € (—2z4,0).

For the graphical interpretation of the critical interval criteria of null hypothesis
rejection refer to Fig. 7.8. While analyzing replace t with Z and ignore v. The
principle of interpretation is identical in case of t-Student distribution and normal
distribution as both are symmetric.

e Criterion of the p-value
The criterion of null hypothesis rejection is the following:
p < a,wherep = P(Z < z.4;)
is the probability that the Z variable is less than or equal to the calculated value of
test statistic z.;.
The null hypothesis is rejected if the significance level is greater than or equal to p.
The null hypothesis is accepted if the significance level is less than p.

For the graphical interpretation of the critical interval criteria of null hypothesis
rejection refer to Fig. 7.9. While analyzing replace t with Z and ignore v. The
principle of interpretation is identical in case of t-Student distribution and normal
distribution as both are symmetric.

7.3.2.1 EXAMPLE

Problem. The absence of workers was investigated in a huge production factory. A
random sample of n = 100 people was selected for the study. It was found that
the average leave duration was X = 35 days and the standard deviation of leave
duration was s = 17 days in that sample. Is it allowed to conclude that the average
leave duration in the considered factory was longer than 1 month (31 days) at the
significance level @ = 0.05?

Solution. It is possible to solve the problem using a test on one mean regarding
variable X, which is the leave duration. It is worth to consider the null hypothesis,
which states that the average leave duration is equal 35 days, Hy: t = 35. The null
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hypothesis shall be tested versus the one-sided alternative hypothesis that the
leave duration is greater than 31 days, H,: i > 31. The distribution of variable X is
unknown, but the size of the sample is big. Estimates of yzand o are available.

The corresponding test statistic is the following:
X—po 35-31

Zeql = S = 17 = 235
Vn V100
e The criterion of null hypothesis rejection based on the critical

interval.

Considering the one-sided alternative hypothesis, the critical interval is (z,, ©).
Based on statistical Z tables (Appendix 1), z, = 1.64 for & = 0.05. Therefore,
numerically the critical interval is (1.64, ).
The value of test statistic z.,; = 2.35 is located inside the critical interval.
Therefore, the null hypothesis is rejected in favor of the alternative hypothesis at
the significance level o = 0.05.

e The criterion of null hypothesis rejection based on the p-value.
The p-value was calculated using the Z.DISTRIBUTION function available in Excel.
Considering z.,; = 2.35, the associated p = 0.0094.
The value of p = 0.0094 is less than the value of @ = 0.05; therefore, the null
hypothesis is rejected in favor of the alternative hypothesis at the significance level
0.05.
Based on the obtained results of hypothesis testing, a manager at the factory has
good reason to claim that the average leave duration in the company was longer
than 1 month, at the significance level o = 0.05.

7.4 TEST ON TWO MEANS

The null hypothesis Hy, in the case of the test on two means states that the mean
u, of variable X, is equal to the mean s, of variable X,. The formal notation of the
null hypothesis is the following:

Ho: py = iy
The null hypothesis is tested versus one of three different alternative hypotheses:
. Hp:pq # Uy two—sided hypothesis
. Hgopg > Uy one—sided hypothesis
. Hy:opg < py one—sided hypothesis

The selection of the test statistic depends on the assumption concerning the
distribution of variable X. In this book two cases are considered: (1) variable X;
has normal distribution N(x,, 7¢), variable X, has normal distribution N(4,, 03)
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and variances oy and o, are unknown (§7.4.1), (2) variables X; and X, have
unknown distributions (§7.4.2).

The criteria of null hypothesis rejection depend on the kind of alternative
hypothesis considered together with the null hypothesis.

7.4.1 VARIABLE X; HAS DISTRIBUTION N(,ul, o0y), VARIABLE X, HAS
DISTRIBUTION N(/IZ,O'Z) AND VARIANCES o4 AND o, ARE
UNKNOWN.

Test statistic for the hypothesis on two means is the following:

Xl - XZ
1 1
2(2 L =
S (Tl]_ + nz)

where: X, is the estimate of 4, and is calculated based on a random sample from

population 1, X, is the estimate of i, and is calculated based on a random sample

from population 2, s is the standard deviation calculated for both random samples
considered together, n; is the number of elements in the random sample from

population 1, n, is the number of elements in the random sample from population
2.

If the null hypothesis is true, the test statistic t.,; has t-Student distribution with
v=n4 + n, — 1 degrees of freedom.

teal =

The criteria of null hypothesis rejection in the considered case are identical with
those referring to the hypothesis on one mean in case the variable X has normal
distribution N (x4, o) with unknown parameters. Please refer to §7.3.1 for more
detailed information.

\7.4.2 VARIABLE X; AND VARIABLE X, HAVE UNKNOWN
\ DISTRIBUTIONS

In case the probability distributions of variables X; and X, are unknown, their
random samples should be big. It is recommended that the number of elements in
each sample exceed 20 + 30.

The test statistic for the hypothesis on two means is the following:

()

np N

where: X, is the estimate of 4, and sy is the estimate of o, both are calculated
based on a random sample from population 1, X, is the estimate of U, and s, is the
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estimate of o,, both are calculated based on a random sample from population 2,
n, is the number of elements in the random sample from population 1 and n, is
the number of elements in the random sample from population 2.

If the null hypothesis is true, the test statistic Z.4; has normal distribution N(0,1).

The criteria of null hypothesis rejection in the considered case are identical with
those referring to the hypothesis on one mean in case the variable X has unknown
distribution. Please refer to §7.3.2 for more detailed information.

17.4.2.1 EXAMPLE

Problem. It was hypothesized that the exchange of a cutting tool for a different
kind shortens the time of workpiece tooling with a lathe. Is this hypothesis justified
at the significance level 0.01? In order to answer the question, the durations of
tooling 10 workpieces with an old cutting tool and the durations of tooling 10
workpieces with a cutting tool of different kind were measured. The obtained
measurement data is shown in Table 7.2. It may be assumed that both times have
normal distribution.

Table 7.2 Time of workpiece tooling with an old cutting tool and with a cutting tool of a
different kind/ min.

old cutting tool (1) 58 58 56 38 70 38 42 75 68 67

cutting tool of

different kind (11) 57 55 63 24 67 43 33 68 56 54

Solution. It is possible to solve the problem using a test on two means. The two
means are the mean of variable X;, which is the time of tooling with cutting tool |
and the mean of variable X,, which is the time of tooling with cutting tool Il. It is
worth considering the null hypothesis which states that the average time of tooling
with cutting tool | is equal to the average time of tooling with cutting tool I, namely
Hy: 4 = pp. The null hypothesis is tested versus the one-sided alternative
hypothesis that the mean time of tooling with tool | is longer than the mean time of
tooling with tool Il, H,: py > u,. Variables X; and X, have normal distribution and
their parameters are estimated based on the measurement results in the following
way:
ni
X, = w izlxli =57

1
X, = — ;=52
X2 nzzleJ
J:
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1 ni+n,
s= |—— Z (xx — %)% = 13.90
k=1

n1+n2_1

The corresponding test statistic is the following:

teal = 1 1 1 1
2( 2 4 L 2( 2 4 1
\/5 () \/13'90 (t5+ 1)
e The criterion of null hypothesis rejection based on the critical
interval.

The critical interval is (t,, c). Based on t-Student tables (Appendix 2), t, = 2.539
for «=0.01 and v=n,+ ny —1=19. Therefore, numerically the critical
interval is (2.539, o).

The value of test statistic t.,; = 0.804 is located outside the critical interval;
therefore, the null hypothesis is accepted at the significance level « = 0.01.

e The criterion of null hypothesis rejection based on the p-value.

The p-value was calculated using the T.DISTRIBUTION function available in Excel.
Considering t.q; = 0.804, the associated p = 0.2156.

The value of p = 0.2156 is greater than the value of @ = 0.01; therefore, the null
hypothesis is accepted at the significance level 0.01.

Based on the obtained results of hypothesis testing, an engineer infers that the
times of tooling with the two cutting tools are the same at the significance level
a = 0.01. Therefore, the exchange of cutting tool | for cutting tool Il does not
shorten the time of tooling.

7.5 TEST ON THE VARIANCE

The null hypothesis Hy in the case of the test on the variance sates that the
variance g2 of variable X in the general population is equal to a certain reference
value 6. The formal notation of the null hypothesis is the following:

HO: 02 =0‘g

In practice, one is usually interested in a small variance because a large variance is
disadvantageous. Therefore, the null hypothesis on the variance is typically tested
versus the alternative hypothesis that the variance is greater than the reference
value:

Hy: o > ot one-sided hypothesis.

In order to test the hypothesis, the assumption is required that the variable X has
normal distribution N(x, o), but it is allowed that z#zand o are unknown. The
assumption shall be confirmed by a normality test.
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The test statistic for the hypothesis on the variance is the following:

_(n—1)s?

Zﬁal -

where 52 is the estimate of the variance of variable X, based on a random sample
which consists of n elements.

If the null hypothesis is true, the test statistic ;{ial has a »? distribution with
v=n — 1 degrees of freedom.

)

One may use the test on variance, 6% in order to actually perform the test on
standard deviation, o.

e The criterion of null hypothesis rejection based on the critical
interval.

The criterion of null hypothesis rejection is P (;{2 > ;{i V) =a.

Therefore, the critical interval is 7% € (72 1,00).

The null hypothesis is rejected at the significance level a if the calculated value of
test statistic ;(ﬁal belongs to the critical interval, i.e. if the following holds:

Zial € <z§,v’ oo),
There is no reason for rejecting the null hypothesis at the significance level a if the
calculated value of test statistic lﬁal remains outside the critical interval, i.e. if the
following is true: Ugq; € (0, 72 )

v):

7

critical interval

outside critical interval

Figure 7.10 Graphical interpretation of null hypothesis rejection based on the critical
interval criterion. Test on the variance. Hy: o® = 63. Hy: o® > a3.
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The graphical interpretation of the critical interval criterion of null hypothesis
rejection is shown in Fig. 7.10.

e The criterion of null hypothesis rejection based on the p-value.
The criterion of null hypothesis rejection is the following:
p < a,wherep =P(* = 22,))

is the probability that 32 variable, which has 2 distribution with v=n — 1 degrees
of freedom, is greater than or equal to the calculated value of test statistic Zgal‘

The null hypothesis is rejected if the significance level a is greater than or equal to
p.
The null hypothesis is accepted if the significance level « is less than p.

(a) (b)

psa a<p
null hupothesis null hupothesis
rejected accepted

(%)
)

o 2,7
X X cal ¥ X cal

Figure 7.11 Graphical interpretation of null hypothesis rejection based on the p-value
criterion. Test on the variance. Hy: ¢® = 05. Hy: o > 3.

The graphical interpretation of the p-value criterion of null hypothesis rejection is
shown in Fig. 7.11.

7.5.1.1 EXAMPLE

Problem. The quality assurance standard requires that the variance of the diameter
of molded pipes is not larger than 4 mm. As a routine check, n = 11 measurements
were performed on the diameter of molded pipes. The obtained data is shown in
Table 7.3.

Table 7.3 Results of measurement on the diameter of molded pipes/ mm.

50.2 50.4 | 50.6 | 50.5 | 49.9 50.0 50.3 50.1 50.0 | 49.6 | 50.6

It is known that the diameter of molded pipes has normal distribution. Is the
quality assurance standard met by the tested production lot at the significance
level 0.01?
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Solution. It is possible to solve the problem using a test of variance regarding
variable X, which is the diameter of molded pipes. It is worth considering the null
hypothesis which states that the variance of the diameter of molded pipes is equal
to 0.04 mm, namely Hy: 0 = 0.04. The null hypothesis is tested versus the one-
sided alternative hypothesis that the variance of pipe diameter is greater than 0.04
mm, H,: 0 > 0.04. The distribution of variable X is normal. The estimate of c is
calculated as follows:

1 X .,
s = mZ(xi —x) =0.1
i=1

The corresponding test statistic is the following:

2 - (n—1)s? (11-1)0.12
cal = g, 0.04

=25

e The criterion of null hypothesis rejection based on the critical
interval.

Considering the one-sided alternative hypothesis, the critical interval is (;{i v'°°)'
Based on y” tables (Appendix 3), 72 = 23.209 for ¢ = 0.01and v=n—1= 10
degrees of freedom. Therefore, numerically the critical interval is (23.209, ).
The value of test statistic ;gial = 2.5 is located outside the critical interval.
Therefore, the null hypothesis is accepted at the significance level & = 0.01.

e The criterion of null hypothesis rejection based on the p-value.
The p-value was calculated using the CHI2.DISTRIBUTION function available in Excel.
Considering Z?al = 2.5, the associated p = 0.991.
The valuep = 0.991is greater than the value of ¢ = 0.01; therefore, the null
hypothesis is accepted at the significance level 0.01.

Based on the obtained results of hypothesis testing, the quality assurance engineer
has good reason to claim that the quality assurance standard concerning the
variation of pipe diameter is met at the significance level « = 0.01 .

7.6 TEST ON TWO VARIANCES

The null hypothesis H in case of a test of two variances states that the variance o2

of variable X, is equal to the variance a2 of variable X,.

D52 = 52
Hy: of = 05

The null hypothesis is tested versus one of three different alternative hypotheses:
I.  Hy: 0 # o two-sided hypothesis

. Hy: of >o2 one-sided hypothesis
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N. Hy: o2 <o? one-sided hypothesis.
For the sake of testing the hypothesis on two variances, the assumption is required
that variable X; has normal distribution N(z,, o7) and variable X; has normal
distribution N(x,, 03). It is allowed that the parameters of these distributions
4y, 01 and 4, o, are unknown. The assumption shall be confirmed by a normality
test.

The test statistic for the hypothesis on two variances is the following:

st
53

Fegr =

where: s? is the estimate of 02, based on a random sample consisting of n,
elements and s3 is the estimate of 67, based on a random sample consisting of n,
elements. The indices 1 and 2 are assigned in a way that s? > s2 and consequently
Fegr 21.

If the null hypothesis is true, the test statistic F,,; has an F-Snedecore distribution
with v; =n; —1and v, = n, — 1 degrees of freedom.

The criteria of null hypothesis rejection depend on the kind of alternative
hypothesis which is considered together with the null hypothesis.

One may use a test on two variances, o and ¢, in order to actually perform a test
on two standard deviations, o; and o.

I.  Criterion of null hypothesis rejection on two variances versus Hy: 07 # 0.

e The criterion of null hypothesis rejection based on the critical
interval.

The criterion of null hypothesis rejection is the following:

P(Fl_gv <FvF<Fa )=(X.
2’ 1V2

2V V2

Therefore, the critical interval is Fe (0, F, « YU (Fa - 00).
VL

1-—,v, v
2
Due to the fact that F,;;>1, only the right part of the critical interval is used.

Therefore, the actual critical interval is: F,4;€ (Fa ,00 ).
>V V2

The null hypothesis is rejected at the significance level o if the calculated value of
test statistic F,4; belongs to the critical interval, i.e. if the following holds:

Fcale <F%‘V1

.Vz'

The null hypothesis is accepted at the significance level a if the calculated value of
test statistic F.4; remains outside the critical interval, i.e. if the following holds:

Fcale (Fl—%,vl,vz’ ng‘/lvVZ).
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f(F)

a2 | This part of 1
2 critical interval
a2 is used.
B -
Fioz F Fuar |
critical interval critical interval

outside critical interval

Figure 7.12 Graphical interpretation of null hypothesis rejection based on the critical
interval criterion. Test on two variances. Hy: 63 = 3. H,: 65 # a3.

The graphical interpretation of the critical interval criterion of null hypothesis
rejection is shown in Fig. 7.12.

e The criterion of null hypothesis rejection based on the p-value.

The criterion of null hypothesis rejection isp < %, wherep = P(F = F,y) is the

probability that the F variable, which has F-Snedecore distribution with v; = n; —
1 and v, = n, — 1 degrees of freedom is greater than or equal to the calculated
value of test statistic F,g;.

The null hypothesis is rejected if half of the significance level a is greater than or
equal to p.

The null hypothesis is accepted if half of the significance level a is less than p.

(a) (b)

p=a’? a’2<p
null hupothesis null hupothesis
rejected accepted

f(F)

a2 |

Fea F

Figure 7.13 Graphical interpretation of null hypothesis rejection based on the p-value
critical interval criterion. Test on two variances. Hy: 6% = 3. Hy: 0% # o3.
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The graphical interpretation of the p-value criterion of null hypothesis rejection is
shown in Fig. 7.13.

Il.  Criterion of null hypothesis rejection for two variances versus the one-sided
alternative hypothesis (case Il of H,).

e Criterion of the critical interval
The criterion of null hypothesis rejection is the following:

P(Fyy v, <F)=a

Therefore, the critical interval is Fe(Fy,,, ., 00).

critical interval
outside critical interval

Figure 7.14 Graphical interpretation of null hypothesis rejection based on the critical
interval criterion. Test on two variances. Hy: 03 = 63. Hy,: 0% > d3.

The graphical interpretation of the critical interval criterion of null hypothesis
rejection is shown in Fig. 7.14.
e Criterion of the p-value

The criterion of null hypothesis rejection isp < a, where p = P(F = F,;;) is the
probability that F variable, which has F-Snedecore distribution with vy =n; — 1
and v, =n, —1 degrees of freedom is greater than or equal to the calculated
value of test statistic F4;.

The null hypothesis is rejected if the significance level is greater than or equal to p.
The null hypothesis is accepted if the significance level is less than p.
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(@) (b)

psa a<p
null hupothesis null hupothesis
rejected accepted

(F)
f(F)

F F cal . F cal . F

Figure 7.15 Graphical interpretation of null hypothesis rejection based on the p-value
criterion. Test on two variances. Hy: 65 = 0%. H,: 63 > o3.

The graphical interpretation of the p-value criterion of null hypothesis rejection is

shown in Fig. 7.15.

Ill.  Criterion of null hypothesis rejection of the mean H, for the one-sided
alternative hypothesis (case Ill of H,).

The hypothesis shall be tested as shown for case Il. However, prior to testing, the
variables shall be renumbered, i.e. X; shall take the index 2 and X, shall take the
index 1 so that the ratio of variances is greater than one.

17.6.1.1 EXAMPLE

Problem. In order to check the precision of current measurement with two
different measuring devices, measurements of 7 A current were performed. The
obtained results are shown in Table 7.4.

Table 7.4 Measurement results of 7 A current with two different measuring devices.

Device 1 7.2 6.7 6.9 6.9 7.2 7.0 7.1

Device 2 7.4 6.8 7.4 6.6 6.3 7.5

Is the measurement precision of the two devices equal at the significance level
0.057? It is correct to assume that the measurement results have normal
distribution in each case.

Solution. Precision is indicated by the spread of replicate measurement results. It is
possible to solve the problem using a test of two variances regarding variable X;,
which is the result of measuring with device | and variable X,, which is the result of
measuring with device Il. It is worth considering the null hypothesis, which states
that the variance of measurements performed with device | is the same as the
variance of measurements performed with device Il, namely Hy: ; = g,. The null
hypothesis is tested versus the two-sided alternative hypothesis that the variance
of measurements performed with device | is different from the variance of
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measurements performed with device I, H,: 04 # g,. The distributions of both
variables X; and X, are normal. The estimates of o2 and o3 are calculated as
follows:

1

5f = —— 12(9@ — %)% =0.033
=
1 <

s% = 1Z(xj ~%)* = 0252
le - j=1

As sZ is greater than sZ, we renumber our variables.
The corresponding test statistic is the following:

v st _0.252_756
cal™s270.033

e Criterion of null hypothesis rejection based on the critical interval.
Considering the two-sided alternative hypothesis, the critical interval is

(Fa " VZ,OO). Based on F tables (Appendix 5), F ,, ,, = 4.387 for « = 0.05 and
VL

vy =ny—1=5and v, =n, —1 =6 degrees of freedom. Therefore, numerically
the critical interval is (4.387 ,0).

The value of test statistic F.;; = 7.56 is located inside the critical interval.
Therefore, the null hypothesis is rejected at the significance level a = 0.05.

e  Criterion of null hypothesis rejection based on the p-value.

The p-value was calculated using the F.DISTRIBUTION function available in Excel.
Considering F.,; = 7.56, the associated p = 0.0143.

The value p = 0.0143 is less than the value of @ = 0.05; therefore, the null
hypothesis is rejected at the significance level 0.05.

Based on the obtained results of hypothesis testing, an engineer is allowed to
conclude that the two devices offer different measurement precision at the
significance level « = 0.05. Device | offers measurements with significantly higher
precision.

7.7 NORMALITY TESTS

For testing normality any test which belongs to a group of goodness—of—fit tests
may be used. Goodness—of—fit tests are a class of nonparametric tests. They are
used for testing two kinds of hypotheses. One kind refers to suppositions that two
variables have the same statistical distribution. The other kind refers to
suppositions that a variable has the defined statistical distribution. Normality tests
belong here.
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A number of tests are available for testing normality. The tests which were
designed for testing normality are, for example, Saphiro-Wilk test and Epps-Pulley
test. The tests were designed for testing goodness of fit between two distributions
including Normal are, for example, the Kolmogorov test, Kolmogorov-Smirnov test,
;(2 test. Tests belonging to the second group are weaker when testing normality
compared to tests in the first group.

Goodness-of-fit tests are calculation-intensive and therefore they are usually
performed using statistical software. This refers in particular to normality tests.
However, they are not widely available in common access software. Therefore, the
method of performing the A Kolmogorov test is presented in this book.

It may occur that the hypothesis about the normality of the probability distribution
of variable X is rejected by the statistical test. Such a result is disadvantageous
because many statistical methods and tools require the assumption about the
normality of the variable. Therefore, the transformation of the original variable is
recommended for obtaining the variable X; which has normal distribution instead
of the variable which does not have normal distribution X. The new variable X; is
then statistically analyzed. The most popular, although not always successful,
transformation of a ‘non-normal’ variable X into a ‘normal’ variable X7 is
Xr = In(X).

7.7.1 X KOLMOGOROV TEST

A Kolmogorov test is a goodness-of-fit test.

The null hypothesis states that the empirical cumulative distribution F(X) of
variable X is equal to a hypothetical, reference continuous cumulative distribution
Fo(X). In particular, Fy(X) is a standardized normal distribution Z.

Hy: F(x) = Fy(x)
The null hypothesis is tested versus the alternative hypothesis:

HA:F(X) * Fo(x)
The test statistic is the following:

Acal = D\/E
where: n is the number of elements in a sample (it should be several dozen at
least). D is represented by the following formula:
D = sup|F;(x) - Fo;(x)|

where: Fj(x) is the value of the empirical cumulative distribution function for the
jt" interval of values of variable X, and Fyj(x) is the value of the reference

cumulative distribution function calculated for the right limit of the j" interval of
values of variable X.
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If the null hypothesis is true, 1. has A Kolmogorov distribution which is
independent from the empirical distribution F (x).

All n values of variable X are grouped into j intervals between the minimum and
maximum value of X.

e Criterion of null hypothesis rejection based on the critical interval
criterion

The criterion of null hypothesis rejection is the following:
PAz <) =«
where: 1, comes from the tables of A Kolmogorov distribution (Appendix 7).
Therefore, the critical interval is Ae(4,, ). The null hypothesis is rejected if the
following is true A.q;€( g, ).
e Criterion of the p-value

The criterion of null hypothesis rejection isp < @, wherep = P(1 = A.y) is the
probability that A variable, which has A Kolmogorov distribution, is greater than or
equal to the calculated value of the test statistic A.4;-

The null hypothesis is rejected if the significance level is greater than or equal to p.

The null hypothesis is accepted if the significance level is less than p.

17.7.1.1 EXAMPLE

Problem. 200 sardines were caught in the Atlantic Ocean. Their size was measured
and the results are shown in Table 7.5. Does the size of the sardines have normal
distribution at the significance level 0.05.?

Table 7.5 Empirical data concerning sardines caught in the Atlantic Ocean.

Length of sardine/ cm Number of fish
10-12 10
12-14 26
14-16 56
16-18 64
18-20 30
20-22 14

Solution. It is possible to solve the problem using the A Kolmogorov
goodness—of—fit test. The considered variable X is the size of the sardines. The
reference cumulative distribution is a normal distribution. The parameters of
normal distribution are estimated based on the random sample in the following
manner:
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S|k

.
0., _
ij n; = 16.2

j=1

B
1 \2
5= T—lZ(xJFJ —X)'n; = 2.47
j=1

where: x]p is the mean value of X for the j** interval, n; is the number of elements
inside j interval.

The values of X, which represent the right limits of intervals for sardine length, x;,
are standardized using the formula:

so that the reference normal distribution N(X;,s) is converted into the
standardized normal distribution Z(0,1). Values of the cumulative Z distribution
function F(z}-) are read out from the statistical tables (Appendix 1) for all
standardized values z;. In this way, the reference cumulative distribution function
Fyj(x) is calculated.

Values of the cumulative empirical distribution are calculated for each interval of
sardine length using the formula:

ncum
B =g
j=1T
where n; is the number of sardines with their length belonging to the jt" interval,
k=1..j.

The comparison of two cumulative distributions: empirical and normal is shown in
Table 7.6.

Table 7.6 The comparison of cumulative empirical distribution of the length of sardines
F ¢y (x) and normal distribution F(Zl-).

j X 7z | F(z)=Foj@) | n | neum F(x) |F; () = Fo, ()]
1| 12 | 170 0.037 10 | 10 0.05 0.0054
2 14 -0.89 0.187 26 36 0.18 0.0067
3 | 16 | -0.08 0.468 56 | 92 0.46 0.0081
4 18 0.73 0.767 64 156 0.78 0.0127
5 20 1.54 0.938 30 186 0.93 0.0082
6 | 22 | 235 0.991 14 | 200 1 0.0094
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Based on Table 7.6 the following is true:
D = sup|F;(x) — Fy;(x)| = 0.0127
The corresponding value of the test statistic is

Acar = DVn = 0.0127 - /200 = 0.180
e  Criterion of null hypothesis rejection based on the critical interval.

The critical interval for A is (1, ). Based on A Kolmogorov distribution tables
(Appendix 7), 1, = 1.358 for @ = 0.05. Therefore, numerically the critical interval
is (1.358, ).
The value of the test statistic A.4; = 0.180 is located outside the critical interval.
Therefore, the null hypothesis is accepted at the significance level & = 0.05.

e The criterion of null hypothesis rejection based on the p-value.
Based on A Kolmogorov distribution tables (Appendix 7), the p-value associated
with A.q; = 0.180is greater than 0.999. The p-value is greater than the value
a = 0.05; therefore, the null hypothesis is accepted at the significance level 0.05.
Based on the obtained results of hypothesis testing, one can assume that the size
of sardines has normal distribution at the significance level a = 0.05.
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8 ANALYSIS OF VARIANCE

The problem of indicating change in objects as a result of being influenced by
different factors is daily encountered in engineering practice.

A good example is a product. Its features are influenced by the parameters of a
production process, e.g. temperature, concentration of ingredients, type of
additive, intensity and/or duration of mixing and the like.

An engineer may be interested in securing reproducible products that requires
process parameters to remain within certain limits which do not cause significant
variability of the object. It is also possible that an engineer is interested in
modifying a product, e.g. improving its quality. This requires process parameters to
be changed in a way that causes significant and desirable change of the object.

The sensitivity of objects to nonrandom factors which act on them is statistically
analyzed with the analysis of variance (ANOVA). The main idea of the analysis of
variance consists of studying the variability in a response variable regarding factors
which are responsible for it.

The total variability of the response variable is decomposed into parts. Part of the
variability is attributed to random factors, another part is assigned to nonrandom
factors and yet another part is considered as resulting from interactions between
nonrandom factors. The significance of variation caused by nonrandom factors and
their interactions is judged versus the variability which has random origin.

The analysis of variance shall be employed to the measurement data collected in an
active manner (Charter 2).

8.1 ONE WAY ANALYSIS OF VARIANCE (ANOVA)

The simplest kind of analysis of variance, the so called one-way analysis of variance,
is dedicated to one-factor problems. The aim of this analysis is to find out whether
the investigated object is sensitive to one selected nonrandom factor. The feature
of the object, which is expected to be influenced by the factor, is represented by a
measurable response variable Y.

8.1.1 PREPARATION OF MEASUREMENT DATA FOR ONE-WAY
ANOVA

The main idea of the experiment providing data for one—way ANOVA is to expose
the object to several different levels of the considered factor, X, and to measure
values of the response variable Y several times for each level of the factor. All the
other known and controllable factors shall remain at a constant level during the
course of the experiment. The recommended form of the data table is shown in
Table 8.1.
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There are n levels of factor X, considered. The it" level of the factor is denoted by
X\ andi=1..n.rreplicate measurements of Y at each i level of factor X,are
performed. The k" replicate measurement is denoted by y., where k = 1...7.

Table 8.1 The table of measurement data prepared for the one-way analysis of variance.
Values of response variable Y correspond to different levels of factor X,.

Level of factor Replicate measurement of response variable Y
X4 1 k r
Xi vi Vi v
X i i v}
X3 b2 Vi yr

It is important to randomize the levels of the factor X, and to apply them to the
object in randomized order. The object shall never be exposed to increasing or
decreasing levels of the factor in sequence.

8.1.2 DECOMPOSITION OF VARIANCE IN ONE-WAY ANOVA

Two sources of variation of the response variable Y in the one-way analysis of
variance are considered. These are random factors and the nonrandom factor X,.
Their contribution to the variation of Y is represented by the associated variances.

In ANOVA, the total variation of variable Y is decomposed into two parts. The first
part is the so called within-level or within-group variation. It is attributed to
random factors. The second part is the so called cross-level or between group
variation. It is attributed to the factor X,.

28.1.2.1 MEANS OF THE RESPONSE VARIABLE

The overall mean p of the response variable Y, associated with object exposure to
factor X, is represented by the average ¥ of all values y}. recorded during r
replicate measurements at each of the n levels of the factor.

n T
_ 1 ;
7= 2, 2
i=1k=1
The average response of the object u! to the i*" level of factor X, is represented by

the average )7i of values recorded during repeated measurements while exposing
the object to the it" level of the factor.
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_ i

y = ;;)’k
It is expected that values of variable Y which are recorded in the course of
repeated measurements are different, i.e. y! = .. =y = ... #y!, despite the fact
that the object is exposed to a constant level of factor X,. The spread of values is
caused by random factors.

28.1.2.2 TOTAL VARIATION OF THE RESPONSE VARIABLE

In the one-way analysis of variance, the total variation of response variable Y is
represented by the sum of squares SS; of differences between the total mean and
every single value of this variable.

S5y = Z i(i - 3)’

i=1 k=1
The total variability of Y, represented by the sum of squares SSr, is the algebraic
sum of the variability of Y attributed to random factors, which is represented by
the sum of squares SSg, and the variability of Y attributed to a controlled factor X,
which is represented by the sum of squares SSg.

SS; = SSg + SS,

28.1.2.3 VARIATION ATTRIBUTED TO RANDOM FACTORS

The within level variation of the response variable Y is observed when the level of
factor X, is fixed. This variation is attributed to random factors. In the one-way
analysis of variance, the within level variation of Y is represented by a sum of
squares SSg. This is a sum of the squared differences between the mean value of
the response variable associated with the i*" level of factor y' and every single
value of this variable y,! recorded at this level of the factor.

555 = ii(yi - t)’

i=1 k=1
Referring to Table 8.1, SSg describes the variation of Y inside a single cell of the
table. It is aggregated for all the cells.
There are v; degrees of freedom associated with the within level variance:
vp=n-r—n=n(r—1)
The within level variance of Y is given by the following mean square:
SSg

SZ(Y)E =MSg =—
VE
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28.1.2.4 VARIATION ATTRIBUTED TO A NON-RANDOM FACTOR

The cross-level variation of the response variable Y is observed when levels of
factor X, are changed. This variation is attributed to factor X,. In the one-way
analysis of variance, the between-level variation of Y is represented by a sum of
squares SS4. This is the sum of squared differences between the overall mean
value of the response variable y and the mean values of the response variable "
associated with each level of factor X,.

n
S8, = Z(y — 51)?
i=1

Referring to Table 8.1, SS, describes the variation of Y among rows of the table.
There are v, degrees of freedom associated with the cross-level variance:
w=n-—1
The cross-level variance is given by the following mean square:
SS,

SZ(Y)A =MSy=—
Va

8.1.3 NULL HYPOTHESIS IN ONE-WAY ANOVA

The null hypothesis in the one-way analysis of variance states that the average
response of the object to different levels of factor X, is the same. In other words,
on average the object responds in the same way to each level of factor X4. The
object is insensitive to the changes of the factor. The formal representation of the

null hypothesis is the following:
i

HO:#1=...=H —"'=#n
The null hypothesis is tested versus the alternative hypothesisstating that the
average responses of the object are different for at least two different levels of
factor X,. In other words, the object is sensitive to the change between at least
two levels of the factor. The formal representation of the alternative hypothesis is
the following:

Hy:3 ptzut

wherei =1..n,l =1..nand i=.
The following test statistic is used for testing the null hypothesis:

_ SZ(J’)A
cal s2(V)g

If the null hypothesis is true, the variable F,;; has F-Snedecore distribution with
the degrees of freedom v, and vg.
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The critical interval criterion of null hypothesis rejection at the significance level
is
p(F = Fyy) =

is the value of variable F, which comes the F -Snedecore
distributions with the degrees of freedom v, and v, for the assumed value of a.

where: Fy ,, v

The critical interval for F,g; is F€<Fa,vA,vE,°°)- If Fcale<Fa,vA,vE'°°)' the null
hypothesis is rejected.
The p-value criterion of null hypothesis rejection at the significance level «is

p= P(FVA‘VE = Fcal) <a

The null hypothesis is rejected at the significance level aif ais greater than or
equal to p.

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig.
7.12 and Fig. 7.13.

Based on the presented reasoning, the null hypothesis is rejected when the test
statistic F4; reaches or exceeds Fy ,, ... The test statistic is the ratio between the
variance of the response variable which comes from nonrandom factors, s2(y),
and the variance of the response variable which is caused by random factors,
s2(y)g. Therefore, the null hypothesis is rejected if the variation of Y caused by
factor X, is large enough when compared to the variation caused by random
factors that the critical level Fy ,,, ,,. is reached. The rejection of the null hypothesis
indicates that the considered factor X, does significantly influence the object if
represented by the response variable Y.

The null hypothesis is accepted on the condition that the ratio between the
variance of response variable s2(y),, which comes from factor X,, and the
variance of response variable s2(y)g, which is caused by random factors, does not
exceed Fy ,,, .- That is, the variation of Y caused by factor X, is small enough when
compared to its variation caused by random factors that the critical level F, ,, ,, is
not reached. The acceptance of the null hypothesis indicates that the considered
factor X, does not significantly influence the object if represented by the response
variable Y.

8.1.4 EXAMPLE

Problem. Students were interested whether costs of dishwashing are influenced by
the way the dishes are washed. They decided to carry out a relevant experiment.
The response variable Y represented the costs of dishwashing. It was calculated as
the sum of the following components: cost of electricity, cost of gas, cost of water,
fee for the waste water, cost of the washing liquid, cost of dishwasher detergent
and cost of dishwasher salt. The investigated factor X, was the method of washing.
Three methods of washing were considered as three levels of the factor: ordinary

87



manual dishwashing, i.e. washing and rinsing with the water running (X3),
economical manual dishwashing, i.e. washing in the sink and rinsing with running
water (X?) and washing with a dishwasher (X3). A defined set of dishes was
washed three times using each dishwashing method.

The results of the experiment are shown in Table 8.2.

Table 8.2 The measurement data for the experiment considered in Example 8.1.4.

Level of Replicate measurement of response variable Y [PLN]
factor X, 1 ) 3

X} 0.34 0.41 0.8

X} 0.13 0.19 0.14

X3 0.827 0.837 0.827

The significance level & = 0.05 was assumed.

Solution. It is possible to solve the problem using the one-way analysis of variance.
The considered variable Y is the cost of dishwashing. It is worth testing the
hypothesis that the cost of dishwashing using any considered method is the same,
Hy: u* = u? = p3 versus the alternative hypothesis that at least two methods
produce different costs of dishwashing H,: 3 pu=u!, i = 1..3, | = 1..3. The relevant
calculation help is offered by the DATA ANALYSIS TOOL in Excel. The results of the one-
way ANOVA are shown in Table 8.3.

Table 8.3 ANOVA table for the measurement data shown in Table 8.2.

Source of
variance SS v MS Feal p-value | Fa=0.05,v4vz
X, S$S, = 0.689 vy =2 MS, =0.344 |16.530| 0.0036 5.143
random factor SSg =0.125 VE=06 MSg = 0.021
Total SS;=08137 | v =8

The criteria of null hypothesis rejection are fulfilled: Fooy = Fy,,,, =p < a, as
shown by the results in the one-way analysis of variance presented in Table 8.3.
Based on the performed analysis, students were able to infer that the method of

washing influenced the cost of washing in a statistically significant manner at the
significance level a = 0.05.

8.2 MULTI-WAY ANALYSIS OF VARIANCE (MANOVA)

A more complex version of the analysis of variance, the so called multi-way analysis
of variance, is dedicated to multi-factor problems. The aim of the analysis is to find
out whether the investigated object is sensitive to several selected nonrandom
factors and possibly their interactions. The feature of the object, which is expected
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to be influenced by the factors, is represented by a measurable response variable
Y.

The simplest multi-factor problem is a two-factor problem and the corresponding
analysis of variance is called two-way ANOVA. The analysis of two-factor problems
is covered in this book.

|8.2.1 PREPARATION OF MEASUREMENT DATA FOR TWO-WAY

| ANOVA

The main idea of the experiment providing data for two—way ANOVA is to expose
an object to all combinations of different levels of factors X4 and Xg. The response
variable values shall be measured several times for each combination of factor
levels. All the other known and controllable factors shall remain at a constant level

in the course of the experiment. The recommended form of data table is shown in
Table 8.4.

In the analysis, n levels of factor X, and m levels of factor Xp are considered. The
it level of factor X, is denoted as X}, i =1..n. The j'* level of factor X is
denoted as Xé,j = 1...m. r replicate measurements of the response variable Y for
each combination {X};,Xé} of levels of the considered factors are performed. The
k" replicate measurement is denoted by y,i‘j, wherek =1..r.

Table 8.4 Table of measurement data prepared for the two-way analysis of variance. Values
of response variable Y correspond to combinations of different levels of factors X, and Xp.

Level of
factor Xp
Xl Xj XxXm
Level of B B B
factor X,
1 1,1 1,1 1,1 1,j 1,j 1,j 1m 1im 1im
X3 Vi s Vi s e Yy Vi e Vi s e Yy Vi e Vi e Ve
i i1 i1 i1 ij ij ij im im im
Xa Vi Vi Ur Yives Vi oo Vr Vi Vi e Yy
n n,1 n,1 n,1 n,j n,j n,j nm nm nm
X Vi Vi e Yy Vi Vi s Yy Vi e Ve e Yy

It is important to randomize combinations {Xj,Xé} of levels of the considered
factors and to apply them to the object in a randomized order. The object shall not
be subsequently exposed to combinations organized along the increasing or
decreasing levels of factor X, or Xg.
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8.2.2 DECOMPOSITION OF VARIANCE IN TWO-WAY ANOVA

Four sources of variation of the measured variable Y in the two-way analysis of
variance are considered. These are random factors, factor X, factor X and the
interaction between factors X, and Xz. Their contribution to the variation of Y is
represented by the associated variances.

In two-way ANOVA, the total variation of variable Y is decomposed into four parts.
The first part is the so called within level or within group variation. It is attributed
to random factors. The second part is the so called cross-level or between group
variation and it is attributed to factor X4. The third part is the so called cross-level
or between group variation and it is attributed to factor Xg. The fourth part is the
variation attributed to the interaction between factor X, and factor Xg. The
interaction X,Xp can be understood as a ‘virtual’ factor resulting from the joint
impact of two ‘physical’ factors X, and Xg. It is a kind of added value due to the
exposure of the object to two factors simultaneously. The statistical significance of
the interaction is proof that one factor magnifies or reduces the impact of the
other factor on the object as compared to the circumstances when only one factor
acts on the object.

28.2.2.1 MEANS OF THE RESPONSE VARIABLE

The overall mean u of the response variable Y, associated with object exposure to

factors X, and Xp, is represented by the average y of all values y,i‘j recorded
during r replicate measurements of Y at each of n - m combinations of levels of

factors X, and X5.
n m T
IR
nmr k
Jj=1 1

i=1j=1k=

The average response ! of the object to the it" level of factor X, is represented by
the average y' of values recorded during repeated measurements while factor X,
remained at the it level and factor X5 was changed.

The average response u’ of the object to the j level of factor X5 is represented
by the average y’ of values recorded during repeated measurements while factor
Xp remained at the j level and factor X, was changed.
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Considering fixed combination {Xj,Xé} of levels of factors X, and X, it is expected
that the object responds with slightly different values of variable Y in repeated
measurements, namely y1”¢ #y,z’} Z ... ¢yr”, for i = const and j = const.
The differences are caused by random factors. In the two-way analysis of variance,
the average response '/ of the object to the {i, j} combination of levels of factor
X, and X is represented by the average ¥/ of values recorded during repeated
measurements while factor X, remained at the i*"level and factor X remained at

the jt" level.
1 T
N i
y T Z i
k=1

28.2.2.2 TOTAL VARIATION OF THE RESPONSE VARIABLE

In the two-way analysis of variance, the total variation of response variable Y is
represented by a sum of squares SS; of differences between the total mean of the

response variable ¥ and every single value of this variable y,i’f observed upon all
replicate measurements at each combination of levels of factor X, and X5.

n m T
L. 2
sse=) > ) 7%

i=1j=1k=1
The total variability of Y represented by the sum of squares S5 is the algebraic
sum of the variability of Y attributed to random factors, which is represented by
the sum of squares SSg, the variability of Y attributed to factor X4, which is
represented by the sum of squares SS,, the variability of Y attributed to factor Xg,
which is represented by the sum of squares SSg, and the variability of Y attributed
to the interaction of factors X, and X, which is represented by the sum of squares
SSup-

SST = SSE + SSA + SSB + SSAB

8.2.2.3 VARIATION ATTRIBUTED TO RANDOM FACTORS

The within-level variation of the response variable Y is observed when the
combination {Xf,,Xé} of levels of factors X, and Xy is fixed. This variation is
attributed to random factors. In the two-way analysis of variance, the within level
variation of Y is represented by a sum of squares SSg. This is a sum of differences
between the mean value of the response variable ¥/ associated with the {i, j}
combination of levels of factors X, and Xz and every single value of the response
variable y,%/ recorded upon repeated measurements associated with this
combination of factor levels.
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m r

SSe= ). > > (Y -y’

n
i=1j=1k=1
Referring to Table 8.4, the SSg describes the variation of Y inside a single cell of the
table. It is aggregated for all the cells.

There are v; degrees of freedom associated with the within-level variance:
vg =nm(r —1)

The within-level variance is given by the following mean square:

SSg

52(}’)13 =MSp =—
VE

28.2.2.4 VARIATION ATTRIBUTED TO THE NONRANDOM FACTOR X4

The cross-level variation of the response variable Y which is attributed to the factor
X, is observed when levels of factor X4 are changed. In the two-way analysis of
variance, the cross-level variation of Y caused by X, is represented by a sum of
squares SSy4. This is a sum of square differences between the overall mean value of
the response variable ¥ and the mean value of response variable y* associated with
every single level of factor X,.
n
_ _i\2
S8y = Z(y -y')

=1
Referring to Table 8.4, SS, describes the variation of Y among the rows of the
table.

There are v, degrees of freedom associated with the cross-level variance
attributed to factor X,:

vy=n-—1
The cross-level variance attributed to factor X, is given by the following mean
square:
SS4

SZ(Y)A =MSy=—
Va

28.2.2.5 VARIATION ATTRIBUTED TO THE NONRANDOM FACTOR Xp

The cross-level variation of the response variable Y, which is attributed to factor
Xpg, is observed when the levels of factor Xy are changed. In the two-way analysis
of variance, the cross-level variation of Y, caused by X5, is represented by the sum
of squares SS4. This is a sum of square differences between the overall mean value
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of the response variable  and the mean value of response variable y/ associated
with every single level of factor X5.

m
SSp = Z(y %
j=1

Referring to Table 8.4, SSg describes the variation of Y among the columns of the
table.

There are v degrees of freedom associated with the cross-level variance attributed
to factor Xp:
VB =m-— 1

The cross-level variance attributed to factor Xp is given by the following mean
square:
SSp
s?(y)p = MSp = —
VB

28.2.2.6 VARIATION ATTRIBUTED TO THE INTERACTION BETWEEN TWO
i NONRANDOM FACTORS

The variation of the response variable Y attributed to the interaction between
factors X, and X, is observed when combinations {X}, X} of levels of factors X,
and X are changed. In the two-way analysis of variance, the cross-level variation
of Y, caused by the interaction between factor X4 and X3, is represented by a sum
of squares SS,5. This is a sum of squared differences between the mean value of
response variable y%/ associated with the {i, j} combination of levels of the factors
X, and Xp increased by overall mean of the response variable y, and the sum of
the mean value of the response variable yi, associated with the it level of factor
X increased by the mean value of the response variable ¥/, associated with the j&"

level of factor X;.
n m T 2
s =) > > (Y +7) - (7 +7))

i=1j=1k=1
Referring to Table 8.4, SS,5 describes the variation of Y among the cells of the
table.

There are v, degrees of freedom associated with the cross-level variance
attributed to the interaction between factors X, and Xp:

vip=(m—1D(m-1)
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The cross-level variance attributed to the combination of factors X, and Xpis given
by the following mean square:

SSap

VaB

SZ(J’)AB =MSyp =

8.2.3 NULL HYPOTHESES IN TWO-WAY ANOVA

Three null hypotheses are considered in the two-way analysis of variance. The first
is used for testing the influence of factor X, on the response variable Y. The second
is used for testing the influence of factor X on the response variable Y. The third is
used for testing the influence of the interaction between factors X, and X5 on the
response variable Y. All three hypotheses are tested in parallel. The result of the
two-way analysis of variance consists of the summarized results of their testing.

1. NULL HYPOTHESIS ON FACTOR X,

The null hypothesis, which tests the influence of factor X, on the response
variable, states that the average responses of the object to different levels of factor
X, are the same in the whole range of variability of factor X4. In other words, on
average, the object responds in the same way to any level of factor X,. It is
insensitive to changes in this factor. The formal representation of the null
hypothesis is the following:

Ho:ﬂl =...=Hi — ... =,Ltn

The null hypothesis is tested versus the alternative hypothesis which states that the
mean responses of the object are different for at least two different levels of factor
X,. In other words, the object is sensitive to the change between at least two levels
of factor X,. The formal representation of the alternative hypothesis is the
following:

Hy:Api=ut
wherei =1..n,l =1..nand i=.

The following test statistic is used for testing the null hypothesis which refers to the
influence of factor X, on the response variable:

_ SZ(Y)A
cal s2()e

If the null hypothesis is true, the variable F,,; has F-Snedecore distribution with
the degrees of freedom v, and ve.

The critical interval criterion of null hypothesis rejection at the significance level a
is

P(F=Fyy,,)=a
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where: Fy ,, 1.

distributions with the degrees of freedom v, and v, for the assumed value of a.

is the value of variable F, which comes the F -Snedecore

The critical interval for F.4 is F6<FQ,VA,VE’OO)' If Fca1€<Fa,vA,VE,°°), the null
hypothesis is rejected.

The p-value criterion of null hypothesis rejection at the significance level ais

p=P(F, ., =Fa)<a

VA/VE =

The null hypothesis is rejected at the significance level aif ais greater than or
equal to p.

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig.
7.12 and Fig. 7.13.

Based on the presented reasoning, the null hypothesis is rejected when the test
statistic F.q; reaches or exceeds Fy ,, ,,.. The test statistic is the ratio between the
variance of response variable s2(y),, which comes from factor X,, and the
variance of response variable s2(y)gwhich is caused by random factors. Therefore,
the null hypothesis is rejected if the variation of Y caused by factor X, is large
enough when compared to its variation caused by random factors that the critical
level F, ,, . is reached. The rejection of the null hypothesis indicates that the
considered factor X, does significantly influence the object if represented by the
response variable Y.

The null hypothesis is accepted on the condition that the ratio between the
variance of response variable s?(y),, which comes from factor X,, and the
variance of response variable s?(y)g, which is caused by random factors, does not
exceed Fy ,, .- That is, the variation of Y caused by factor X, is small enough when
compared to its variation caused by random factors that the critical level F ,, ,_is
not reached. The acceptance of the null hypothesis indicates that the considered
factor X, does not significantly influence the object if represented by the response
variable Y.

2 NULL HYPOTHESIS ON FACTOR Xg

The null hypothesis testing the influence of factor Xz on the response variable is the
following:
HO:#l = =#] — e ='um

The null hypothesis claims that the average responses of the object to different
levels of factor Xg are the same in the whole range of variability of factor Xg. In
other words, on average, the object responds in the same way to any level of factor
Xp. Itis insensitive to changes in this factor.
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The null hypothesis is tested versus the alternative hypothesis:

Hy: 3l =ut
wherei =1..m,l =1..mand i=.
The alternative hypothesis states that the average responses of the object are
different in case of at least two levels of factor Xg. In other words, the object is
sensitive to the change between at least two levels of factor Xg.

The null hypothesis referring to the influence of factor X5 on the response variable
is tested using the following test statistic:

_ 52()’)3
cal s2(Y)g

If the null hypothesis is true, the variable F,,; has F-Snedecore distribution with
the degrees of freedom vg and vg.

The critical interval criterion of null hypothesis rejection at the significance level a
is

P(F=Fyyp) =

where: F,

%vgvg 1S the value of variable F, which comes the F -Snedecore

distributions with the degrees of freedom vz and vg, for the assumed value of a.

The critical interval for F,4; is Fe(Fa‘VB,VE,oo). If Fcale(Fa_vB‘vE,oo), the null
hypothesis is rejected.

The p-value criterion of null hypothesis rejection at the significance level « is
p ZP(FVB,VE ZFcal) Sa

The null hypothesis is rejected at the significance level aif ais greater than or
equal to p.

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig.
7.12 and Fig. 7.13.

Based on the presented reasoning, the null hypothesis is rejected when the test
statistic F.q; reaches or exceeds Fy ,, ... The test statistic is the ratio between the
variance of response variable s2(y)g, which comes from factor Xz, and the
variance of response variable s?(y)g, which is caused by random factors.
Therefore, the null hypothesis is rejected if the variation of Y caused by factor X5 is
large enough when compared to its variation caused by random factors that the
critical value Fy ,, ,, is reached. The rejection of the null hypothesis indicates that
the considered factor Xz does significantly influence the object if represented by
the response variable Y.

The null hypothesis is accepted on the condition that the ratio between the
variance of response variable s2(y)g, which comes from factor Xz, and the
variance of response variable s2(y)g, which is caused by random factors, does not
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exceed Fy . ,,. That is, the variation of Y caused by factor Xp is small enough
when compared to its variation caused by random factors that the critical value
Fy v, vp 1S NOt reached. The acceptance of the null hypothesis indicates that the
considered factor Xz does not significantly influence the object if represented by

the response variable Y.

3 NULL HYPOTHESIS ON THE INTERACTION BETWEEN FACTORS
i Xa AND Xg

The null hypothesis testing the influence of the interaction between factors X, and
Xp on the response variable is the following:

nm

HO:Mlnl — hhe — I’ll‘] — hee — 'u

This is tested versus the alternative hypothesis:
Hg: 3ubd =ube

where:i=1..n,l=1..n,j=1..m,0 = 1..m and i= or j=o.
The null hypothesis claims that the average responses of the object to different
combinations of levels of factors X, and Xg are the same in the whole range of
variability of both factors. In other words, on average, the object responds in the
same way to any combination of levels of factors X4 and Xp. The object is
insensitive to the changes in the combination of levels for the two factors. The
alternative hypothesis states that average responses of the object are not the same
in case of at least two different combinations of levels of factors X4 and Xz. In
other words, the object is sensitive to the change between at least two

combinations of levels of factors X, and Xg. This implies a sensitivity to the
interaction between factors.

The null hypothesis referring to the influence of the interaction between factors X,
and Xp on the response variable is tested using the following test statistic:

_ s2(Y) ap
cal = s2W)g

If the null hypothesis is true, the variable F,,; has F-Snedecore distribution with
the degrees of freedom vpg and ve.

The critical interval criterion of null hypothesis rejection at the significance level a
is

P(F = F, a

,VAB.VE) =
where: F, . ., is the value of variable F, which comes the F -Snedecore

distributions with the degrees of freedom v,z and vg, for the assumed value of a.

The critical interval for F.,; is FE(Fa,vAB,vEroo)- If Fogre{Fy, oo), the null

hypothesis is rejected.

VAB,VE’
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The p-value criterion of null hypothesis rejection at the significance level « is
P =P(Fups 2 Feat) S @

The null hypothesis is rejected at the significance level aif ais greater than or
equal to p.

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig.
7.12 and Fig. 7.13.

Based on the presented reasoning, the null hypothesis is rejected when the test
statistic F4; reaches or exceeds Fy ,, . ... The test statistic is the ratio between the
variance of response variable s?(y) 45, which comes from the interaction between
factors X, and Xg, and the variance of response variable s%(y)g, which is caused
by random factors. Therefore, the null hypothesis is rejected if the variation of Y
caused by the interaction between factors X, and Xp is large enough when
compared to its variation caused by random factors that the critical value Fy, ,,, . ,,.
is reached. The rejection of the null hypothesis indicates that the interaction
between factors X, and Xy does significantly influence the object if represented by
the response variable Y.

The null hypothesis is accepted on the condition that the ratio between the
variance of response variable s2(y) 45, which comes from the interaction between
factors X, and Xg, and the variance of response variable s2(y)g, which is caused
by random factors does not exceed Fy ,,, ,,.. That is, the variation of Y caused by
the interaction between factors X, and Xg is small enough when compared to its
variation caused by random factors that the critical value Fy ,,, . ,, is not reached.
The acceptance of the null hypothesis indicates that the interaction between
factors X, and Xz does not significantly influence the object if represented by the
response variable Y.

8.2.4 EXAMPLE

Problem. The owner of the greenhouse wants to buy soil and fertilizer in order to
grow a new variety of plant. It is important to know whether the kind of soil and
the kind of fertilizer influences the fruitage of the plant. Otherwise any soil and any
fertilizer is good.

The owner of the greenhouse performed an agricultural experiment which could
help him in selecting the right soil and fertilizer. Namely, he grew plants on
different soils, he used different fertilizers and he observed the fruitage. The
fruitage was indicated by the number of pieces of fruit delivered by a single plant.
This was considered as the response variable Y. The fruitage was influenced by two
factors. The first factor was the type of soil. It was denoted X,. The factor had
three levels X3, X? and X3, which were three different types of soil. The second
factor was the type of fertilizer. It was denoted Xj. This factor had four levels X3,
X3, X3, and Xz, which were four different types of fertilizer. Seven plants were
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grown for each combination of soil-fertilizer. The results of the experiment are
shown in Table 8.5.

8.5 Table of the measurement data for the problem considered in Example 9.2.4.

Xz
Xp X3 X3 X3
Xa
Xj 33 15 31 24 34 36 34 39 34 29 26 29 26 30 34 26 25 24 24 31
Xf 29 25 29 19 36 26 15 27 27 27 25 25 21 29 28 29 33 36 25 23
Xg 33 28 29 25 31 43 38 31 26 47 34 30 33 27 37 43 30 28 32 39

Solution. It is possible to study the problem using the two-way analysis of variance.
It is worth testing three null hypotheses:

1. The fruitage of the plant is the same irrespective of the soil used,
Hyp: ur = u? = u3, versus the alternative hypothesis that at least two
different soils provide different fruitage Hgq:3 pizul, i=1..3,
l=1..3.
2. The fruitage of the plant is the same irrespective of the fertilizer used,
Hoyp: ur = u? = u3 = u*, versus the alternative hypothesis that at least
two different fertilizers provide different fruitage Hg,,:3 yi;-‘yl ,
i=1..41=1..4
3. The fruitage of the plant is the same irrespective of the combination of
the soil and fertilizer used, Hys: u't = u'? = versus
the alternative hypothesis that at least two different soils provide
different fruitage, Hyz: Iut/=u'°, i=1..3,1=1..3, j=1..4,
o=1..4.
The relevant calculation help is offered by the DATA ANALYSIS TOOL in Excel. The
results of the two-way ANOVA are shown in Table 8.6.

=t =

Table 8.6 ANOVA table for the measurement data shown in Table 9.5.

Source of variance SS v MS Fear p-value | Fy_05
X4 5S4 = 436.156 w=2 | M§,=218.078 | 7.644 | 0.0013 | 3.191
Xg SSp =130.775 | vy=3 | MSp;=43.592 | 1.528 | 02193 | 2.798
Xy Xp SSap = 328430 | wp=6 | MSpp =54.738 | 1.919 | 0.0969 | 2.295
random factor SSg =1369.391 | vy =48 | MSg = 28.529
total S§Sr =2264.751 | vy =59

The obtained results of null hypotheses testing at the significance level o = 0.05,
based on ANOVA are shown in Table 8.6:
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1. the criterion of rejection of the null hypothesis Hy; was fulfilled because

it was shown that Feqy = Fy )y 0

2. the criterion of rejection of the null hypothesis Hy, was not fulfilled

because it was shown that Feoy < Fy \p 0

3. the criterion of rejection of the null hypothesis Hyz was not fulfilled

because it was shown that Feoy < Fy 0 e

Based on the performed analysis, the owner of the greenhouse is able to infer that
the type of soil influences the fruitage of the plant while the type of fertilizer does
not at the significance level & = 0.05 . Also, a significant interaction between the
soil and the fertilizer concerning the fruitage of the plant was not observed.

8.3 PAIRWISE COMPARISON - FISHER’S LEAST SIGNIFICANT
DIFFERENCE (LSD) METHOD

The analysis of variance examines the change of an object as a result of being
influenced by different factors. If results of ANOVA/MANOVA show that the object
is sensitive to a factor, further and more detailed questions may be asked. For
example: How big is the change of a factor which makes the object respond? Is the
size of change independent from the initial level of the factor?

Pairwise comparison is a method useful for solving this kind of problem. It consists
of comparing mean values of the response variable associated with various levels
of the considered factor. The differences between the means are evaluated versus
a certain reference regarding their statistical significance. The formula describing
the reference depends on the selected method of pairwise comparison.

It is worth to employ pairwise comparison if the considered factor is a nominal or
ordinal variable. Otherwise, a regression analysis may be attempted, which is still
more informative (see Chapter 9).

Fisher’s Least Significant Difference (LSD) method was selected for presentation in
this book as an exemplary pairwise comparison method. In the framework of this
approach, the reference is the least significant difference which is defined in the
following way:

where: t is the variable which has t-Student distribution, o, is the significance level,
v are degrees of freedom associated with MS;, MSg is the mean square
representing the within level variance of the collected measurement data, r; is the
number of replicate measurements at the i*" level of considered factor, 7; is the
number of replicate measurements at the [t" level of the considered factor.
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The difference between responses of the object to two different levels of the factor
is compared with the LSD. The difference is considered significant at the
significance level a if the following is true:

|y' - ¥'| = LSD
where: )7i is the average object response to the i*"level of the factor and ' is the
average object response to the It" level of the factor.
The difference is considered insignificant, at the significance level ¢, if the following
is true:

|y' —¥'| < LSD

Calculations are done for each pair (i, 1) of levels of the factor.

8.3.1 EXAMPLE

Problem. It was shown in the solution of Example 8.1.4 that the method of
dishwashing significantly influenced the cost of dishwashing. It is interesting to find
out which methods are really different in that respect.

Solution. It is possible to solve the problem using pairwise comparison. For
example, the least significant difference method may be employed. The considered
response variable Y is the cost of dishwashing while the considered factor X, is the
method of dishwashing.

The mean value of the response variable associated with each level of factor X,
was calculated as shown in Table 8.7.

Table 8.7 Mean value of the response variable associated with each level of factor Xj4.

Level of factor Level description mean value of Y
Xa
Xi ordinary manual dishwashing y! =0.5167
X? economic manual y2 =0.1533
dishwashing
X3 washing with a dishwasher y3 =0.8303

Assuming the significance level & = 0.05, the LDS is:

1 1 11 1 1
LSD = to, |MSg (; + 71) = toos6 |0.0208 <§ + §> = 2.447 [0.0208 (§ + §)
L

= 0.2882
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The value of t,,, = tg056 Was found in the tables of the t-Student distribution. All
the other values were found in the corresponding ANOVA table (Table 8.3). Due to
the equal number of replicate measurements at each level of the factor X,, the
LSD is the same for all the pairs of compared levels of factor X,.

The table of pairwise comparisons is presented in Table 8.8.

Table 8.8 Table of pairwise comparisons.

Paf:c‘:):e;jlis_ff |yt -7 LSD Conclusion
1-2 |0.3643] 0.2882 A
1-3 |-0.3136] 0.2882 Ty
2-3 |-0.677| 0.2882 AL

As shown in Table 8.8, the difference |y* — 7!| is greater than the LSD for any two
levels {i,[} of factor X,. Therefore, changing between any two levels of the
considered factor X, caused significant change in the response variable Y, at the
significance level a = 0.05.

Based on the performed statistical analysis, it is inferred that changing between
any two methods of dishwashing caused significant change in the costs of
dishwashing. Additionally, by looking at values of differences y* — y' and at their
signs, one may notice that the most disadvantageous was the replacement of
economic manual dishwashing by the dishwasher. Switching between the
economic manual dishwashing and ordinary manual dishwashing increased the cost
in a similar manner as changing ordinary manual dishwashing for the dishwasher.
Surprisingly, the analysis has shown that machine dishwashing is the least
beneficial (largest ¥3) .
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9 REGRESSION ANALYSIS

The problem of objects changing as a result of being influenced by different factors
may be studied in various aspects. The analysis of variance, which was introduced
in Chapter 8, is adequate for detecting the statistically significant change of an
object. However, in many cases such conclusions are insufficient. A more advanced
approach consists of forming a quantitative description of object change resulting
from the influence of factors.

The quantitative description of the relationship between the values of factors and
the values of a response variable is of great practical importance. For example,
knowing this relationship an engineer is able to predict the response variable based
on values of factors. Also, the engineer may be able to identify the values of factors
which make the response variable take a particular, desired value.

Regression analysis is used for the quantitative representation of the relationship
between two or more random variables. Regarding their status in the relationship,
variables are divided into two groups: independent, also called explanatory, or
predictor variables and dependent, also called response variables. The main idea of
the regression analysis is to explain the variability of the dependent variable using
the variability of independent variables.

There are several types of regression regarding the number of independent
variables. The most frequently used in engineering applications are:

e Simple or univariate regression. It is used for representing the relationship
between one independent variable and one dependent variable.

e Multiple regression. It is used for representing the relationship between
several independent variables and one dependent variable.

Considering the kind of mathematical relationship regarding model parameters:

e Linear regression. Observational data are modeled by a function which is a
linear combination of the model parameters.

e Nonlinear regression. Observational data are modeled by a function which
is a nonlinear combination of the model parameters.

Regression analysis consists of building a regression model and its diagnostics.

One shall distinguish two kinds of relationships described using regression analysis.
Some relationships have a cause-response character while others represent only
correlations. The difference is substantial from a practical point of view. The cause-
response relationship is when the dependent variable is really influenced by
independent variable(s), i.e. the change of an independent variable causes the
change in a dependent variable. The relationship having a correlation character
occurs when the dependent variable varies together in a synchronized manner with
the independent variable(s). The change of independent variable(s) does not cause
the change of the dependent variable, but there is another, third factor which
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influences both variables in a cause-response manner and makes them change
together in a correlated way.

The regression model which represents a cause-response relationship shall be built
exclusively using the measurement data provided in the course of an active
experiment (see Chapter 2). This model may be used for prediction purposes.

The regression model which has a correlation character may be built using the
measurement data provided in course of a passive experiment (see Chapter 2). It is
not allowed to use this model for prediction purposes unless the theoretical
justification of the cause-response relationship is available.

9.1 REGRESSION MODEL

The general form of the regression model is the following:

Y= f()?, ﬁ) +¢

where: Y is the dependent variable, f indicates a mathematical function,
X = [X1, X5, ..., Xk ] is the vector of k independent variables,[? is the vector of
coefficients in the regression equation, ¢is a random component.

The regression model states that the total variability of the dependent variable Y is
composed of two elements. The first element is the deterministic component
f()?, E), which can be described using the mathematical function f. This element is
also referred to as ¥, which indicates the part of variable Y accounted for by the
deterministic part of the regression model. The second element of the regression
model is the random component . It is the difference between the actual
measured variable Y and its part which is calculated from the deterministic part of
the regression model:

e=Y-f(X,5)
e=Y-Y
The random component is also referred to as a residual or an error.
Principal assumptions upon the regression analysis refer to a random component.

These are: the mean of random component is zero; the variance or random

component is constant across the observations and it is independent of)_f; the
random component is not autocorrelated. Another important assumption refers to
the independent variables and it states they should be uncorrelated.

From the computational point of view, the regression analysis is aimed at
calculating the vector of coefficients ,67 The resulting deterministic component of
the model shall allow for good separation of the variability of the dependent
variable caused by the deterministic factors from the variability resulting from
random component. The type of function f is either known or its convenient form
is assumed, e.g. linear. It is required that the number of data points which are used
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in calculations exceed the number of coefficients in the regression equation.
Otherwise, there is not enough data to calculate all coefficients or the coefficients
may be obtained directly using a set of algebraic equations.

The most commonly applied strategy aimed at calculating coefficients in a
regression equation is called the ordinary least-squares method (OLSM). The main
idea of this method is to minimize the sum of squared distances between the
variable Y and the deterministic component of the regression model ¥ for all data
points which are used for building the regression model.

For explaining the concept behind the LSM, the case of univariate linear regression
is considered here. The simple regression model has the following form:

y=Ppix+pBot+e
A scatter plot representing an example of the relationship between the random
variables Y and X may be described using simple regression as shown in Fig. 9.1.

A

Vi
Yi

»

x>

Figure 9.1 Scatter plot of the relationship between random variables Y and X, which may be
described using simple regression.

In the case of simple regression the vector of model coefficientsﬁ consists of two
elements: B, and ;. As a result of using the OLSM for calculating the values of £
and f3, for the regression line, their estimates f3; and 3, will have such values that
the location of the regression line will be driven by the minimization of the sum of
square areas, which are shown in Fig. 9.1. If the criterion of the minimum sum of
squares, i.e. min(X,(y; —9,)) is fulfilled, the estimates f3;, f, are calculated
from the following equations:

S - D)
h=""r =2

P

[;)0=7_ﬁ1x
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The ordinary least squares method is also applicable in the case of multiple linear
regression. The multiple linear regression model is the following:

Y =Pixs+ Paxy + - Brxp + Po + €
where k is the number of independent variables in the regression model. It is
recommended to use statistical software or adequate tollboxes for calculating the
values of regression coefficients By, B4, .., fx in the case of multiple linear
regression. Manual calculations are too complex and time consuming. The reader is
referred to the relevant functionality available in Excel.

In the case that the ranges of independent variables are very different, e.g. they
differ by one or more order of magnitude, it is recommended to standardize the
variables (see §5.2) before including them in the regression model.

9.2 DIAGNOSTICS OF THE REGRESSION MODEL

A number of diagnostic tools are available for checking the quality of the regression
model. Regression model diagnostic tools may be divided into two groups. The first
group is used for checking if the particular regression model is the right selection
for describing the relationship between the dependent variable and independent
variable(s). This group includes statistical tests of significance for the entire model,
statistical tests of significance of coefficients in the regression model and tests
dedicated to verifying the assumptions which were made prior to model
construction. The second group of tools is used for assessing the goodness-of-fit,
i.e. how well the regression model explains the variability of the response variable
Y. The most useful tools are the diagnostic plot, coefficient of determination and
standard error.

9.2.1 SIGNIFICANCE OF THE REGRESSION MODEL

The significance of the regression model is investigated by testing the
corresponding statistical hypothesis. The null hypothesis states that all the
coefficients which stand next to the independent variables in the regression model
are equal zero. The formal representation of the hypothesis is the following:

Hy: 1=, ==Px=0
If the null hypothesis is true, the regression model, for example multiple regression
model:

Yy = P1x1 + Boxy + - Brxy + Bo + €
is reduced to the form:
y=PBote

which indicates that none of the independent variables contribute to explaining the
variation of the dependent variable.
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The null hypothesis is tested versus the alternative which states that at least one
coefficient in the regression model is different from zero. The formal
representation of the alternative hypothesis is the following:
The test statistic employed for null hypothesis testing is
MSg
F. ,=—
cal MSE

where MSy, is the mean square regression and it is calculated as follows:

SSp Y. - )?

and MSg is the mean square error and it is calculated using the formula:

ws, = 558 _ T =90’

n—k—-1 n—k—-1
where: SSg is the sum of square regression, SSg is the sum of square error, n is the
number of data points used for developing the regression model, k is the number
of independent variables in the model, J; is the i*" calculated value of the response
variable, ¥ is the mean of the measured values of the response variable, y; is the
it" measured value of the response variable.

If the null hypothesis is true, the test statistic has F-Snedecore distribution with,
vy = kand v, = n — k — 1 degrees of freedom.

The mean square regression, MSy indicates the variability of the response variable
calculated from the regression model around the mean of the response variable Y.
The mean square error, MSy indicates the discrepancy between measured values
of the response variable Y and values calculated from the regression model Y.

The criterion of null hypothesis rejection at the significance level ¢, is the following:
p(F = th,Vsz) =a=p= P(FVLVZ = Fcal) sa

The critical interval for Feq is  Fe(Fg, v, 00). If Feqi€(Fa, vy, v, 00), the null
hypothesis is rejected. The same holds if the p-value is less than or equal to the
significance level a.

For the graphical interpretation of the criteria of null hypothesis rejection see Fig.
7.12 and Fig. 7.13.

The rejection of the null hypothesis is synonymous with considering the regression
model as significant, i.e. able to explain the variability of the response variable with
a set of independent variables at the significance level a.

The acceptance of the null hypothesis is synonymous with considering the
regression model as insignificant, i.e. unable to explain the variability of the
response variable with a set of independent variables at the significance level a.
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9.2.2 SIGNIFICANCE OF REGRESSION MODEL COEFFICIENTS

The test on the significance of a regression model refers to the entire model and
does not offer any knowledge about the elements of the model. It may happen that
the entire regression model is significant, but some of the model coefficients are
statistically insignificant. If so, the independent variables which stand by these
coefficients do not contribute much to the explanation of the variability of the
dependent variable. One may consider removing them from the model, which
results in model simplification.

The significance of a coefficient in the regression model is evaluated by testing the
corresponding statistical hypothesis.

The null hypothesis on the significance of the k" coefficient in the regression
model states that this coefficient is equal to zero. The formal representation of the
hypothesis is the following:
Hy: B =0
The null hypothesis is tested versus the alternative hypothesis, which states that
the coefficient is different from zero, as follows:
HA: ﬁk * 0
The test statistic employed for null hypothesis testing is
_ Bk
teal = ST
Bk
where: B is the estimate of coefficient B in the regression model, sg, s the
standard error of estimation of 8. The formula describing Sp,is out of the scope of
this book. The reader shall understand that a large value of 5B, indicates that the
estimate of S, with B is unstable, which is unwanted.

Significant coefficients are clearly different from zero and the error of their
estimation is low. For such coefficients the value of t.,; is relatively high.
Insignificant coefficients are close to zero and/or the error of their estimation is
high. For such coefficients the value of t.,; is relatively low.

If the null hypothesis is true, the test statistic t.4; has t-Student distribution with
v=n—k — 1 degrees of freedom.

The criterion of null hypothesis rejection at the significance level « is the following:

P> te,)=a=p=PUtl> taw) <

The critical interval for t.q; is te (—w,—tg_v) u (t%’V,OO>. If teqi€ (—w,—t%’v) u
(tZV,OO), the null hypothesis is rejected. The same holds if the p-value is less than
>

or equal to the significance level a.

108



For the graphical interpretation of the criteria of null hypothesis rejection see Fig.
7.4 and Fig. 7.5.

The rejection of the null hypothesis for a particular coefficient S in the regression
model is synonymous with considering the coefficient as significant at the
significance level a. In other words, the independent variable X}, which stands next
to the coefficient, is considered as significantly contributing to the explanation of
the variability of the response variable Y.

The acceptance of the null hypothesis for a particular coefficient ) in the
regression model is synonymous with considering the coefficient as insignificant at
the significance level a. In other words, the independent variable X}, which stands
next to the coefficient, is considered as insignificantly contributing to the
explanation of the variability of the response variable Y. One shall consider
removing this variable from the regression model and recalculating.

The relevant hypothesis shall be formulated and tested for every coefficient in the
model.

9.2.3 DIAGNOSTIC PLOT

The simplest diagnostic tool which indicates the goodness-of-fit has a graphical
character. The diagnostic plot is a scatter plot. Values of the response variable, Y
are represented on the horizontal axis and values calculated from the regression
model, ¥ are represented on the vertical axis. A single point in the plot has the
coordinates (y;, $;). Both values are associated with the it" set of values of the
independent variables [x}, x5, ..., xL].

Figure 9.2 Examples of various diagnostic plots.

There are two extreme layouts of points in a diagnostic plot. The one shown in Fig.
9.2a indicates a perfect fit. The points in the diagnostic plot are located along the
line y = §. In this case, the regression model explains the entire variability of the
response variable. This ideal case is unrealistic due to the existence of variability of
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Y caused by random factors. If this identity is obtained in the course of regression
model parameterization, it indicates that the data is overfitting. The other extreme
layout is shown in Fig. 9.2b. This represents a lack of fit. The cloud of points in the
diagnostic plot takes the form of a circular shape. In this case, the regression model
is totally unable to explain the variability of the response variable. Between these
two extremes there are scatter plots which show different degrees of goodness-of-
fit. In general, the slim oval shape of the cloud of points along the liney =§
indicates that the particular kind of regression model was a good selection. A
smaller spread of points along the reference line y = J, indicates a better fit. Also,
more specific information is carried by the diagnostic plots. An example of a plot
which indicates underestimation is presented in Fig. 9.2c. The cloud of points has a
lower tilt than the reference line. The range of values of Y which are represented
by the regression model is smaller than the entire range of the response variable.
The inappropriateness of linear regression for representing the variability of Y is
visible in the diagnostic plot shown in Fig. 9.2d. The bent form of the scatter
indicates that there is a nonlinear component missing in the regression model.

9.2.4 COEFFICIENT OF DETERMINATION

The coefficient of determination is one of the basic diagnostic tools indicating the
goodness-of-fit of experimental data by the regression model.

The coefficient of determination is calculated by the following formula:
s _ 23— )
Yis i = ¥)?
The graphical representation of the idea behind the coefficient of determination is
shown in Fig. 9.3 considering a single data point.

The denominator in the r2 formula contains the difference |y; — ¥|. It is the key
element in the formula describing the variance of variable Y. The difference tells
the distance between the i*" value of the variable and the overall mean value of
the variable (Fig. 9.3). Part of this distance is the difference |9; — J|, which is
placed in the nominator of ther? formula. It may be understood as the key
element of variance of variable Y. This part of the distance is accounted for by the
regression model. The other part |§; — y;| remains unexplained. It comes from
random factors and independent variables not included in the regression model.
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Figure 9.3 lllustration of the elements of the formula describing the coefficient of
determination.

The coefficient of determination shows the fraction of variance of the response
variable explained by the regression model. The coefficient takes values from the
interval 2 € (0,1).

In the ideal case the entire variability of the response variable is explained by the
regression model and r2 = 1. In the worst imaginable case none of the variability
of the response variable is explained by the regression model and r? = 0. The
coefficient of determination indicates that the regression model well explains the
variation of the response variable if its value is close to one. Such models are called
adequate. Small values for the coefficient of determination are obtained for models
which poorly explain the response variable. Close to zero values of r? indicate
highly inadequate models.

In the case of multiple regression models, the basic formula for the coefficient of
determination is slightly modified in order to obtain the corrected coefficient of
determination, which shall be used for assessing the goodness-of-fit:

n—1
n—k—-1
The correction prevents the increase of the value of this coefficient in case the
number of independent variables is increased in the model while they do not
contribute substantially to explaining the variance of the response variable. By

using the significance test together with this coefficient, it is possible to point out
redundant variables in the regression model and remove them.

2=1-(1-1%

9.3 PREDICTION WITH THE REGRESSION MODEL

One very useful application of the regression model is prediction. Prediction is the
calculation of the value of the response variable for the set of values of
independent variables. The principle restrictions to be obeyed when using the
regression model for prediction concern the range of values of independent
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variables. It is allowed to predict the response variable based on a regression
model within the range of the values of independent variables considered while
parameterizing the regression model. It is not allowed to predict the response
variable with the regression model outside the range of the values of independent
variables considered while parameterizing the regression model. The quality of
prediction is quantifiable and the example of the relevant indicator is the standard
error of prediction.

9.3.1 STANDARD ERROR

Standard error represents the distance between the real values of the response
variable and its values obtained from the deterministic part of the regression
model. The error formula is the following:

S = MSE

where: MS is the mean square error (see §9.2.1). The standard error is obtained in
the units of the response variable.

Small values of standard error indicate good fit between the measured values of
the response variable and their counterparts calculated from the regression model.

The standard error may be calculated for the pool of data which were used at the
stage of model parameterization. In such case, it acts as the diagnostic tool. Also,
standard error may be calculated for the pool of data which are different from
those used at the stage of model parameterization. In such case, this measures the
predictive ability of the model.

For the sake of obtaining a relative indicator, the standard error is referred to the
average value of the response variable.

s
I ==-100%
y

Again, preferred indicator values are close to zero. Depending on their planned use,
models characterized by up to 5 %, 10 % or even a 20% level of relative error may
be considered satisfactory.

9.3.2 EXAMPLE

Problem. An engineer uses his car daily for driving to work, shopping and reaching
many other destinations not far from home. He was interested in the relationship
between fuel consumption and the distance driven as well as the number of stops
encountered during travel. Stops are mainly enforced by traffic lights. He collected
data concerning fuel consumption at various travel distances including the number
of stops encountered during travel. They are shown in Table 9.1.
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9.1 Experimental data concerning fuel consumption, travel distance and number of stops
encountered during travel.

Fuel Travel Fuel Travel
consumption distance Number of consumption distance Number of
W/mL | xp/km | P Ty me | )/ km | StoPs ()
27 0.9 2 49 7.4 4
104.5 9.6 8 96.9 115 9
163.3 9.7 11 243 1 2
36 1.6 2 110 115 10
100 9.7 9 14.4 1.2 1
91.8 10.1 10 14.4 0.8 2
132.5 11 12 55.3 1.9 6
85 12 72 4.4 8
31.5 1.6 4 93.1 10.1 10
84.5 4.3 11 35.6 1.5 2
135 11.3 16 95.2 10.7 7
78 10.6 7 335 1.6 3
41 1.1 2 72 43 7
124.2 4.9 11 114.4 115 10
83.2 131 5 105 111 9
105 111 9

Solution. It is possible to analyze the problem using multiple linear regression. One
needs to assume that the relationship between the response variable - fuel
consumption (Y) and the two independent variables: travel distance (X;) and
number of stops (X,) is linear and it can be represented by the following equation:

Y =PB1X1+BXo+ Byt ¢

This is a good starting assumption as theoretical knowledge concerning the
character of such a relationship is not available.

The relevant calculation help is offered by the DATA ANALYSIS TOOL in Excel. The
results of the regression analysis are shown in Table 9.2 - 9.4.

Table 9.2 Regression analysis for the data shown in Table 9.1 - Regression statistics.

T2 0.881
72 0.872
MRE 14.126
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Table 9.3 Regression analysis for the data shown in Table 9.1- Significance of the regression
model.

v SS MS Feqy Foo.0s

Regression 2 SSp = 3972597 | MS, = 19862.99 99.55 347E —13
Random 27 SSg = 5387.34 MS; = 199.53
Total 29 SSr =45113.31

Table 9.4 Regression analysis for the data shown in Table 9.1 — Significance of model
coefficients.

B Sp ] p-value
X1 7.26 0.983 7.381 6.1F — 08
X, 2.53 0.840 3.013 0.00557
constant term 9.41 5.433 1.731 0.09478
160
X
140}
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9.4 Diagnostic plot for the regression model developed in example 10.3.2

Based on the results of the regression analysis shown in Table 9.2 - 9.4, a number
of conclusions can be drawn about the considered regression model.

e The model is statistically significant at the significance level @ = 0.05. The
condition of rejection of the null hypothesis about all model coefficients
being zero is not fulfilled (F.4; > Fa=0.05)-

e The model offers high goodness-of-fit. The corrected coefficient of
determination 72 = 0.872 has a high value.

e The multiple linear regression model was a good choice for representing
the relationship between the considered variables. The points in the
diagnostic plot do not retract systematically from the line y = .
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e The two variables X; and X, contribute to the explanation of the response
variable Y in a statistically significant manner. The associated p-values are
smaller than o= 0.05. The constant term f, is not significant. The
associated p-value is greater than .

e The contribution of X; to the explanation of the response variable Y is over
two times higher than the contribution of X5.

Considering the real meaning of the variables included in the regression model, it is
possible to infer about the relationship between the fuel consumption and travel
distance together with the number of stops encountered during travel. Namely,
there is a statistically significant relationship between these variables. The linear
function is a good approximation of the relationship. Interestingly, the fuel
consumption is more strongly influenced by the number of stops encountered
during travel than by the travel distance. These conclusions are valid for the
particular considered case, i.e. the car, the driver and the city. They do not have a
general character.
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APPENDIX1 NORMAL DISTRIBUTION

0.35
03~
0.25
g 02
0.15-
01
0.05
4 3 4
Tablel F(Z)=p(Z<2)
z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
11 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
14 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
15 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
24 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
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APPENDIX 2 T-STUDENT DISTRIBUTION

Table2 ¢, suchthatp(t,, <|t])=a

v

0.5 0.4 0.3 0.2 0.1 0.05 0.04 0.03 0.02 0.01 0.001
1 1.000 1.376 1.963 3.078 6.314 12.706 15.894 21.205 31.821 63.656 636.578
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 5.643 6.965 9.925 31.600
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 3.896 4.541 5.841 12.924
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.298 3.747 4.604 8.610
5 0.727 0.920 1.156 1.476 2.015 2571 2.757 3.003 3.365 4.032 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 2.829 3.143 3.707 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.715 2.998 3.499 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.634 2.896 3.355 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.574 2.821 3.250 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.527 2.764 3.169 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.491 2.718 3.106 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.461 2.681 3.055 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.436 2.650 3.012 4.221
14 | 0692 0868 1076 1345 1761 2.145 2.264 2415 2.624 2977 4.140
15 0.691 0.866 1.074 1.341 1.753 2131 2.249 2.397 2.602 2.947 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.382 2.583 2.921 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.368 2.567 2.898 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.356 2.552 2.878 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.346 2.539 2.861 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.336 2.528 2.845 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.328 2.518 2.831 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.320 2.508 2.819 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.313 2.500 2.807 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.307 2.492 2.797 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.301 2.485 2.787 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.296 2.479 2.779 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.291 2.473 2771 3.689
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.286 2.467 2.763 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.282 2.462 2.756 3.660
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.278 2.457 2.750 3.646

118




Table 2 continuation,

tyysuchthatp(t,, < |t]) = a

v a

0.5 0.4 0.3 0.2 0.1 0.05 0.04 0.03 0.02 0.01 0.001
31 0.682 0.853 1.054 1.309 1.696 2.040 2.144 2.275 2.453 2.744 3.633
32 0.682 0.853 1.054 1.309 1.694 2.037 2.141 2271 2.449 2738 3.622
33 0.682 0.853 1.053 1.308 1.692 2.035 2.138 2.268 2.445 2733 3.611
34 0.682 0.852 1.052 1.307 1.691 2.032 2.136 2.265 2.441 2.728 3.601
35 0.682 0.852 1.052 1.306 1.690 2.030 2133 2.262 2.438 2.724 3.591
36 0.681 0.852 1.052 1.306 1.688 2.028 2131 2.260 2.434 2719 3.582
37 0.681 0.851 1.051 1.305 1.687 2.026 2129 2.257 2431 2.715 3.574
38 0.681 0.851 1.051 1.304 1.686 2.024 2127 2.255 2.429 2.712 3.566
39 0.681 0.851 1.050 1.304 1.685 2.023 2.125 2.252 2.426 2.708 3.558
40 0.681 0.851 1.050 1.303 1.684 2.021 2123 2.250 2.423 2.704 3.551
41 0.681 0.850 1.050 1.303 1.683 2.020 2121 2.248 2421 2.701 3.544
42 0.680 0.850 1.049 1.302 1.682 2.018 2.120 2.246 2.418 2.698 3.538
43 0.680 0.850 1.049 1.302 1.681 2.017 2118 2.244 2.416 2.695 3.532
44 0.680 0.850 1.049 1.301 1.680 2.015 2.116 2.243 2414 2.692 3.526
45 0.680 0.850 1.049 1.301 1.679 2.014 2115 2241 2412 2.690 3.520
46 0.680 0.850 1.048 1.300 1.679 2.013 2114 2.239 2.410 2.687 3.515
47 0.680 0.849 1.048 1.300 1.678 2.012 2112 2.238 2.408 2.685 3.510
48 0.680 0.849 1.048 1.299 1.677 2.011 2111 2.237 2.407 2.682 3.505
49 0.680 0.849 1.048 1.299 1.677 2.010 2.110 2.235 2.405 2.680 3.500
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.234 2.403 2,678 3.496
51 0.679 0.849 1.047 1.298 1.675 2.008 2.108 2.233 2.402 2.676 3.492
52 0.679 0.849 1.047 1.298 1.675 2.007 2.107 2231 2.400 2,674 3.488
53 0.679 0.848 1.047 1.298 1674 2.006 2.106 2.230 2.399 2,672 3.484
54 0.679 0.848 1.046 1.297 1674 2.005 2.105 2.229 2.397 2.670 3.480
55 0.679 0.848 1.046 1.297 1.673 2.004 2.104 2.228 2.396 2.668 3.476
56 0.679 0.848 1.046 1.297 1673 2.003 2.103 2.227 2.395 2.667 3.473
57 0.679 0.848 1.046 1.297 1.672 2.002 2.102 2.226 2.394 2.665 3.469
58 0.679 0.848 1.046 1.296 1.672 2.002 2101 2.225 2.392 2.663 3.466
59 0.679 0.848 1.046 1.296 1671 2.001 2.100 2.224 2.391 2.662 3.463
60 0.679 0.848 1.045 1.296 1671 2.000 2.099 2.223 2.390 2.660 3.460
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APPENDIX 6 K VALUES FOR CALCULATING TOLERANCE LIMITS

confidence, q
90% 95% 99%
percentage, Q
n 95% 99% 99.90% 95% 99% 99.90% 95% 99% 99.90%
2 18.800 24.167 30.227 37.674 48.430 60.573 188.491 242.300 303.054
3 6.919 8.974 11.309 9.916 12.861 16.208 22.401 29.055 36.616
4 4.943 6.440 8.149 6.370 8.299 10.502 11.150 14.527 18.383
5 4.152 5.423 6.879 5.079 6.634 8.415 7.855 10.260 13.015
6 3.723 4.870 6.188 4414 5775 7.337 6.345 8.301 10.548
7 3.452 4521 5.750 4.007 5.248 6.676 5.488 7.187 9.142
8 3.264 4.278 5.446 3.732 4.891 6.226 4.936 6.468 8.234
9 3.125 4.098 5.220 3532 4.631 5.899 4.550 5.966 7.600
10 3.018 3.959 5.046 3.379 4.433 5.649 4.265 5.594 7.129
15 2.713 3.562 4.545 2.954 3.878 4.949 3.507 4.605 5.876
20 2.564 3.368 4.300 2.752 3.615 4.614 3.168 4.161 5.312
25 2.474 3.251 4.151 2.631 3.457 4.413 2.972 3.904 4.985
30 2413 3.170 4.049 2.549 3.350 4.278 2.841 3.733 4.768
35 2.368 3.112 3.974 2.490 3.272 4.179 2.748 3.611 4.611
40 2.334 3.066 3.917 2.445 3.213 4,104 2.677 3.518 4.493
45 2.306 3.030 3.871 2.408 3.165 4.042 2.621 3.444 4.399
50 2.284 3.001 3.833 2.379 3.126 3.993 2.576 3.385 4.323
55 2.265 2.976 3.801 2.354 3.094 3.951 2.538 3.335 4.260
60 2.333 2.248 2.955 3.774 3.066 3.916 2.506 3.293 4.206
65 2.235 2.937 3.751 2.315 3.042 3.886 2.478 3.257 4.160
70 2.222 2.920 3.730 2.299 3.021 3.859 2454 3.225 4,120
75 2211 2.906 3.712 2.285 3.002 3.853 2433 3.197 4.084
80 2.202 2.894 3.696 2.272 2.986 3.814 2414 3.173 4.053
85 2.193 2.882 3.682 2.261 2971 3.795 2.397 3.150 4.024
90 2.185 2.872 3.669 2.251 2.958 3.778 2.382 3.130 3.999
95 2.178 2.863 3.657 2.241 2.945 3.763 2.368 3.112 3.976
100 2172 2.854 3.646 2.233 2.934 3.748 2.355 3.096 3.954
110 2.160 2.839 3.626 2.218 2.915 3.723 2.333 3.066 3.917
120 2.150 2.826 3.610 2.205 2.898 3.702 2.314 3.041 3.885
130 2.141 2.814 3.595 2.194 2.883 3.683 2.298 3.019 3.857
140 2134 2.804 3.582 2.184 2.870 3.666 2.283 3.000 3.833
150 2127 2.795 3571 2175 2.859 3.652 2.270 2.983 3811
160 2121 2.787 3.561 2.167 2.848 3.638 2.259 2.968 3.792
170 2.116 2.780 3.552 2.160 2.839 3.527 2.248 2.955 3.774
180 2111 2774 3.543 2.154 2.831 3.616 2.239 2.942 3.759
190 2.106 2.768 3.536 2.148 2.823 3.606 2.230 2.931 3.744
200 2.102 2.762 3.529 2.143 2.816 3.597 2.222 2.921 3.731
250 2.085 2.740 3.501 2121 2.788 3.561 2191 2.880 3.678
300 2.073 2.725 3.481 2.106 2.767 3.535 2.169 2.850 3.641
400 2.057 2.703 3.453 2.084 2.739 3.499 2.138 2.809 3.589
500 2.046 2.689 3.434 2.070 2721 3.475 2.117 2.783 3.555
600 2.038 2.678 3.421 2.060 2.707 3.458 2.102 2.763 3.530
700 2.032 2.670 3.411 2.052 2.697 3.445 2.091 2.748 3511
800 2.027 2.663 3.402 2.046 2.688 3.434 2.082 2.736 3.495
900 2.023 2.658 3.396 2.040 2.682 3.426 2.075 2.726 3.483
1000 2.019 2.654 3.390 2.036 2.676 3.418 2.068 2.718 3.472
inf 1.960 2.576 3.291 1.960 2.576 3.291 1.960 2.576 3.291




APPENDIX 7

A KOLMOGOROV DISTRIBUTION (LIMIT)

Table7 K(4) =p(DVn<4i)

h
0.28
0.29
0.30
031
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
057
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74

KO
0.000001
0.000004
0.000009
0.000021
0.000046
0.000091
0.000171
0.000303
0.000511
0.000826
0.001285
0.001929
0.002808
0.003972
0.005476
0.007377
0.009730
0.012590
0.016005
0.020022
0.024682
0.030017
0.036055
0.042814
0.050306
0.058534
0.067497
0077183
0.087577
0.098656
0.110395
0.122760
0135718
0.149229
0.163225
0177753
0.192677
0.207987
0.223637
0239582
0.255780
0272189
0.288765
0.305471
0.322265
0.339113
0.355981

A
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
101
102
103
104
105
106
107
108
1.09
110
111
112
113
114
115
116
117
118
119
120
121

K
0372833
0389640
0.406372
0.423002
0.439505
0.455857
0472041
0.488030
0503808
0519366
0534682
0549744
0564546
0579070
0593316
0.607270
0620928
0.634286
0647338
0.660082
0672516
0.684636
0.696444
0.707940
0.719126
0.730000
0.740566
0.750826
0.760780
0.770434
0.779794
0.788860
0.797636
0806128
0814342
0822282
0.829950
0837356
0.844502
0851394
0858038
0.864442
0.870612
0.876548
0882258
0887750
0893303

A
122
123
124
125
1.26
127
128
129
1.30
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
1.46
147
148
149
150
151
152
153
154
155
156
157
158
159
1.60
161
162
163
1.64
1.65
166
167
1.68

K1)
0.898104
0.902972
0.907648
0912132
0.916432
0.920556
0.924505
0928288
0.931908
0.935370
0.938682
0.941848
0.944872
0.947756
0950512
0953142
0.955650
0.958040
0.960318
0.962486
0.964552
0.966516
0.968382
0970158
0971846
0973448
0.974970
0976412
0977782
0.979080
0.980310
0981476
0982578
0983622
0.984610
0.985544
0.986426
0.987260
0.988048
0988791
0.989492
0.990154
0.990777
0.991364
0991917
0.992438
0.992928

A
169
170
17
172
173
174
175
176
177
178
179
1.80
181
182
183
184
185
1.86
187
1.88
189
1.90
191
192
1.93
194
195
1.96
197
198
1.99
2.00
201
2.02
2.03
2.04
2.05
2.06
207
2.08
2.09
2.10
211
212
213
214
215

K
0993389
0.993828
0994230
0.994612
0.994972
0995309
0995625
0995922
0.996200
0.996460
0.996704
0.996912
0997146
0997346
0997533
0997707
0997870
0.998023
0998145
0998297
0998421
0998536
0.998644
0.998744
0998837
0.998924
0.999004
0.999079
0.999179
0.999213
0999273
0999329
0.999380
0.999428
0.999474
0.999516
0.999552
0999588
0999620
0.999650
0.999680
0.999705
0.999723
0.999750
0999770
0999790
0.999806

A
2.16
217
218
219
2.20
221
222
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
231
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
241
242
243
244
245
2.46
247
248
249
2.50
255
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00

K\
0.999822
0.999838
0.999852
0.999864
0.999874
0.999886
0.999896
0.999904
0.999912
0.999920
0.999926
0.999934
0.999940
0.999944
0.999949
0.999954
0.999958
0.999962
0.999965
0.999968
0.999970
0.999973
0.999976
0.999978
0.999980
0.999982
0.999984
0.999986
0.999987
0.999988
0.999989
0.999990
0.999991
0.999992
0.9999925
0.9999956
0.9999974
0.9999984
0.9999993
0.9999994
0.9999997
0.99999982
0.99999990
0.99999994
0.99999997
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