

Przemysław JACEWICZ
Institute of Control and Computation Engineering
University of Zielona Góra
ul. Podgórna 50
65-246 Zielona Góra, Poland
e-mail: P.Jacewicz@issi.uz.zgora.pl

Referees:

• Adam KOWALEWSKI, Kraków University of Mining and Metalurgy

• Janusz HALAWA, Wrocław University of Technology

The text of this book was prepared based on the author’s Ph.D. dissertation
supervised by Professor Dariusz Uciński in close cooperation with professor

Samira El Yacoubi.

Partially supported by the State Committee for Scientific Research (KBN)
in Poland

ISBN 83-89321-67-X

Camera-ready copy prepared from the author’s LATEX2ε files.
Printed and bound by University of Zielona Góra Press, Poland.

Copyright c©University of Zielona Góra Press, Poland, 2003
Copyright c©Przemysław Jacewicz, 2003

Contents

1 Introduction . 4
1.1 CA Definition . 6
1.2 Lattice types . 7
1.3 Neighbourhood types . 9
1.4 Boundary conditions . 12
1.5 Types of transition functions . 14
1.6 The most famous CA: Game of Life 16
1.7 Applications . 19

1.7.1 Universalities . 19
1.7.2 Modelling . 20

1.7.2.1 Modelling diffusion 22
1.7.2.2 Hydrodynamics 25
1.7.2.3 Delayed models 27

1.8 Identification of CA models and the problems addressed in this
monograph . 28

2 A CA approach to ecological modelling 31
2.1 Problem statement . 31

2.1.1 Computer models of forest succession 32
2.1.2 Gap models . 35

2.2 Common CA models for forest dynamics 38
2.2.1 CA forest model by Green 39
2.2.2 Stochastic forest fire model 40

2.3 Coupling gaps with CA’s: Hybrid models 42
2.3.1 Coupled model implementation 42

2.3.1.1 ODE implementation 44
2.3.1.2 CA implementation 49
2.3.1.3 Coupling process 52

2.3.2 Adding the fire effect . 54
2.3.3 Simulation results . 54

2.4 Multi-cell specimen approach . 57
2.4.1 Problem statement . 57
2.4.2 Proposed approach . 58
2.4.3 Simulation results . 61

2.5 Conclusion . 61

2 CONTENTS

3 Modelling spread phenomena . 64
3.1 Introduction . 64

3.1.1 Eden model . 65
3.1.1.1 Eden algorithm 66
3.1.1.2 CA implementation of the Eden algorithm 66

3.1.2 Single percolation cluster model 69
3.1.2.1 CA implementation of the single percolation clus-

ter model . 71
3.2 Spray Control . 73

3.2.1 Invasion percolation model 73
3.2.1.1 Algorithm . 74
3.2.1.2 CA implementation of the invasion percolation model 75

3.2.2 Limited-energy walker model 76
3.2.2.1 Algorithm . 79

3.3 Conclusions . 83

4 Parameter estimation of cellular automata models 84
4.1 Introduction . 84
4.2 Parameter estimation problem . 85

4.2.1 Applying the local search algorithm 86
4.2.2 Application of simulated annealing 87
4.2.3 Applying an adaptive random search algorithm 89

4.3 Parameter estimation of stochastic CA models 93
4.4 Conclusions . 102

5 Structural identification of cellular automata 104
5.1 Introduction . 104
5.2 Genetic algorithms and genetic programming 105
5.3 Discovering state transition rules via genetic programming 107

5.3.1 Adapting the GP algorithm for identifying CA structures . 108
5.3.2 Synthesis of CA’s for modelling desired behaviours 112
5.3.3 Discovering the model of a plant population in fens 112
5.3.4 Estimation of the parasite transmission model 116

5.4 Conclusion . 117

6 Conclusions and future research directions 119

Acknowledgments

It is a pleasure to express my sincere gratitude and thanks to:

• Professor Dariusz Uciński for suggesting the problem, and for his continuous
support and supervision of this work,

• Professor Samira El Yacoubi and Abdelhaq El Jai, whose works introduced
me to the ecological modelling problems.

In addition, I wish to thank all my friends and colleagues at the Institute of Control
and Computation Engineering, who helped me in many, many ways while I was
preparing this work.

Chapter 1

Introduction

The increasing prominence of computers has led to a new way of looking
at the world. This view sees nature as a form of computation. That is, we treat
objects as simple computers, each obeying its own set of laws. The notion of a
Cellular Automaton (we will write CA for brevity) extends this analogy to provide
a way of viewing whole populations of interacting cells, each of which is itself a
computer (automaton). By building appropriate rules into a CA, we can simulate
many kinds of complex behaviours, ranging from motion of fluids governed by
the Navier-Stokes equations to outbreaks of starfish on a coral reef. Why has
this transformation taken place? First, there is the simple matter of practicality:
desktop computing power has reached a level at which it is quite feasible to simulate
individuals as they move across a landscape, interact, reproduce and die. Second
is the issue of the language: for many practitioners, rules encoded in computer
algorithms are much more accessible than the formal mathematical language of
dynamic systems. Third is the awareness that the simple models traditionally used
in ecology, physics or process engineering have not always proved very successful
in accounting for phenomena observed in real systems. The simulations have their
own intrinsic interest; they can be a valuable aid in defining and characterizing the
processes involved and can lead to the discovery of new and interesting phenomena.

CA’s are dynamic systems. In a CA, a small set of values is defined. Space
consists of a regular grid of cells, each of which contains a value from this set. Time
consists of a sequence of discrete intervals. At each interval a ‘snapshot’ of the grid
shows the distribution of values—the population—at that time. The population is
transformed over time by the application of a small number of extremely simple
rules. Surprisingly, it turns out that such models are capable of reproducing
very complex phenomena. The application of the rules can lead to interesting
patterns and behaviour even in the simplest case. The consequences of many of
these ideas are raising some very fundamental questions for both theoreticians and
practitioners.

From the theoretical point of view, the pioneer was beyond doubt John
von Neumann who had been involved in the design of the first digital computers.
Though his name is definitely associated with the architecture of today’s sequen-
tial machines, his seminal idea of CA’s outlined in the late 1940’s [83] constitutes

Introduction 5

also the first applicable model of massively parallel computation. Von Neumann
thought about imitating the behaviour of a human brain in order to build a ma-
chine able to solve very complex problems [81, 82, 83, 84]. He postulated that
the corresponding machine should thus contain self-control and self-repair mech-
anisms. What is more, the difference between processors and data should be
removed, which led him to envisage a machine capable of building itself out of
some available material. Following the suggestions of a great Polish mathemati-
cian Stanisław Ulam, von Neumann addressed this question in the framework of a
fully discrete universe made up of cells. The first self-replicating CA was composed
of a two-dimensional square lattice and the self-reproducing structure was made
up of several thousand elementary cells. Each of these cells had up to 29 possible
states. The system evolved in discrete time steps and the local rule determining
this evolution was the same for all cells and updates of the internal state of each
cell occurred synchronously. Due to its complexity, this first CA was only partially
implemented on a computer at that time.

Von Neumann’s work was completed and described by Arthur Burks who
maintained an active interest in the field for several years afterwards [10, 77].
But the low computing power of the computers at that time has inhibited the
development of the research for many years. From the more practical point of
view, it was more or less in the late 1960’s when John Horton Conway, a British
mathematician, developed the Game of Life which drew scientists’ attention to the
subject again. It was the first such system calculated on computers. This game
became that popular, that a scientific magazine published regularly articles about
the ‘behaviour’ of this game. Contests were organized to prove certain problems.
The Game of Life was supposedly the first program run on a parallel processing
computer. In fact, it has been estimating that more computing time has been spent
running the Game of Life program than any other computer program. While the
Game of Life is an abstract ‘toy’ system that has not yet been found to directly
represent any specific natural system, it has been the springboard for the study
of so-called ‘artificial life’ systems because of the amazingly complex behaviours
displayed by some of the patterns that occur during the running of the CA.

In the late 1980’s the interest in CA’s strengthened again as powerful com-
puters became widely available. Today a set of accepted applications in simulation
of dynamic systems are available. CA’s have inspired several parallel computer
architectures and several special-purpose machines for their simulation have been
built. For description of CA’s, several languages have been developed (Cellang,
Cellsim [88]) and most CA simulations are still performed on general-purpose com-
puters (for a survey, see e.g. [88, 12, 28, 27]), although specialized hardware is also
accessible (CAM-8, CEPRA [88]).

At present, two main branches of research on CA’s can be distinguished:

1. CA’s as parallel models of computation and dynamic systems, which leads
to setting up algorithms, language or pattern recognition, complexity theory,
classifications, etc.

2. CA’s as models of natural processes in physics, chemistry, biology, economy,

6 1.1. CA Definition

etc.; in this context, two lines of research are pursued:

• to simulate phenomena on CA’s

• to try to predict phenomena in studying properties of relevant cellular
models.

In this work attention will be focused on the second branch. But prior to a
brief survey of CA applications and the statement of the main aims of the present
contribution, some basic definitions necessary to understand what CA’s are will
be given.

1.1. CA Definition

A cellular automaton (CA) is a discrete dynamic system. Space and time
in this system are also discrete. The basic element of a CA is the cell. A cell is a
kind of a memory element which stores states. The state of each cell is a variable
which takes a value from a given finite set of admissible values (these can be either
numbers or properties). In the simplest case, each cell can have the binary states
1 or 0. In more complex situations the cells can have more different states. The
cells are arranged in a regular spatial web called the lattice. Its topology usually
corresponds to either a one-dimensional string of cells or a two-dimensional grid.
In the latter case, the cells are most often arranged as a simple rectangular grid
(like a sheet of squared notepaper), but other arrangements, such as honeycomb
(with cells in form of hexagons) are sometimes used. A three-dimensional lattice
can be made from cubes. Each cell has its neighbourhood being the set of nearby
cells which interact with it. For example, on a grid these are normally the cells
physically adjacent to the cell in question.

The CA system evolves over a succession of time steps. The cell states are
updated synchronously in each time step using a set of rules which define how the
state of a cell at a given time moment depends on its own state one time previously,
and the states of its nearby neighbours at the previous time step. Thus the state
of the entire lattice advances in discrete time steps.

The informal introduction above makes it possible to give the following
general definition used subsequently in what follows:

Definition 1.1 A d-dimensional cellular automaton (or d-CA) A is a quadruple
(L,S, N, f), where:

• L is a regular lattice which consists of cells arranged in a periodic paving of a
d-dimensional spatial domain; the cells are indexed by tuples (multi-indices)
i = (i1, . . . , id) of integers, i.e. the lattice is composed of cells ci = ci1,...,id

,
where i1 = 1, . . . , I1; . . . ; id = 1, . . . , Id;

• S is an m-element set of admissible state values (m being finite), S =
{s1, . . . , sm};

Introduction 7

• the neighbourhood N of size n, is defined by a mapping

N :

{
L −→ Ln,

ci 7−→ N(ci) = (ci1 , ci2 , . . . , cin);
(1.1)

• f is a function which determines the transition rule,

f :

{
Sn −→ S,

st(N(c)) −→ st+1(c),
(1.2)

where st+1(c) is the state of a cell c at time t + 1, and st(N(c)) stands
for the state of the neighbourhood of c at time t, i.e. st(N(ci)) =
(st(ci1), . . . , st(cin

)).

Remark 1.1 One of the crucial elements of Definition 1.1 is the notion of the
transition function f which governs the evolution of the CA system. This function
can be given by an analytical function, a table of cell-state transitions or a set of
transition rules. It depends, of course, on the lattice geometry, the neighbourhood
and the state set, and can be deterministic or probabilistic.

Remark 1.2 A configuration (global state) of a CA at time t is a mapping Ct :
L −→ S which assigns every cell a state value. Then the global dynamics of a
cellular automaton is defined as the function:

F : Ct −→ Ct+1 (1.3)

which changes the current configuration into a new one.

1.2. Lattice types

The most commonly used approach to define a CA lattice is to present it
as a one or two-dimensional rectangular grid. This approach is very intuitive (the
first simulations of CA’s were performed by John von Neumann on the checkered
paper). Moreover, it is very simple to implement it on computers where this type
of lattices naturally translates itself onto vectors or arrays.

For simulations of natural phenomena it is very customary to place cells on a
hexagonal lattice (cf. Fig. 1.2). This manner allows us to introduce an intermediate
neighbourhood definition of size 7 between the von Neumann (of size 5) and Moore
(of size 9) ones for the rectangular case. It is important because each increase in
the neighbourhood size permits to improve the precision. Additionally, this choice
is motivated by a wish to imitate a real biological tissue where for common species
the most eager number of neighbours is also 6 or 7.

Because currently most of simulation tools define CA lattices as arrays of
values or vectors, a geometrical transformation of the hexagonal lattice is com-

8 1.2. Lattice types

One-dimensional rectangular lattice

Two-dimensional rectangular lattice

Triangular lattice

Fig. 1.1. Typical lattice shapes.

c5

c6

c1
c2

c3
c4

c

Fig. 1.2. Layout of cells on a hexagonal lattice.

Introduction 9

Tab. 1.1. Relative coordinates of the hexagonal neighbourhood for the case shown in Fig.1.2.

Relative coordinates of neighbours for

c ∈ even column c ∈ odd column
c1 [0, 1] [0, 1]

c2 [1, 1] [1, 0]

c3 [1, 0] [1,−1]

c4 [0,−1] [0,−1]

c5 [−1, 0] [−1,−1]

c6 [−1, 1] [−1, 0]

monly used to a 2D rectangular lattice. For the case shown in Fig. 1.2, the hexag-
onal neighbourhood is defined as presented in Tab. 1.1 (cf. Fig. 1.3).

The values in the presented vectors mean columns and rows relative to the
coordinates of the central cell c.

Some characteristic variety of a hexagonal lattice constitutes the triangular
lattice used, among other things, in FHP-Gas [26].

1.3. Neighbourhood types

Let A be a cellular automaton (L, S,N, f). The neighbourhood of a cell c
is the set of all cells of the lattice L which will locally determine the evolution of
c. It is finite and geometrically uniform, i.e. all cells share the same geometrical
template of the neighbourhood. A neighbourhood may be punctured, i.e. c 6∈ N(c),
or it may include c.

Generally a neighbourhood can be any ordered finite set, but, actually, a
few special types are mainly considered in applications. The most commonly used
CA neighbourhoods are undoubtedly the von Neumann and Moore ones. They are
known as the nearest neighbour neighbourhoods, and are mathematically defined
in accordance with some associated distances. More precisely, if i = (i1, . . . , id)
and j = (j1, . . . , jd), then the following distances between cells ci and cj can be
defined:

ρ1(ci, cj) =
d∑

α=1

|iα − jα|, ρ∞(ci, cj) = max{|iα − jα| : α = 1, . . . , d}. (1.4)

Then we have

• the Von Neumann neighbourhood:

NVN(ci) = {cj ∈ L : ρ1(ci, cj) ≤ 1}; (1.5)

10 1.3. Neighbourhood types

c3

c2

c1
c6

c5
c4

c

c1

c2c6

c5 c4 c3

c

c1
c2

c3
c4

c5

c6
c

c1 c2

c3

c4

c5

c6

c

Fig. 1.3. A way to convert the hexagonal neighbourhood into the rectangular one.

Introduction 11

c c2

c1

c

c1

c2c3

cc1

c2

c3

Smith’s Two types of Cole’s neighbourhoods

c

c

c c

c

1

2

3

4 c

c

c c

c

1c c

c c

2

3

456

7

8

c

c

c c

c

1c c

c c

2

3

456

7

8

c

c

cc

9

11

1012

Von Neumann’s Moore’s Modified von Neumann’s

Fig. 1.4. Templates of the most common neighbourhoods.

sometimes the following extended version of the above is used:

NMVN(ci) = {cj ∈ L : ρ1(ci, cj) ≤ 2}, (1.6)

and it is called the modified von Neumann neighbourhood ;

• the Moore neighbourhood:

NM(ci) = {cj ∈ L : ρ∞(ci, cj) ≤ 1}. (1.7)

In the literature many other neighbourhood definitions can be found, e.g.
Cole’s [15] or Smith’s [40] ones. The commonly used types of two-dimensional
neighbourhoods are shown in Fig. 1.4. Note that in the one-dimensional (1D) case
the Moore and von Neumann neighbourhoods coincide (see Fig. 1.5). Clearly, the
possible choices are not restricted to the examples above and any other neighbour-
hoods can be constructed.

A slightly different approach to the CA neighbourhood definition consists
in using the so-called Margolus neighbourhood [55, 77]. The rectangular lattice is
there partitioned into a collection of 2 × 2 adjacent blocks which define a raster.
Instead of a transition function, block rules are defined that look at the contents
of a block and update the whole block (rather than a single cell as in an ordinary
CA). The same set of block rules is applied to every block. Note that blocks do not

12 1.4. Boundary conditions

c1 c2c

c1 c2

c3 c4

c5

c6

c7 c8

c

1D representation of von Neumann and Custom neighbourhood.

Moore neighbourhoods.

Fig. 1.5. The most popular 1D neighbourhood and an example of a 2D custom neighbourhood.

overlap, and no information is exchanged between adjacent blocks. The partition
is changed from one step to the next, so as to have some overlap between the blocks
used at one step and those used at the next step. This point is essential, as if we
used the same partition at every step, the CA would be effectively subdivided into
a collection of independent subsystems. At each time step, the lattice partitioning
is shifted one cell down and one cell left. It is thus clear that the Margolus
neighbourhood makes use of only two partitions (namely the even grid and the
odd grid). An illustration of its use is given in Fig. 1.6.

1.4. Boundary conditions

For a complete spatial characterization of a CA, we need to define lattice
boundary conditions. As the number of cells in the lattice has to be finite since
one cannot deal with an infinite lattice, the question of what to do with cells
at borders must be addressed. This is because the cells belonging to the lattice
boundary do not possess the same neighbourhoods as other internal cells. Their
influence depends on the size of the lattice. To give an example: in a 10 × 10
lattice about 40% of the cells are border cells, whereas in a 100× 100 lattice only
about 4% of the cells are of that kind. Anyway, this problem must be solved,
which necessitates a proper determination of suitable neighbourhoods for the cells
on the border of the lattice. For that purpose, the following three approaches are
most commonly used:

1. Periodic boundary conditions. They have become default in the
literature. In this solution the opposite borders of the lattice are ‘sticked
together’. A one-dimensional ‘chain’ of cells thus becomes a torus. In the
case of a two-dimensional lattice, the left and right borders are treated as
being connected, and so are the upper and lower borders. In a CA model

Introduction 13

odd grid applying the rule even grid

applying the rule odd grid applying the rule

Fig. 1.6. Example of a CA evolution using the Margolus neighbourhood.

of mobile objects moving in space, the wrap-around boundary condition
results in objects leaving the system at one border location and reentering
at the opposing border location.

Example 1.1
Consider the von Neumann neighbourhood and a one-dimensional lattice of
` cells. Then we have

N(ci) =

(c`, c1, c2) if i = 1,
(ci−1, ci, ci+1) if i = 2, . . . , `− 1,
(c`−1, c`, c1) if i = `.

(1.8)

A more complex example of these boundary conditions is shown in Fig.1.7.
It concerns a two-dimensional lattice with modified von Neumann neigh-
bourhood.

2. Fixed boundary conditions. They correspond to Dirichlet boundary con-
ditions encountered while solving partial differential equations. The solution
is based on augmenting the lattice by a set of virtual cells beyond its limits.
Then a constant state value is imposed on the additional cells. In some cases
modellers apply different values to each lattice border. In Fig. 1.8 we can

14 1.5. Types of transition functions

c2 c1

c3

c4 c5c6

c7

c8

c9

c10

c11

c12 c

Fig. 1.7. Determination of the modified von Neumann neighbourhood for a border cell c on a
2D lattice and periodic boundary conditions.

see the situation where the states of the missing cells c1, c2, c3, c4, c8, c9
and c10 from the modified von Neumann neighbourhood definition of cell c
are to be defined in a sense. For fixed boundary conditions these values are
permanently fixed constant for all time moments.

3. Reflecting boundary conditions. In this solution the lattice is also
augmented by a suitable set of virtual cells beyond its limits. A reflecting
boundary condition amounts to copying to the virtual cell the state value of
the existing neighbour opposite.

Example 1.2
The reflecting boundary conditions for a one-dimensional lattice of ` cells
and the von Neumann neighbourhood imply the following cases:

N(ci) =

(c2, c1, c2) if i = 1,
(ci−1, ci, ci+1) if i = 2, . . . , `− 1,
(c`−1, c`, c`−1) if i = `.

(1.9)

Completion of the modified von Neumann neighbourhood definition for a
border cell c on a two-dimensional lattice is illustrated in Fig. 1.9.

1.5. Types of transition functions

One of the most important points in CA modelling is an appropriate defini-
tion of the transition function which governs the evolution of the entire system. It
can be given by an analytical function, a table of cell-state transitions, or a set of

Introduction 15

c5c6

c7

c1 c2

c4

c8

c9

c10c3c11

c12

const
c

Fig. 1.8. Determination of the modified von Neumann neighbourhood for a border cell c on a
2D lattice and fixed boundary conditions. The grey cells represent virtual cells whose states are
set to a given fixed value.

c5

c7c12

c11

c6

c5

c11

c7

c6

c12

c6

c6

c

Fig. 1.9. Determination of the modified von Neumann neighbourhood for a border cell c on a
2D lattice and reflecting boundary conditions.

16 1.6. The most famous CA: Game of Life

transition rules. It depends, of course, on the lattice geometry, the neighbourhood
and the state set, and can be deterministic or probabilistic.

Some characteristic transition functions encountered in real problems are as
follows:

• A transition function f is said to be totalistic if f has the form

f(st(N(c))) = ϕ
(∑

c′∈N(c)

st(c′)
)
, (1.10)

where ϕ is a given mapping. Such functions give equal weight to all the cells
in the neighbourhood and imply that the value of a cell state depends only
on the sum of all previous state values of the neighbourhood cells.

In the particular case when c 6∈ N(c), a CA rule is said to be outer-totalistic
(a classical example is the Game of Life).

• A probabilistic CA rule may be specified by a function.

f(st(N(c))) =

s1 with probability p(s1|st(N(c))),
...

...
sm with probability p(sm|st(N(c))),

(1.11)

where the probabilities are non-negative and satisfy the normalization con-
dition ∑

s∈S
p(s|st(N(c))) = 1. (1.12)

1.6. The most famous CA: Game of Life

The Game of Life (or simply Life) is not a game in the conventional sense.
There are no players, and no winning or losing. Once the “pieces” are placed in
the starting position, the rules determine everything that happens later. In most
cases, it is impossible to look at a starting position (or pattern) and see what will
happen in the future. The only way to find it out is to follow the rules of the
game [11].

Life was invented by the mathematician John Conway in 1970. He chose
the rules carefully after trying many other possibilities, some of which caused the
cells to die too fast and others caused too many cells to be born. Life balances
these tendencies, making it hard to tell whether a pattern will die out completely,
form a stable population, or grow forever. To the moment this is still the most
popular CA model [3].

The model is played on a two-dimensional binary lattice with periodic
boundary conditions. A cell ci,j can be alive (st(ci,j) = 1) or dead (st(ci,j) = 0).
To apply one step of the rules, we count the number of alive neighbours in the
Moore sense for each cell. The life and death rules for updating a lattice site are
as follows:

Introduction 17

Initial conditions after 10 steps

after 100 steps after 200 steps

Fig. 1.10. Exemplary evolution for the game of life CA starting from random initial conditions.

• Any site (dead or alive) with three living nearest neighbour sites stays alive
or is born.

• A living site (st(ci,j) = 1) with two living neighbours remains alive.

• All other sites remain dead or die (for overcrowding or loneliness).

Figure 1.10 shows the evolution of the above two-dimensional CA starting
from randomly generated initial conditions (the probabilities of the two states are
equal to 0.5). White points represent dead or empty cells, and the black ones
—alive cells. After the first 10 time steps the model reduces the number of alive
sites so as to find an equilibrium of living conditions (cf. the last two pictures).

In Fig. 1.11 we can see characteristic states of this model working on the
11×11 lattice of cells, grouped by types [11]. The simplest are stochastic config-
urations. For a cell to remain alive, it must have 2 or 3 living neighbours, and
every dead cell which is going to remain so may have any number of neighbours
except 3. Oscillators are objects that change from step to step, but eventually
repeat themselves. The simplest kind are period-2 oscillators, or those that repeat
themselves after two steps. In this CA some of the objects can move. This was
one of the most exciting early discoveries in Life. These common moving patterns,
called gliders, may consist of just 5 cells. Finally, here are some simple starting
patterns that develop into oscillators. A row of 10 alive cells becomes the period-
15 oscillator called the pentadecathlon. Other patterns may become very pretty
period-3 oscillators called the cross and the pulsar.

18 1.6. The most famous CA: Game of Life

Static configurations (no changes are observed)

Box Beehive Boat Ship Loaf

Oscillators

Initial configu-
ration

After 1-st iter-
ation

Initial configu-
ration

After 1-st iter-
ation

Gliders

Initial configu-
ration

After 1 step After 2 steps After 3 steps After 4 steps

Miscellaneous: pentadecathlon

Initial configu-
ration

After 2 steps After 4 steps After 7 steps After 18 steps

Miscellaneous: cross

Initial configu-
ration

After 1 step After 2 steps After 3 steps
After 6 and
more steps

Miscellaneous: pulsar

Initial configu-
ration

After 5 steps After 8 steps After 10 steps After 17 steps

Fig. 1.11. Exemplary evolution for the Game of Live starting from some specific initial condi-
tions.

Introduction 19

1.7. Applications

As was already mentioned in the beginning of this chapter, at present there
are two major branches of research on CA’s. The first concentrates on setting-up
algorithms, language or pattern recognition, complexity theory and classification.
In this case CA’s are used to solve some problems which are specified as their
initial conditions. The solution is read from the final configuration, obtained
after a number of time steps (the simplest example of such a CA is solving a
maze, i.e. finding a path through a labyrinth). The other branch of CA research
represents modelling issues which are in the heart of this dissertation. Such CA’s
are conceived as models for natural processes in physics (e.g. diffusion, fluid flow),
chemistry, biology (e.g. spreadable and ecological models), economy, etc.

In most cases CA models are built on the basis of detailed knowledge of
the phenomenon under consideration. It often happens that the global behaviour
of a phenomenon can be described through local rules of state transitions, based
on a moderately large neighbourhood. For example, the diffusion phenomena can
be described using particles which move forward in the absence of collisions with
other particles or change their directions if a collision takes place (cf. Section 1.7.2).
Such a phenomenon is relatively simple to be described by a CA, and this consti-
tutes a very interesting alternative to classical descriptions by partial differential
equations. The situation becomes slightly worse when we strive to model e.g. the
spread process of a computer virus via the Internet. As is well-known, each com-
puter can be infected by another which is not necessarily connected to it, but by
this one which has included its address in its e-mail address book. The problem is
how to define proper rules of local transitions and a proper neighbourhood in this
case, based on recorded observations. This will be the main subject of this work.

In the sequel, some basic issues involved in applications of CA’s will be
briefly discussed.

1.7.1. Universalities

The first who worked on computational universality and construction uni-
versality in CA’s was John von Neumann. His works were formalized and more
deeply investigated afterwards by Burks and people around him [10], as well as
by Codd [14] and Banks [6]. Their main work was to construct two-dimensional
CA’s with these properties and as few states as possible, or to find conditions for
CA’s to satisfy them.

Roughly speaking, a system that is able to do universal computation is able
to perform any finite algorithm. More precisely, a CA possesses the property of
computational universality when it is able to compute any Turing-computable (or
recursive) partial function. In this task we face some difficulties like: What does
computing a function ψ mean? How to input parameters? Where are the results?
In order to translate the problem onto a CA architecture, we treat part of initial
conditions as parameters of the studied function ψ. We obtain results after a
number of time steps of the CA as part of its final configuration. Three problems
then arise:

20 1.7. Applications

• How to encode the arguments?

• How to recognize the end of the computations?

• How to decode the results?

The main difficulty is to suitably encode infinite data into a finite set of cells in a
lattice. A direct way was proposed by von Neumann and substantially extended
by his main followers: Burks, Thatcher, Codd and Banks. Another predicament
is the problem of directly comparing the computational power of CA’s and Turing
machines by means of simulations.

There are several notions of computational universality, depending on the
fact whether or not they are set up by means of simulations, and in the former
case, for example, depending on the fact that simulations are between computa-
tion models of different nature, essentially Turing machines and CA’s (extrinsic
simulations), or between cellular automata (intrinsic simulations), or depending
on the configurations considered, on the encoding or decoding understandings, etc.
[20]. Only a CA calculating for an infinite period of time can be universal.

Intrinsic universality, corresponding to some intrinsic simulations, was
pointed out later in [2]. It also expresses the power of some CA’s with respect
to other (or a class of) CA’s, and so it attests a sort of model (inner or auto-)
coherence and potential expressive power. For that problem, the basic question is:
do there exist CA’s able to simulate all CA’s, at least of a given class? It is not
a problem to canonically coding a finite automaton underlying each CA, and to
get a recursive enumeration of them. The problem arises with the configurations
which are infinite [20]. Thus, if we restrict the devices to their finite configura-
tions, we can imagine a solution analogous to the solution for Turing machines:
Find a CA U such that, given the code of any automaton A of a given class and
the code of a finite configuration C of A, we can get, in a configuration of U , the
halting configuration of A on C when it exists (a serious problem will then be to
satisfactory formulate the notion of the halting configuration).

Another problem is the so-called construction universality. In this task we
look for an automaton to reproduce itself, without losing any of its properties (like
computation abilities). In other words, we are interested in the self-reproduction
ability of CA’s.

The foregoing problems constitute the subject of numerous works of theo-
retical computer scientists. Since they are only of limited use in the context of
this dissertation, we are not going to further dive into them.

1.7.2. Modelling

One of the primary applications of CA’s is modelling complex physical pro-
cesses. Owing to their discrete and parallel architecture, they seem to be especially
suited for any spatial and discrete problems (like physical molecular models). An
important step in the theory of CA’s was made in the 1980’s when the so-called
HPP lattice gas model developed by Hardy, Pomeau and de Pazzis was recognized

Introduction 21

as a CA [34]. This model consists of a simple and fully discrete dynamics of par-
ticles moving and colliding on a two-dimensional square lattice so as to conserve
momentum and the number of particles. Researchers’ hopes were raised that it
would be possible to simulate the behaviour of a real system of particles (like a
fluid or a gas) as a CA rule. CA’s provided a new conceptual framework, as well
as an effective numerical tool which retained important aspects of the microscopic
laws of physics, such as simultaneity of the motion, locality of interactions and
time reversibility. CA rules were viewed as an alternative form of the microscopic
reality which bears the expected macroscopic behaviour. The first CA model
which met these expectations was the famous FHP model proposed in 1986 by
Frish, Hasslacher and Pomeau [26]. The authors showed that their model follows
in some appropriate limits the behaviour prescribed by the Navier-Stokes equa-
tion of hydrodynamics. Similar models have been successful in modelling complex
situations for which traditional computing techniques are not applicable. Flows
in porous media, immiscible flows and instabilities, spreading of a liquid droplet
and wetting phenomena, microemulsion, erosion and transport problems are some
examples. An excellent survey of those and other applications can be found in [12].

CA models of spatio-temporal processes became immensely popular among
biologists and researchers involved in ecology. This popularity is well deserved: as
they are rule-based, biologists can readily turn them into algorithms for numer-
ical simulation of individuals interacting in some spatial region. This makes an
interesting alternative to common reaction-diffusion partial differential equations
(PDE’s) describing situations when several different species can interact with one
another and diffuse in space. In PDE models, populations of each species are
described by concentrations which vary in space and time. In CA models, popu-
lations are represented by units or individuals that move on a grid and interact
with neighbouring units. While in some cases PDE models may best capture the
dynamics or real reaction-diffusion systems, in other cases CA models are prefer-
able [17, 18]: CA and PDE models represent two competing modelling paradigms,
both of which capture, in a simplified way and to a certain extent, important as-
pects of real reaction-diffusion systems. In some cases it is even difficult to decide
which alternative is to be preferred. Both modelling frameworks contain simpli-
fications that result in a loss of details that may be important for the dynamics
of real systems. While often it would be ideal to use a highly detailed, stochas-
tic, individual-based model, such simulations of large (often three-dimensional)
spatial systems require enormous computing power. Owing to limited computer
resources, the model must then be highly simplified. Yet, CA and PDE models
often can be derived as simplifications or limits of an underlying detailed, stochas-
tic, individual-based model. In PDE models, which can be regarded as large-scale
descriptions, populations of individuals are described by their concentrations and
small-scale correlations are neglected. CA models, on the other hand, operate
on a molecular level and focus on local correlations; however, they do not han-
dle long-range correlations and large-scale patterns of concentrations as well as
PDE’s. For many real systems, both CA and PDE models can capture dynamics
essentials. In some cases, however, simulations based on CA and PDE models

22 1.7. Applications

may give widely different results, even though each model is designed to describe
a particular reaction-diffusion system as well as possible (within the limitations
of each framework). CA models are to be preferred for microscopic simulations
or for the study of other systems where numbers are low, and small-scale spatial
correlations must be taken into account.

Below, some typical models which present capabilities of CA models are
briefly presented.

1.7.2.1. Modelling diffusion

When two materials are placed in contact with each other, an interface is
formed between them. The nature of the interface is important in determining a
variety of system properties, such as adhesion and mechanical strengths, thermal
expansion, electrical conductivity, etc.

In real systems, diffusion derives from the global effect of many molecules
which perform independent random walks. The random walk may come either
from collisions between particles of the same species (self-diffusion) or from in-
teractions with other species. In CA’s, we can model diffusion in two different
ways. The first method is essentially based on the mechanism which generates the
diffusion phenomenon in real systems. The molecules are replaced by idealized
particles and allowed to execute random movements on a regular lattice. A CA
rule which involves discrete particles should conserve their total number.

The commonly used technique to model diffusion is the moving-particle
approach. Two main elementary CA models used for modelling walking particles
are:

• Multiple random walkers [27] being a model which operates on a square
lattice with periodic boundary conditions. The state set defines a walk direc-
tion or a free space. Its transition function scans the modified von Neumann
neighbourhood for free space to move a cell. Collisions are detected (parti-
cles then randomly choose new directions). A sort of this model is presented
in Example 1.3.

• Noise-driven diffusion [77] being a deterministic CA model operating on
the Margolus neighbourhood and on a square lattice. The transition function
depends on a particular variant of the model, but in general it allows for
particle movement and collision detection (molecules avoid one another, or
collide elastically and change their movement directions). A diffusion model
of that type is presented in Example 1.4.

Example 1.3
Consider a rectangular lattice of 100 × 50 cells. Each cell in the lattice is either
empty or occupied by a particle. The cell state values are nonnegative integer
values which correspond to the following situations [27]:

Introduction 23

0 – an empty site,

1 – a site occupied by a north-facing particle,

2 – a site occupied by an east-facing particle,

3 – a site occupied by a south-facing particle,

4 – a site occupied by a west-facing particle.

Initially, all of the sites in the lattice are empty (i.e. the cells have value
0), except for the sites in the bottom row, which are occupied by particles facing
randomly chosen directions (i.e. these sites have positive integer values). The left
and right boundaries of the lattice are periodic. The bottom boundary acts like
a source, so that a particle moving upward from the bottom row is replaced by
another particle. The top boundary acts like a sink, so that a particle moving
upward from the top vanishes.

The system evolves over a succession of time steps. In each time step, each
particle moves to the nearest neighbour site lying in the direction the particle is
facing (hence, the value of 1, 2, 3 or 4 indicates that the particle moves in the
north, east, south or west direction, respectively) if the site is empty and if the
movement does not result in a collision with another particle moving into the same
site; otherwise, it remains in place. Whenever a particle moves out of the next-
to-bottom row, it is replaced by another particle, and whenever a particle moves
upward from the top row, it disappears.

The modified von Neumann neighbourhood is used here and then the move-
ment of a particle in each cell depends on the state values of 12 neighbouring cells
and therefore the update rules take 13 arguments. At each time step, a particle,
regardless of whether it moves or remains in place, randomly chooses a direction
to face. The following rules are used:

• A particle facing an empty site moves from the site it is occupying unless
another walker faces the same empty site, in which case it remains in place
and randomly chooses a direction to face.

• Any other particle remains in place and randomly selects a direction to face.

• An empty site remains empty if two or more particles face it.

• An empty site becomes occupied if it is faced by exactly one particle.

• Any other empty site remains empty.

• A particle moving out of the border bottom row is replaced by another
particle.

• A particle moving upward from the top row disappears.

Figure 1.12 shows the evolution of the above two-dimensional CA (particles
are marked in black). Various configurations are generated respectively after 250,
1000, 17000 time steps. As expected, the particles reveal the trend to occupy the
whole space as time elapses.

24 1.7. Applications

initial particle distribution after 250 iterations

after 1000 iterations after 17000 iterations

Fig. 1.12. Evolution of the CA modelling diffusion of Example 1.3.

Example 1.4
Let us model by a CA gas particles diffusing in a container consisting of two com-
partments with an aperture in the wall which separates these compartments. In
this case, the CA in question is defined on a hexagonal lattice and von Neumann’s
neighbourhood definition is used. Each cell in the lattice is empty, occupied by
a particle or constitutes part of the wall. The cell state values are nonnegative
integers which correspond to the following situations:

0 – an empty site,

1 – a site occupied by a north-west facing particle,

2 – a site occupied by a north-east facing particle,

3 – a site occupied by an east facing particle,

4 – a site occupied by a north-east facing particle,

5 – a site occupied by a north-west facing particle,

6 – a site occupied by a west facing particle,

7 – a site representing a wall.

Initially, only the right compartment is filled with particles (see Fig. 1.13).
This means that the cells in the left compartment have state values representing
empty sites while the cells in the right compartment are randomly filled with values
from 1 to 6 if a moving particle is to be present at this site (the probability of this
presence is 1/3). Because the lattice is enclosed with cells representing the wall,
the boundary conditions are not important.

The system evolves over a succession of time steps. At each of these discrete
time moments, every particle strives to move to the nearest neighbour site lying

Introduction 25

initial particle distribution after 100 time steps

after 500 time steps after 10000 time steps

Fig. 1.13. Evolution of the CA modeling diffusion of Example 1.4.

in the direction it is facing (hence, a value of 1 indicates that the particle moves in
the north-west direction, a value of 2 indicates the movement north east, etc.). If
a site is vacant and the moving neighbours which face it do not induce a collision
(this would be the case if two or more neighbouring particles tended towards this
site), it takes over the incoming particle (if it does exist), otherwise it remains
empty. If a collision takes place (a particle tries to move to a site occupied by
another particle or a wall, or it faces an empty cell being a target for another
particle) it changes the direction by turning left for west directions (state values
2, 3 and 4) or right for east directions (state values 1, 5 and 6).

Exemplary evolution of the described model is shown in Fig. 1.13. As can
be seen, in spite of the barrier, particles from the right compartment aim at filling
the left one so as to compensate for different particle densities.

1.7.2.2. Hydrodynamics

One of the commonly applied approaches to describe fluid behaviour is to
use the Navier-Stokes equation. It analytically expresses fluid behaviour under a
wide range of conditions. If the general velocity of fluid is v, then the force acting
on the fluid is of the form [12]

F = m
Dv
Dt

= %V
Dv
Dt

, (1.13)

26 1.7. Applications

where the operator Dv/Dt is the material time derivative, m is a fluid mass, %
stands for the density and V signifies the volume.

A continuous treatment starts by dividing space into cells, each of dimension
∆x, ∆y, ∆z and quantifying the overall effect in each direction. Thus the force in
the x direction is given by

ρ∆x∆y∆z
Dvx

Dt
= Fxρ∆x∆y∆z + P∆y∆z − (P +

∂P

∂x
∆x)∆y∆z, (1.14)

where the first term on the right-hand side represents the external force, whereas
the second term is the internal force acting in the x direction (P being pressure).
The second and third terms together estimate the change in force over the x length
of the cell.

If this is simplified and if the differences are allowed to tend to zero, then
we get

Dvx

Dt
= Fx −

1
ρ

∂P

∂x
,

or in general
Dv
Dt

= F − 1
ρ
∇P. (1.15)

A possible viscosity can be included by addition of some extra terms to the
equation above. However, since these terms are generally nonlinear, the solution
is often very difficult. Some of the problems can be quantified by the use of
dimensionless parameters such as the Reynolds and Mach numbers. In this case the
Reynolds number is a measure of the effects of nonlinear terms (due to viscosity),
while the Mach number constitutes a ratio of velocities and indicates the effects
of compressibility. Although additional effects can be included, this macroscopic
treatment can quickly become intractable, particularly for realistic problems such
as free convection and weather modelling.

Alternatively, the entire problem can be investigated from a microscopic
point of view, where the behaviour of some of the constituent particles is monitored
over time. It turns out that, on a macroscopic scale, the gases described by CA
rules, such as the HPP model [34], obey the Navier-Stokes equation approximately
[34] and a similar model on a hexagonal lattice, namely the FHP model, obeys this
equation exactly [26]. Many researchers have recently become interested in such
models of fluid dynamics, as they have a number of attractive conceptual features
and show considerable practical promise [46].

Example 1.5
Let us consider a simple two-dimensional model of a fluid. Because the behaviour
of fluids is determined by two factors: compensation of pressure and preservation
of density (or volume), we can simplify the modelling problem and take account
of only these two factors. In order to define local CA rules, we can decide that
each cell containing a particle is in equilibrium state when all its neighbours are
vacant. Any particles in the direct neighbourhood mean crush (it produces positive
pressure P).

Introduction 27

Initial conditions Iteration 661 Iteration 672

Iteration 1991 Iteration 2002 Iteration 4332

Fig. 1.14. Evolution of a density compensation model.

Each particle without empty neighbourhood moves in the direction opposite
the position of the neighbours occupied by particles. To do that, we may think
that each occupied neighbour of a cell c has an effect of an external force acting
on c from the direction of this neighbour. To implement such an approach, we can
apply the idea described in Section 3.2.2.

The evolution of an exemplary two-dimensional CA with hexagonal lattice
of size 160×100 is shown in Fig. 1.5. The picture showing the initial lattice con-
figurations corresponds to a drop falling on the plane. All cells are squeezed in a
circle, and this represents a force of the drop (whose action on the occupied space
constitutes the pressure). According to the outlined concept, each particle moves
to compensate for the density (to eliminate pressure). After 660 iterations, the
CA achieves the static configuration represented on the second panel. Then we
put the next drop (in the 661-st iteration). The third panel shows the second drop
after 10 iterations. The fourth panel shows the respective static configuration.
The last drop is put in iteration 2002.

1.7.2.3. Delayed models

Various processes in economics, biology, control, etc. are examples of sys-
tems in which the past time influences significantly the future behaviour of the
system. Many situations in population dynamics are usual examples of such de-
layed processes. As regards systems with spatial interactions, CA models can also
be used when we have to describe spatial phenomena with a state transition delay
or a time delay inherent to the application of a specific control.

Consider a CA A = (L,S, N, f) where L is a regular lattice formed of
the cells whose states are taken in a discrete set S. Each cell interacts with its
neighbours according to a given neighbourhood N of size n, and subject to a

28 1.8. Identification of CA models and the problems addressed in this monograph

transition function f . We can extend this definition by introducing a generalized
definition which allows the delay to be dependent on the neighbourhood (and then
space-dependent). Let D = {T1, T2, . . . , Th} be a discrete set of all possible delays
which can affect the considered CA. This situation which occurs in some problems
of ecology where the evolution may be regionally delayed depending on the soil
and climate conditions, can hardly be described by partial differential equations,
although recent advances in PDE’s with delays are promising in this context [50].

Definition 1.2 A cellular automaton A modelling a space-delayed system is de-
fined by considering A = (L,S, N, f, δ) where the transition function f is defined
as

st+1(c) = f(st(N(c)), st−∆(N(c))). (1.16)

∆ = δ(st(N(c))) ∈ D is the delay which affects the state of the neighbourhood
N(c) and where δ maps Sn into the set of delays D,

δ :

{
Sn −→ D ⊂ N ∪ {0},

(s1, . . . , sn) 7−→ ∆ .

In the above definition, δ assigns a delay ∆ ∈ D to each neighbourhood
configuration (D may or may not be finite). Some particular cases are:

• D = {0}, the cellular automaton is without delay,

• D = {α} corresponds to the case of a usual delayed system with a delay α
(the same delay affects all the neighbours at any time),

• ∆ = δ(st(c)) means that the delay depends only on the central cell of the
neighbourhood.

A good example of this type of model constitutes the model of Green [31]
presented in Sec. 2.2.1.

1.8. Identification of CA models and the problems addressed in
this monograph

CA models have been extensively analysed mathematically for the last fifty
years. With the availability of computers, the simulation of large CA models
became feasible and abundant literature accumulated. This trend has recently
been increased by the ubiquitous availability of fast personal computers. CA’s
exhibit three notable features, namely massive parallelism, the locality of cellular
interactions, and simplicity of basic components (cells). As such they are naturally
suited for hardware implementation, with the potential of exhibiting extremely
fast and reliable computation that is robust to noisy input data and component
failures.

On the other hand, CA modelling and simulation has been criticised by some
practitioners, mostly on the ground of the lack of validity. It has been admitted

Introduction 29

that nowadays the main difficulty in performing a realistic and convincing simula-
tion of real processes is not the implementation of the model on a computer, but
rather the incomplete information about the model structure and/or parameters.
Often, it is difficult even to assess the correct order of magnitude of important pa-
rameters. A major impediment preventing ubiquitous computing with CA’s stems
from the difficulty of utilizing their complex behaviour to perform useful compu-
tations. Designing CA’s to exhibit a specific behaviour or to perform a specific
task is highly complicated, thus severely limiting their applications. This results
from the local dynamics of the system, which renders the design of local rules to
perform global computational tasks extremely arduous. Automating the design
process would greatly enhance the viability of CA’s. This involves the notions
of structure and parameter identification which are widely used in the context of
general dynamic systems [86].

Structure and parameter system identification are synonyms for statistical
and numerical procedures to obtain reasonable model structures and model pa-
rameters, respectively, based on data such that the predicted response of the model
is close, in some well-defined sense, to the process observations. The identifica-
tion problem is also referred to as the inverse problem. Since the relationships
encountered in the problem in context are nonlinear and linearization is of no use,
the treatment of those problems is not straightforward and demands some prior
information or reasonable guesses on the parameter values to get the numerical
procedures started. In the context considered here, identification provides the link
between data and model, between statistics and systems analysis and simulation.

The inverse problem for CA modelling is much more complex than the di-
rect problem which consists in simulation of a CA model based on a given detailed
description. As a result, the number of references is very limited. It can be said
that the identification problem is understood in the literature as that of learning
the underlying rules that govern the local behaviour of cells from temporal slices
of the global evolution of the spatio-temporal pattern. Identification of CA models
was thoroughly studied by Adamatzky in his monograph [1]. In that approach,
it is understood as follows: Given a set of consecutive configurations (snapshots)
of a completely unknown automaton, find an adequate CA model in the sense of
producing the same observed evolution. In consequence, the components of the
CA definition such as the state space, neighbourhood type and transition rules
are to be discovered and, moreover, this description should be minimal, i.e. the
size of the neighbourhood must be as small as possible. A number of algorithms
are given and analysed for various classes of CA’s, but those results are limited to
finding appropriate transition tables and CA’s are not treated there as parametric
models. Adamatzky also discussed the complexity of identification of CA’s and
presented sequential and parallel algorithms for computing the local transition ta-
ble. Another approach is by Yang and Billings [93] where a multiobjective genetic
algorithm is introduced to identify both the neighbourhood and the rule set in
the form of a parsimonious Boolean expression for both one- and two-dimensional
CA’s. The method is quite simple, but in contrast to Adamatzky’s approach,
the situation where the observed patterns are corrupted by static and dynamic

30 1.8. Identification of CA models and the problems addressed in this monograph

noise is considered. Unfortunately, only some abstract models are presented as
applications and they are not related to any practical model of any use.

As for the structure identification, the number of the existing attempts to
solve this problem is also very limited. To the best of the author’s knowledge, only
some works by Mitchell and the EVCA (evolving CA) group [58], Crutchfield and
his co-workers [19], as well as by Koza [51], can be qualified as attempts to address
this question. Evolutionary algorithms and genetic programming are respectively
applied to find binary CA’s performing non-trivial computational tasks. The in-
put to the computation is encoded as an initial configuration, the output is the
configuration after a certain number of time steps, and the intermediate steps that
transform the input to the output are considered to be the steps in the compu-
tation. The “program” emerges through “execution” of the CA rule in each cell.
The examples presented therein consider, however, computational problems which
are far from applications. This idea was pursued in the monograph by Sipper [73],
where genetic algorithms were use to find binary rules for non-uniform CA’s (i.e.
automata in which each cell possesses its own set of rules which may differ from
those for other cells) so as to solve some non-trivial computational problems such
as the synchronization, ordering, rectangle-boundary and thinning tasks.

The above brief overview of the state-of-the-art in inverse CA problems
indicates that more attention should be paid to state and/or parameter estimation
of CA models, as from an engineering point of view, the use of the existing scarce
methods is restricted owing to excessively severe limitations imposed by those
methods or involved computational difficulties. The central question addressed
in this thesis is thus whether we can mimic physical and ecological processes by
automatically creating CA’s that exhibit characteristics such as those manifested
by their natural counterparts. We prove this assertion by employing some tools of
systems identification, optimization methods and genetic programming, and show
that this task can be solved with relative ease and the modelling capabilities of CA
models can be substantially improved. As a result, the limitations of the existing
approaches, which seem to be the main impediments to persuade engineers to
apply CA’s in practice, can be circumvented.

This monograph constitutes an attempt to meet the needs created by prac-
tical applications through the development of new techniques and algorithms or
adopting methods which have been successful in akin fields of dynamic systems
identification. It is an outgrowth of original research conducted, among other
things, in the framework of a Polish-French project Polonium with the Labora-
tory of Systems Analysis of the University of Perpignan (France) and a European
project which gathered scientists from France, Spain, Italy and Poland. The author
believes that the approach outlined here has significant practical and theoretical
advantages which will make it, with sufficient development, a versatile tool in
numerous CA design problems encountered in engineering practice.

Chapter 2

A CA approach to ecological modelling

2.1. Problem statement

The behaviour of many natural phenomena can be seen as a result of changes
triggered by interaction of species living on the same territory over the same period
of time. Therefore, we may use the word succession in the ecological modelling
context. For most ecologists, succession involves changes in natural systems and
the understanding of the causes and directions of such changes. The main problem
here is: How to determine mechanisms that are associated with succession? Two
aspects can be distinguished here: succession from individual attributes and an
ecosystem succession.

The succession from individual attributes was studied in [56, 23, 39, 64, 16,
70, 71] and focuses on the following issues [70]:

• formulation of mathematical models that can be manipulated to explore the
long-term theoretical implications of interactions of the dominant organisms
(e.g. trees in the case of forests), and that can be used to test theory against
data;

• an analysis of competition as a main mechanism in species composition dy-
namics;

• a recognition of species interactions in a community;

• a denial of the climax community concept and the recognition of the non-
equilibrium nature of the vegetation that comprises most modern landscapes.

An ecosystem succession is an alternative view of succession that emphasises
the dynamics of the ecological system as an integrity. In this view, the ecosystem
(not a collection of changed populations) is viewed as the main object of study. The
formulation of succession theory for ecologists who are concerned with ecosystem
succession has several objectives and features [53, 62, 54, 57]:

• the recognition of regularities in ecosystem patterns, and an interest in the
development of a theory that would allow succession to be viewed as a regular
process in a number of different ecological systems;

32 2.1. Problem statement

• the recognition of processes involving more than plant-environment or plant-
plant interactions for ecosystem dynamics;

• the incorporation of indices, methods and approaches from engineering, ap-
plied mathematics, cybernetics and general systems theory in studies of eco-
logical systems;

• the influence of human activities on the ecosystem behaviour.

A success in forming ecological models lies in a correct perception of how to
combine scales of phenomena, space and time. The investigation concentrates on
the use of models to develop theory and to settle problems in our understanding
of succession.

The theories of dynamical systems and partial differential equations are
offered as various models for realistic problems that often exhibit spatial and tem-
poral changes. However, one of the significant difficulties lies in both solving and
implementing such equations. Indeed, most natural systems have discrete nature
and their evolution generates very complex behaviours. A discrete mathemat-
ical idealisation, based on CA’s, provides an alternative approach to modelling
some part of population dynamics like spatial expansion phenomena, neighbour
influence, etc. [89, 90].

For landscape ecology problems, as well as for various complex spatio-
temporal systems, one may decouple modelling by considering on one hand the
phenomena which are more specific to the time variable and, on the other hand,
those related to space. Roughly speaking, we can globally consider this decoupling
by assimilating biological layers to time dynamics (tree dynamics) and geograph-
ical layers to space dynamics (CA’s). Specific simplifications will depend on the
investigated phenomenon and associated variables.

2.1.1. Computer models of forest succession

It was in the beginning of the 20-th century that scientists started thinking
about modelling forest ecosystems. Clements took a holistic view of ecosystem
dynamics [13] whereas Gleason proposed an individualistic view of succession [29].
We can think of each modelling approach as a view of different facets of the same
reality.

A commonly used modelling paradigm for populations would be a formula-
tion of the following form:

dN
dt

= f(N, t), (2.1)

where N is the number of individuals in the population and t stands for time.
Although this formulation ignores the effects of sex ration on reproduction or the
effect of age structure on mortality, it can be successful as a basis for a general
theory of population dynamics.

In building a mathematical model of forest succession, two fundamental
problems must be overcome:

A CA approach to ecological modelling 33

Tab. 2.1. Explanations of the growth of young forests at different scales [70, 71].

Scale Mechanism Explanation

Very small Photosynthesis Within the leaf, the trees maintain a biochemical factory
that converts CO2 and H2O to sugar by using light energy
to drive this synthesis.

Stomata Energy balance The stomata of the leaf must optimise the heat, water, and
CO2 balance of the forest. The resistance of the stomata
to the inward diffusion of CO2 tends (in some cases) to be
a determining factor on the rate of photosynthesis.

Leaf Leaf geometry The shape and orientation of a leaf can have a pronounced
effect on the ability of the plant to take in CO2 to feed the
photosynthesis machine while giving up little H2O. Plants
that do this well have a high water-use efficiency (ratio of
CO2 fixed/H2O lost).

Leaf layers Light extinc-
tion in the
vertical

The orientation and layering of the leaves of a tree can
alter the rate at which the canopy captures light. Some
arrangements of leaves can be quite inefficient relative to
others.

Tree shape Light extinc-
tion in the
horizontal

Tall, thin trees are efficient in capturing light at high lat-
itudes (where the sun angles are flat); they also capture
light in the morning and evening (when moisture relations
may be more favourable). The latter can improve the
water-use efficiency at lower latitudes. Other geometries
have other advantages.

1. the appropriate scales for understanding the mechanisms of forest succession
are not well-known;

2. new observations, either to elucidate ecological mechanisms or to test the
models, most likely will be collected on time intervals that are short com-
pared with the scale of the actual dynamics of forest ecosystems.

The problem is with the scales of the corresponding mechanisms for a young
forest that is growing back after some distribuance to increase over time. Table
2.1 [70] summarizes several possible explanations (at different scales) for causes
and variations in this increase. At a given place and for a given forest, any of
these mechanisms may be important over some time scale. Unfortunately, all of
these mechanisms cannot be included in a single model of forest growth (when
one considers leaf energy balance and the higher order geometry of tree canopies
in the same model, the consideration of even a few leaves and their interactions
is difficult). Additionally, the number of interactions among the leaves increases
as a function of the number of leaves squared. In practice, it is extremely hard to
consider a large tree by simulating one leaf at a time.

In spite of the potential difficulties in bringing certain mechanisms into for-
est succession models, many of the models of forest dynamics have similar features.
These features are the same in a general sense, but they often differ in their details

34 2.1. Problem statement

of formulations. Some models are restricted by their underlying assumptions of
cases in which one or more of these featured mechanisms are constant or (at least)
predictable. For example, a model that assumes the equal spacing of trees may be
restricted in use to applications on plantations. The consistent features that are
found across forest dynamics models are as follows [71]:

1. Recruitment: sprouting, seed production, seed dispersal, germination, and
growth of seedlings until the young plants are large enough to be thought of
as trees.

2. Growth: height and diameter increase of trees.

3. Geometric competition: spatial interactions of trees related to the actual
geometry of the tree structures. Generally, larger individuals are favoured
in the geometric competition.

4. Resource competition: growth-limiting factors that may limit the develop-
ment of all the trees in a forest at a given site.

5. Mortality: the death of individual trees.

These features are treated with great detail in some forest dynamics models
and are absorbed into the model parameters in others [71]. On the basis of these
features, we can make a classification of models e.g. the one specified in Table
2.2. Phenomena typically included in the various models are listed there, with two
asterisks (**) indicating strong emphasis, one asterisk (*) indicating some empha-
sis, and a blank indicating that there is little or no emphasis on the particular
phenomena.

The first type of the presented models, developed from the late 1960s and
modified by Hegyi [35] in 1974, simulates both the annual height growth and
the diameter growth of each tree (the tree model). Competition decreased the
maximum expected growth by using a geometric competition index. The model
uses several regression equations for height and diameter increments at regular 25.4
cm intervals along the stem as a function of competition, age and size of the tree
and the site index. Mortality is applied at 5-year intervals. The model operates
on trees of one species (mono species) which grow in the same conditions (even
age structure). Additionally, it belongs to spatial models, which means that each
investigated tree does not have contact with another. This feature was improved
by Sullivan and Clutter [75] who were looking for both a statistically reliable
estimate of the volume of wood per unit area that is expected at a given time and
a simultaneous estimate of the basal area of the stand. These two variables are
both functions of the number of trees and individual tree geometry. The resulting
approach is very useful for predicting the plantation response of species that were
not well-known. In 1974 Solomon [74] extended this approach by introducing
mixed species. His model also includes several options that involve harvesting and
thinning.

Subsequent models introduce more features at the costs of complications:

A CA approach to ecological modelling 35

• In 1975 Mitchell [58] provided a good example of how a detailed geometric
model can be used to simulate monospecies forests.

• For prediction of the statistical distribution of tree diameters over time,
Suzuki and Umemura introduced in 1974 [76] partial differential equations
for the change in the mean (growth of an individual tree), its variance (a
diffusion process about the moving mean), and a partial differential equation
for the probability of mortality for trees as a function of the diameter and
time.

• Ek and Monserud [24] proposed the most elaborate forest dynamic model
that uses the individual tree growth as an underlying paradigm: the FOR-
EST model. The model simulates growth and reproduction of mixed species
and even or uneven-aged stands, and it includes natural regeneration and
growth, as well as a variety of management applications.

• In 1975 Horn [38] viewed the species dynamics of a forest as a problem
in determining the likelihood of whether a canopy tree of a given species
would be replaced by the same or another species in the next generation. He
modelled this view of nature as a first-order Markov process.

• In 1992 Antonovski [4] proposed a probabilistic model of forest fire dynamics.

The most promising approaches were outlined by Botkin [8, 7] and reiter-
ated by Waggoner [85], Shugart and West [72] as the so-called gap models. Gaps
are openings encountered in forest canopies. Basically, this model simulates the
annual change on a small plot by calculating the growth increment of each tree,
by tabulating the addition of new samplings to the stand (both from seeds and
by sprouting) and by tabulating the death of trees. All of the processes are con-
sidered to be stochastic. The philosophy that underlies the model construction
is to strive to represent dynamic phenomena by using general equations that can
be parameterised from a knowledge of basic physiology, morphology or forestry;
thus they do not require elaborate data sets for parameter estimation. The usual
approach is to reserve data for independent tests on the models.

2.1.2. Gap models

The concept of a forest gap or a gap phase is attributed to Watt [87] who
used the term to refer to a patch in a forest created by the death of a canopy tree.
Gaps become localised sites of regeneration and subsequent growth. They range
in size from small openings created by the death of a single branch to a large-scale
blow-down caused by catastrophic disturbances such as storms; gaps may also be
created by fires or aggregated insect outbreaks. Studies by Watt and many others
indicated that a mature forest ecosystem could be seen as a relatively consistent
average of the responses of the dynamics of such gaps.

The ordinary differential equation defining a gap constitutes a simplistic
model of reality and it represents a growth process which does not take account of

36 2.1. Problem statement

Tab. 2.2. Classification of forest dynamics models [70].

Model classification Phenomena

C
at
eg
or
y

A
ge
st
ru
ct
u
re

D
iv
er
si
ty

Sp
ac
e

R
eg
en
er
at
io
n

G
ro
w
th

G
eo
m
et
ri
c

co
m
p
et
it
io
n

R
es
ou
rc
e
co
m
-

p
et
it
io
n

M
or
ta
lit
y Example

tree even mono spatial ** ** * Hegyi [35]

tree even mono nonspatial ** ** Sullivan [75]

tree even mixed nonspatial * * ** Solomon [74]

tree mixed mono spatial ** ** * Mitchell [58]

tree mixed mono nonspatial ** * * ** Suzuki [76]

tree mixed mixed spatial * ** ** * ** Ek [24]

tree mixed mixed nonspatial ** ** ** Horn [38]

gap mixed mixed nonspatial ** ** Waggoner [85]

gap mixed mixed spatial ** ** * * * Shugart [72]

A CA approach to ecological modelling 37

very important parameters characterising vegetation such as water, light and tem-
perature terms, or the crowding stress. The modifications aiming at circumventing
this disadvantage involve, however, using non-linear partial differential equations
(PDE’s) for which any analysis (and even solution) becomes extremely hard [71].
The main difficulty lies in the fact that the ordinary differential equation in con-
text does not reflect spatial phenomena which are crucial in accurately describing
the crowding stress and its influence on light terms, which is related to the deter-
mination of the space occupied by particular individuals. Consequently, the main
problem considered here is how to simplify the accurate (but cumbersome) gap
model described by a PDE without deteriorating the quality of approximation.
For that purpose, our idea here is to employ CA’s, as they are completely discrete
models and thus they are perfectly suited to describe natural phenomena like seed
spread. Since the space is represented there by a regular lattice, we can simply
define interactions with neighbourhood, etc.

As with most individual tree-based models, gap models require a basic equa-
tion to increment the size of each tree on the modelled stand. For all gap models
proposed up to now, there have been two approaches to develop these equations.
The initial approach (and the one used in most gap models) was set forth by
Botkin [8, 7]. The growth equation is developed by assuming that the volume of a
tree is a function of its diameter D squared times its height H, and that the tree
growth is based on the annual volume increment. The tree volume increment is
governed by the following equation [70]:

d[D2H]
dt

= rLa

(
1− DH

DmaxHmax

)
(2.2)

where r is a growth rate parameter, La is a tree’s leaf area, D is the diameter at
the breast height, H is the tree height, and Dmax and Hmax are the maxima for
the diameter and the height, respectively.

The basic growth equation (2.2) can be simplified by noting that the height
H is a function of the tree diameter D. One useful formulation for this relationship
is [70]:

H = 137 + 2
(
Hmax − 137

Dmax

)
D −

(
Hmax − 137

D2
max

)
D2, (2.3)

where the constant 137 [cm] is set as the mean breast height of persons measuring
the tree diameters. If it is further assumed that La ∼ cD2, where c is a constant,
then eqn. (2.2), on substitution and differentiation, becomes [71]

dD
dt

=
GD

(
1−DH

DmaxHmax

)
274 + 6

(
Hmax − 137

Dmax

)
D − 4

(
Hmax − 137

D2
max

)
D2

(2.4)

Equation (2.4) is used in most of the currently published gap models as the optimal
growth equation.

38 2.2. Common CA models for forest dynamics

When we know how to model the growth phenomenon, we are now in a
position to build a population. To simplify the analysis, the working space is
divided into smaller regular parts called patches. Like in nature, on each patch
we examine all individuals living on it, e.g. if we operate on a patch of dimension
20m×20m and we know that on this selected patch we have 3 trees of one species
and 8 of another, we must solve 3 equations tuned for the first species and 8
equations prepared for the second species. Finally, we can say that each individual
is represented by one growth equation corresponding to this particular species.

All the currently used gap models incorporate some additional parame-
ters like solar conditions, temperature effects, nutrient cycling, moisture out-
comes, death and birth rules. The corresponding modifications in the model
for these phenomena are known, cf. [70] for more details. The idea of gaps is
currently developed by the National Gap Analysis Program. On the web page
http://www.gap.uidaho.edu/many references, reports and publications are pub-
lished.

A major problem with forest models is that both the foregoing original
models and the others presented later, offer either a simple form for a very lim-
ited class of applications, or a very complex form for more detailed and universal
models. A good example is a very complete approach proposed by Brufau [9] who
shows how hard using detailed gap-like model described by PDE’s can be. In her
Ph.D. thesis she modelizes changes in the following variables: average density of
the biomass of all species together, amount of water in the ground (humidity) and
absolute humidity of the atmosphere. The model operates on a one-dimensional
space domain composed of rectangles of the size representing the minimal distance
which is covered by humidity (assuming that the velocity is known and constant).
However, the resulting systems of equations are too cumbersome to be useful in
practice.

In turn, the spatial model by Tongeren and Prentice [80] shows how to sim-
plify the problem and to retain or even to improve the precision, but, unfortunately,
only for shrubs (or another short vegetation). The FIRESUM [47] model indicates
some possibilities to split the underlying model into a continuous part evaluating
the growth process and three stochastic, discrete parts representing birth rules,
the death process and fire dynamics. This approach partially simplifies the formu-
lation of the model, but unfortunately, it still offers involved descriptions of the
spatial interaction of trees.

2.2. Common CA models for forest dynamics

Most well-known CA forest models describe some characteristic phenomena
occurring in ecosystem dynamics, but they cannot be checked through real data
due to a strongly stochastic character. In what follows, two well-known CA models
of forests will be presented. Both operate on two-dimensional lattices and similar
state sets, and only the approach used to determine the transition functions clearly
makes them different.

A CA approach to ecological modelling 39

2.2.1. CA forest model by Green

A good example of modelling forest vegetation by CA’s is represented by a
known forest growth model originated from [31]. The applied approach is compat-
ible with both pixel-based satellite imagery and with quadrat-based field observa-
tions. It also enables processes that involve a movement through space (e.g. fire,
dispersal) to be modelled in “natural” fashion.

To see how easily the CA idea can be brought to bear on real systems,
consider a system whose states are of the form (s, τ), where τ denotes the time
since fire burnt out the cell and s takes one of the values: bare earth (E), grass
(G), woodland (W), and closed forest (F). The CA in context consists of a fixed
array which represents a landscape and in which each cell represents an area of
a land surface. The neighbourhood N(c) of a cell c is of von Neumann type (see
Fig. 1.4). Define state transitions rules as follows:

st(c)=(E, 0) =⇒ st+1(c)=(G, 1),

st(c)=(G, 4) =⇒ st+1(c)=(W, 5),

st(c)=(W, 49) =⇒ st+1(c)=(F, 50),

st(c)=(s, τ) =⇒ st+1(c)=(E, 0) if a fire ignites nearby,

st(c)=(s, τ) =⇒ st+1(c)=(s, τ + 1) otherwise.

Starting with an arbitrary “landscape” consisting of a two-dimensional grid of cells
in random states, the rules quickly produce interesting patterns.

For a better representation of complexity in forest vegetation, this deter-
ministic model can be changed into a probabilistic one (the model above always
uses the transition probability p equal to unity). The new probabilistic transition
function can be defined as follows:

st(c)=(E, τ) and τ ≥ 0 =⇒ st+1(c)=(G, τ + 1),

st(c)=(G, τ) and τ ≥ 3 =⇒ st+1(c)=(W, τ + 1) with prob. 1/2,

st(c)=(W, τ) and τ ≥ 44 =⇒ st+1(c)=(F, τ + 1) with prob. 1/2,

st(c)=(s, τ) =⇒ st+1(c)=(E, 0) with prob. 1/2 if a
fire ignites nearby,

st(c)=(s, τ) =⇒ st+1(c)=(s, τ + 1) otherwise.

These rules mean that cells with state values 1 and 2 remain intact for
three and forty four time steps, respectively. The model is then a delayed CA
as defined before cf. Definition 1.2, with D = {0, 3, 44} and δ : {0, 1, 2, 3} −→ D
which satisfies δ(0) = δ(3) = 0, δ(1) = 3 and δ(2) = 44.

On a lattice of 200×100 cells and starting with a given initial distribution,
we can observe the CA evolution shown in Fig. 2.1. For this simulation, periodic
boundary conditions were used. The light grey colour denotes bare earth (st(c) =
(E, τ)), grey colour stands for grass (st(c) = (G, τ)), dark grey denotes woodland
(st(c) = (W, τ)), black denotes closed forest (st(c) = (F, τ)), whereas the white

40 2.2. Common CA models for forest dynamics

Initial space distribution 10-th time step

50-th time step 100-th time step

Fig. 2.1. Evolution of Green’s forest-fire CA.

colour reflects fire centres.
As we can see, simulation results reveal some cyclic behaviour which repre-

sents regeneration of the forest after fire destruction. For instance, “forest zones”
quickly develop, even though the model contains no assumptions about the envi-
ronment or site preferences of the vegetation. Admittedly, this model is a mere
caricature of a true forest succession, but it is only a short jump to management
models taking (say) satellite data as inputs. It can be a good illustration in order
to present some trends in ecosystem dynamics.

2.2.2. Stochastic forest fire model

The stochastic forest fire model was introduced by Dossel and Schwabl
in 1994 [22]. In much the same way as in Green’s CA forest model, the death
of vegetation constitutes a cause of fire. The CA consists of a fixed square
lattice which represents a landscape with periodic boundary conditions. The
neighbourhood N(c) of a cell c is of von Neumann type (cf. Fig. 1.4). The states
associated with each cell correspond to a vegetable area and take the following
values:

0 – an empty site (cf. bare earth in Green’s model);

1 – a site occupied by a tree;

2 – a site occupied by a burning tree.

The transition rules are defined as follows:

A CA approach to ecological modelling 41

• an empty site sprouts a tree:

st(c) = 0 =⇒ st+1(c) = 1

with tree growth probability p1,

• a tree catches fire:
st(c) = 1 =⇒ st+1(c) = 2

with probability (1− p2) if at least one nearest neighbour tree is burning, p2

being the immunity probability,

• a tree catches fire:
st(c) = 1 =⇒ st+1(c) = 2

with probability p3(1− p2) if no nearest neighbour tree is burning, p3 being
the lightning probability,

• a burning tree burns down and becomes an empty site:

st(c) = 2 =⇒ st+1(c) = 0

with probability 1.

Playing with parameter values, we can obtain qualitatively different behaviours of
the “forest”.

Example 2.1
On a 160×100 square lattice and starting with a given initial distribution, we can
observe the evolution of the forest fire CA shown in Fig. 2.2. The light grey colour
denotes empty cells (st(c) = 0), the dark grey colour signifies trees (st(c) = 1),
whereas the white colour reflects fire (st(c) = 2).

Depending on parameter values, we can observe three regimes [22]:

• spiral-shaped fire fronts
When p2 = p3 = 0 and p1 � 1, clusters of isolated forests of (non-burning)
trees emerge within empty regions and these clusters persist until they grow
into other clusters that are burning. The fire fronts separate the empty and
forested areas. An example of that behaviour is shown by the first group
of four pictures in Fig. 2.2. For simulations, the following values were used:
p1 = 0.02, p2 = 0 and p3 = 0.

• self-organized critical (SOC) state
When p2 = 0, p1 � 1 and p3 � p1, two time scale separations occur:
tree growth occurs much more frequently than lightning strikes while forest
clusters burn down faster than they grow. This results in an SOC state
in which clusters of forests of all sizes are burning. An example of that
behaviour is shown by the second group of four pictures in Fig. 2.2. For
simulations, the following values were used: p1 = 0.05, p2 = 0 and p3 =
0.00025.

42 2.3. Coupling gaps with CA’s: Hybrid models

• percolation transition
When p3 = 0, forests spread as p2 increases and eventually there is a zero
density and a percolation-like phase transition takes place at a critical value
of p2, which depends on p1. An example of that behaviour is shown by the
last group of four pictures in Fig. 2.2. For simulations, the following values
were used: p1 = 0.2, p2 = 0.52 and p3 = 0.

Despite very simple rules, we have obtained a complex behaviour (spiral-
shaped fire fronts) known from observations of real forest fire and regeneration
processes.

2.3. Coupling gaps with CA’s: Hybrid models

Along with the increasing interest in the results coming from the work
on gap models, researchers have begun to look for new manners of improving
the quality of model approximation in known modelling methods. One of very
promising ways is to apply CA’s. Because the research on tree growth dynamics
and forest dispersion is based on the analysis of interactions between trees and
their neighbourhood, CA’s seem especially suited as a modelling tool for this
process. The simplest method to use CA’s in ecological models is to represent
each individual (tree) by one cell and to update vegetation parameters on the basis
of gap equations. In the case considered, such a CA consists of a lattice of cells
characterised by their state values representing a given parameter of vegetation.
The CA evaluates the state value for each cell and passes this information to a gap
model. Additionally, it evaluates the coefficients accounting for additional discrete
phenomena.

The delineated approach was already applied in [33, 49] where it proved
to be useful to improve simple and precise evaluation of space dynamics (seed
transport, birth and death rules, etc.). The main problem in those works consists
in appropriately combining a completely discrete CA with the continuous gap
model. An additional problem is how to simplify the interface of the complex
model for an average user who is not interested in understanding all mathematical
problems involved, but he or she knows qualitative characteristics of the studied
ecosystem.

In what follows, an original idea to solve both the above-mentioned problems
is outlined.

2.3.1. Coupled model implementation

The coupling process for CA’s and gap models leads to a more accurate
problem description, but is also a source of many difficulties: What are we to
describe by ordinary differential equations (ODE’s) and what by CA’s? What is
the size of the part described by ODE’s? How to combine the outputs of discrete
and continuous models?

A CA approach to ecological modelling 43

S
pi
ra
l-
sh
ap
ed
fi
re
fr
on
ts

In
it
ia
l
co
n
fi
gu
ra
ti
on

40
-t
h
ti
m
e
st
ep

60
-t
h
ti
m
e
st
ep

90
-t
h
ti
m
e
st
ep

S
el
f-
or
ga
n
iz
ed
cr
it
ic
al
st
at
e

In
it
ia
l
co
n
fi
gu
ra
ti
on

30
-t
h
ti
m
e
st
ep

80
-t
h
ti
m
e
st
ep

14
0-
th
ti
m
e
st
ep

P
er
co
la
ti
on
tr
an
si
ti
on

In
it
ia
l
co
n
fi
gu
ra
ti
on

1-
st
ti
m
e
st
ep

2-
n
d
ti
m
e
st
ep

3-
rd
ti
m
e
st
ep

F
ig
.2
.2
.
E
vo
lu
ti
on
of
D
os
se
l
an
d
Sc
hw
ab
l’s
st
oc
ha
st
ic
fo
re
st
fir
e
C
A
.

44 2.3. Coupling gaps with CA’s: Hybrid models

Tab. 2.3. Comparison of classical and modified gaps (nS is the number of species which live on
the studied terrain and ki denotes the number of individuals of species i on a given space unit).

Item Typical gap Modified gap

One space unit represents: individual patch

Number of ODE’s per space unit:
nS∑
i=1

ki nS

One ODE describes: growth of an indi-
vidual

mean growth of the
population for se-
lected species

2.3.1.1. ODE implementation

As we know (cf. Section 2.1.2) most of gaps are described by ODE’s or
PDE’s. As regards our coupled model, we do not need to complicate the growth
model usually described by first-order ODE’s. A necessary complication is often
used in order to implement spatial mechanics like seed transport, crowding effect,
etc. If this is the case, this is a task for a CA.

Most gap models describe each individual by one equation, and this as-
sumption is frequently used for coupling with CA’s. Alternatively, some models,
called modified gap models, operate on patches, and not on individuals. A patch
is a given surface area used to specify a piece of space for determination of local
evolution. Because the size of a patch is constant, we can say that the workplace
of the modified gap is a regular lattice. Of course, equations which characterise
the local evolution are not exactly the same as typical gap equations. In this case,
we operate on nS equations per patch (where nS is the number of species), and
not on one equation per individual. What is more, each equation describes the
mean growth dynamics for selected species (see Table 2.3).

Application of the modified gap model allows us to simplify the model de-
scription, to improve the performance and constitutes some kind of simplification.
Note, however, that we cannot increase the patch size too much, because this
may be a source of unacceptable modelling errors. We are also faced with other
problems for which solutions are not simple. Typical gap models are based on the
description of individuals, but in order for them to be compared with real data,
we need to compute mean values from some parts of the terrain. Furthermore,
in typical gap models we make some errors regarding initial conditions when we
change the measured data to the number of individuals and their sizes (the value
of growth level), and secondly, when we compute mean values for comparison with
measured data. And finally, the main problem is that we have to operate on too
many ODE’s per patch and we must tune their quantity adequately to birth and
death rules steered by the CA in context.

A modified gap model proposed here comes from original works of the au-

A CA approach to ecological modelling 45

dbh

Fig. 2.3. Way of measuring the tree diameter (at the breast height).

thor within the framework of the Lucifer project∗. It is developed and validated
for some Mediterranean species of trees and shrubs. The growth process is rep-
resented by the evolution of the tree diameter, called the diameter at the breast
height (or dbh for brevity, cf. Fig. 2.3) and denoted by D. Competition rules and
climate characteristics are included in the formulation. The patch size is related
to the size of a pixel on a map obtained from a satellite. The model describes veg-
etation changes by estimating periodically the diameter increments of each tree
on a prescribed plot. The tree diameter is used to determine the tree height and
leaf area profiles. The growth process is completed by considering four factors:

• the light effect,

• the crowding effect,

• the water stress, and

• the temperature reduction factor.

The light effect reflects the importance of light conditions for vegetation
dynamics and is given as

rL =

{
1− e−4.64(AL−0.05) for shade tolerant species,

2.24(1− e−1.136(AL−0.08)) for shade intolerant species,
(2.5)

where AL = φe−0.25
P

i Lai is the available light for a given class of trees,
∑

i Lai is
the shading leaf area index defined as the sum of the leaf areas of all higher trees

∗LUCIFER, this is the acronym of the European Programme CEE ENV 4-CT96-0320: Land
Use Change Interactions with Fire in Mediterranean landscapes, 1997–2000.

46 2.3. Coupling gaps with CA’s: Hybrid models

on the plot. In a typical gap, heights are obtained from equation (2.15) and then
we can compute

∑
i Lai for highest trees. In the presented case we use a medium

leaf area for specified species ((2.23) or (2.25)).
As for φ, it is the annual solar illumination which is assumed to be of the

form [70, 47, 71]

φ =
E

EH
, (2.6)

where E denotes the annual solar energy falling on the slope and then given by
[47, 71]

E =
∫
year

ωr∫
ωs

I(ω) cos Θdω dj, (2.7)

EH being the annual solar energy which would fall on the projected horizontal
plane. E is considered for EH when ω = 0. In the previous expression, I(ω) is
calculated from the following formula [47, 71]:

I(ω) = 1230 exp
{

−1
3.8 sin(h+ 1.6(π/180))

}
, (2.8)

where h is an angle which indicates the solar height.
The angles Θ and ω involved in (2.7) correspond to the direct radiance

incidence angle and the angle per hour, respectively. They are related to h through
the formula [47, 71]

cos Θ = sin δ sinφ cosϕ− sin δ cosφ sinϕ cos γ + cos δ cosφ cosϕ cosω

+ cos δ sinφ sinϕ cosω cos γ + cos δ sinφ sin γ sinω, (2.9)

sinh = sin δ sinϕ+ cos δ cosφ cosω, (2.10)

where φ, ϕ, δ and γ are some needed angles which determine the position of the
surface (slope, decline, etc.) with [47, 71]

δ = 23.15
π

180
sin
(
0.986

π

180
(284 +Nj)

)
, (2.11)

where Nj is the number of trees in the patch in the year j. The above values of
φ should be computed before simulation for each patch and used as a constant
topography map. For most cases, we can take φ = 1 which corresponds to a flat
horizontal terrain.

The crowding effect determines how the actual size of the biomass affects
the growth process. It is given by [47]

rN = 1− B

Bmax
, (2.12)

where B and Bmax are the current biomass and the maximum reachable biomass,

A CA approach to ecological modelling 47

respectively. This formula can be improved by considering, if possible, rN =
1 − (Ba/Ba max) where Ba is the reachable basal area and Ba max denotes the
maximum reachable basal area.

The water stress represents the influence of the water resource level on
the growth process and it is given by [47]

rω = 1−
(

1−Ap

1−Ws

)2

, (2.13)

where Ap = AE/PE is a ratio which indicates the ability of trees to be driest and
AE , PE are the actual and potential evapotranspirations, respectively. We have
Ap ∈ [0, 1]. Ws is the lower limit of the ratio Ap for which the water stress is
reduced to zero.

The temperature reduction factor describes the influence of the local
temperature on the growth process and it is given by [47]

rDegd,i =
(D5 −D5 min,i)(2D5 opt,i −D5 min,i −D5)

(D5 min,i −D5 opt,i)2
(2.14)

where

D5 – the heat sum of the site (a common value for all species interacting
on the same patch),

D5 min,i – the minimum heat sum bearable by species i,

D5 opt,i – the optimum heat sum bearable by species i.

To give the final model of growth, some preliminary calculations are needed.
If H0 denotes the initial dbh of the tree, the tree height H is related to D by the
following expression [47]:

H = H1 + b2D − b3D
2, (2.15)

where

b2 = 2
Hmax −H1

Dmax
(2.16)

and

b3 =
Hmax −H1

D2
max

, (2.17)

Hmax and Dmax represent the maximum reachable height and diameter, respec-
tively.

The generated model is very familiar to the typical gap equation (2.4) and
depends on the kind of species. For normal vegetation (i.e. for species whose max-
imal height is greater than 3 m), the growth process is described by the following
expression [92]:

dD
dt

= rLrNrωrDegd,i

GD

(
1−DH

DmaxHmax

)
2H1 + 3b2 − 4b3D2

. (2.18)

48 2.3. Coupling gaps with CA’s: Hybrid models

Tab. 2.4. Growth coefficients.

Description Symbol Usual range Unit

Maximum reachable biomass Bmax ∈ [5, 20] kg/m2

Maximum reachable basal area Ba max ' 0.004 m2/m2

Ability of trees to be driest Ap ' 0.67

Lower limit of tolerance in Ap Ws ∈ [0, 1]

Heat sum for a site D5 ∈ [2500, 4000] d◦/day

Minimum heat sum bearable by species D5 min ∈ [2700, 3100] d◦/day

Optimum heat sum bearable by species D5 opt ' 6500 d◦/day

Maximum diameter of the tree Dmax ∈ [1, 200] cm

Maximum height of the tree Hmax ∈ [20, 2000] cm

Initial dbh of the tree H0 ' 0 cm

Maximum age of the tree Amax ∈ [5, 800] year

Breast height H1 = 137 cm

Solar illumination φ ∈ [0, 1]

In the case where the species is considered as short vegetation (i.e. with maximal
height Hmax ≤ 3m), we have [92]

dD
dt

= rLrNrωrDegd,i

GD

(
1−DH

DmaxHmax

)
3b2 − 4b3D

, (2.19)

where H1 denotes the breast height (a constant fixed at H1 = 137) and the coef-
ficient

G = f(Dmax,Hmax, Amax) (2.20)

which also depends on the maximum age of the tree Amax is to be calculated using
the formula [92]

G =
4Hmax

Amax

[
ln (2(2Dmax − 1))

+
α

2
ln
(

9 + 2α
4(4D2

max + 2αDmax − α)

)

−

(
2α+ α2

2
√
α2 + 4α

ln

(
(3 + α−

√
α2 + 4α)(4Dmax + α+

√
α2 + 4α)

(3 + α+
√
α2 + 4α)(4D + α−

√
α2 + 4α)

))]
(2.21)

A CA approach to ecological modelling 49

with α = 1− (H0/Hmax).
For that law we assume H0 = 0. The different coefficients introduced for

describing the previous model are summarised with their units, normal variation
ranges and numerical values for the above-mentioned species in Table 2.4.

The biomass B (in kg) and leaf area La (in m2) are usually considered as
given by a function of the form aDb, where D is given as a solution to one of the
differential equations (2.18) or (2.19). Thus for medium and big size species trees
we have

B = 0.1193D2.3933, (2.22)

La = 0.16D2.129, (2.23)

and for shrubs we get

B ' D2H, (2.24)

La ' D2. (2.25)

As a basis for tests, seven Mediterranean species known from ecological
publications were considered:

• Quercus ilex (marked Sp1),

• Pinus halepensis (marked Sp2),

• Querqus coccifera (marked Sp3),

• Ulex (marked Sp4),

• Erica arborea (marked Sp5),

• Cistus (marked Sp6), and

• Brachypodium (marked Sp7).

The corresponding growth coefficients characterizing the species are listed in
Table 2.5.

2.3.1.2. CA implementation

The modified gap model outlined above is well-suited for modelling growth
phenomena. An acute problem in its use is that trees are not growing all the time.
Sometimes they die and in their place other trees are born. This phenomenon
should be included in the formulation in a sense if we aim at producing a model of
any practical use. This is because a CA is proposed below in order to implement
birth and death rules.

50 2.3. Coupling gaps with CA’s: Hybrid models

Tab. 2.5. Growth parameters for selected Mediterranean species.

Species Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7
Bmax 13 13 13 13 13 13 13

Ba max 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Amax 500 125 500 25 30 150 20

Ap 0.67 0.67 0.67 0.67 0.67 0.67 0.67

Ws 0.45 0.2 0.1 0.1 0.2 0.2 0.1

D5 3200 3500 3500 3600 3500 3600 3200

D5 min 2700 3000 2000 3100 3000 3100 2700

D5 opt 6500 6500 6500 6500 6500 6500 6500

Dmax 120 90 10 7 10 5 1

Hmax 1500 1500 150 130 300 130 50

A formula which describes the birth law is based on the number of live
seeds. New lives are born from seeds Sy,i according to the dependence

Sy,i = PiSy−1,i + ST,i −
Sy−1,i∑
i Sy−1,i

rALS,iSP , (2.26)

where
y – the year number,

i – the species index,

Pi – the probability of seeds to survive for at least one year,

ST,i – the total number of alive seeds falling on the studied patch,

SP – the maximum number of possible seedlings including all species,
and

rALS,i =

exp(−0.8La,i) for shade intolerant species,
exp(−0.25La,i − 1) for moderate shade tolerant species,
1− exp(−0.25La,i − 0.2) for shade tolerant species.

(2.27)

Additionally, we have to define seed transport rules. But to this end, we can
simply say that the probability of encountering a seed is inversely proportional to
the distance from the mother tree.

At this juncture, we know the appropriate formulae and mechanisms, but
the question should be addressed how to describe this by CA rules. For that
purpose, let us start with the transport problem. The rule which determines the

A CA approach to ecological modelling 51

Tab. 2.6. Specific birth coefficients.

Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Typical range Units

Pi 0.01 0.4 0.01 0.86 0.01 0.73 0.1 ∈ [0, 1] 100%/year

ST,i 1 10 1 10 10 20 5 ∈ [1, 25] Number/year

SP 2 2 2 2 2 2 2 ' 2 1/m2

existence of a seed can be written as follows:

seed =

{
true if rnd(0 . . n) < Nm,

false otherwise,
(2.28)

where Nm is the number of mother trees in the neighbourhood N(c) of size n. Of
course, this is a good rule for the individual trees case. Because we operate on
mean vegetation values per patch, we must take into consideration the intensity
on the neighbourhood, and not Nm. If we denote by Bi(c) the biomass of species
i on patch (cell) c, our rule takes on the following form:

seed =

true if rnd(0 . . nBmax,i) <
∑

γ∈N(c)

Bi(γ),

false otherwise.
(2.29)

Now, when we know whether or not we have seeds, we can determine Sy,i so
as to decide about the birth of a new life. Detailed characteristics of the introduced
species are contained in Table 2.6.

Themortality is described by the probability to get dead trees. The death
may be due to the fact that the trees have reached their maximum age or a stress
event. Thus Pr will be the annual probability to survive for random mortality, and
Ps the annual probability to survive for stress mortality. For random mortality,
we have

Pr = 0.011/Amax . (2.30)

For stress mortality, we have

Ps(ys) = 0.82Ps(ys − 1), (2.31)

where ys ≥ 1 is the number of stressful years. For high trees, if the plant annual
growth ∆D is less than a threshold value Tinc(i), then the surviving probability
decreases according to the above law. For shrubs, there is a stress if ∆D/∆Dmax <
Tinc(i).

The number of stressful years ys is determined from comparison of ∆D and
Tinc(i). A stressful year is to be considered if ∆D < Tinc(i). But for shrubs there
is a stressful year if ∆D/∆Dmax < Tinc(i).

For the considered Mediterranean species, we have the values listed in Ta-

52 2.3. Coupling gaps with CA’s: Hybrid models

Tab. 2.7. Specific death coefficients.

Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Typical range Units

Tinc 0.001 0.01 0.001 0.001 0.005 0.001 0.001 ∈ [0, 0.05] cm/year

s̄t-

-

-

f(s̄t)

Θ(x̄t) -̄xt Model
(2.18) or (2.19)

-x̄t+1
Γ(x̄t)

s̄1,t+1

s̄2,t+1

?

6

Σ -̄st+1

Fig. 2.4. Coupled system with discrete states.

ble 2.7.

2.3.1.3. Coupling process

In contrast to the aspects discussed so far, the coupling process is not simple
to introduce. The main problem lies in a proper cooperation of a discrete CA model
and continuous modified gap ODE’s. There are two possible ways of its solution:

1. The state vector should be compatible with discrete CA states. This scheme
is very useful from the CA model’s point of view. But numerous problems
arise when we use too few CA states, or when the conversion from discrete
states is badly scaled. In this case the growth process may run too quickly,
or stop and cannot continue. This idea is illustrated in Fig. 2.4.

2. The state vector should include real values of vegetation. This idea gives
preference to the part which calculates the modified gap equations. There
are, however, difficulties with evaluating the CA transition function, as the
CA operates on a discrete state set. The structure of the coupled model
which implements a real state vector is illustrated in Fig. 2.5.

The choice of the appropriate solution depends on the designer. Both the
methods possess their own disadvantages. The intuitive choice seems to be the
first method. Since we use a discrete CA, we can discretise the problem. At
this juncture, however, we must give a thought to what constitutes the essence of
the model. The answer is simple: it is the modified gap model (it approximates
the growth process, which is the main purpose of ecological modelling). Thus we
must assure best conditions for this part of the model. Of course, the second
approach conditions this in a better manner. An attempt at executing this part

A CA approach to ecological modelling 53

x̄t-

-

-

Model (2.18) or (2.19)

Γ(x̄t) -̄st
f(s̄t) -s̄t+1

Θ(x̄t)
x̄1,t+1

x̄2,t+1

6

?
Σ -̄xt+1

Fig. 2.5. Coupled system with continuous state vector.

with discrete state values necessitates an increased size of the state set for reduction
of discretisation errors. But too many state values complicate the CA transition
function. Finally, we pay a double price: first we introduce errors in the simulation
of the growth process and second, we complicate the transition rules.

Consequently, in this work the model with continuous state set (cf. Fig. 2.5)
has been chosen. Clearly, this approach is not free of problems, either—the CA
must operate based on real values and, furthermore, it must affect a real system.
In order to guarantee proper data for evaluation of the CA transition function, we
must use a mapping

Γ : x ∈ R 7→ s ∈ S, (2.32)

where S is a discrete state set. The function Γ is to be defined by partitioning the
range of possible values of x into a set of adjacent intervals and assigning to each
of them a state value s ∈ S.

Moreover, we have to define how to combine discrete CA states with the
real values from the gap model. As can be seen from Fig. 2.5, the converted state
vector of the CA x̄1,t+1 meets with the real vegetation state x̄2,t+1 in the block of
a linear combination Σ. Let us define the block Σ as follows:

x̄t+1 = c̄1x̄1,t+1 + c̄2x̄2,t+1 (2.33)

where c̄1 and c̄2 are constant coefficients. In this case, it is hard to generate values
of x̄1,t+1 which do not disturb vegetation dynamics (the CA should not introduce
errors).

As we know from the previous subsection, the CA is responsible for death
and birth rules. Thus we must get a modification of the vegetation state only in
this case. The proposed idea is to generate a positive impulse in the birth case, a
negative value if a death takes place and a neutral value for normal vegetation:

x̄1,t+1 =

+1 when a birth of a new vegetation is selected by the CA rules,
−1 when a death is selected by the CA rules,
0 otherwise.

(2.34)

54 2.3. Coupling gaps with CA’s: Hybrid models

200m0

1

2

3

1

3 42

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 25 26 27

28 29 30200m0

Soils Patch division

Fig. 2.6. Scheme of the Ratanica catchment.

For a proper implementation, we can tune death or birth intensities by
appropriately changing the value of c̄1 and conversion function Θ must not change
the values of x̄, i.e.

Θ(x̄t) = x̄t.

2.3.2. Adding the fire effect

For many ecologists it is extremely important to analyse the evolution of
the landscape after an outbreak of fire. The simplest way to introduce this feature
is to destroy (manually or by a special map) the biomass on selected patches. The
level of destruction should be proportional to the fire intensity, e.g. if we model a
poor element, we can destroy ' 10% of the total biomass on the patch (remove
' 10% of each species in the patch), in the strong fire case we can destroy ' 95%
of the total biomass.

Many researchers may ask why a fire dynamics model is not proposed in
this place. The answer is very simple: the proposed model operates with the
constant time step equal to one year. As a result, it is impossible to introduce a
fire dynamics model scaled on the same time range (it is not sensible to consider
a fire lasting for one year or longer).

2.3.3. Simulation results

For implementation and extensive tests of the presented model, specialised
software has been developed by the author in C++. The program LUCAS
(LUcifer Cellular Automata Simulator) produces the prediction of what a land-
scape would be in the future, taking into account fires or not [92]. It may evolve

A CA approach to ecological modelling 55

Tab. 2.8. Growth parameters for the Ratanica catchment species.

Species Pinus sylvestris Fagus sylvatica Larix decidua

Bmax 13 13 13

Ba max 0.004 0.004 0.004

Amax 150 125 200

Ws 0.2 0.2 0.1

D5 3200 3500 3500

D5 min,i 2700 3000 2000

D5 opt,i 4000 4000 4500

Dmax 80 90 50

Hmax 1500 1500 1100

with, or without external forces exciting the landscape such as controls, and can
be passive (as uncolonised zones) or active (fire, human activities).

The proposed approach has been validated on a real ecosystem. For that
purpose, the ecosystem of the Ratanica catchment was adopted which had been
thoroughly studied in the 1990s, cf. [32]. The Ratanica is a river whose catch-
ment is located in Southern Poland (49◦51’N, 20◦02’E), 40 km south of the city
of Cracow and in the vicinity of a big water reservoir providing the city with
drinking water. The entire catchment covers an area of 241.5 ha. The vegetation
of the catchment is typical of the Carpatian Foothills. Its upper part is covered
with forests, while the lower one with meadowsand fields. The forests are of an-
thropogenic character. Coniferous species (pinus sylvestris and larix decidua) are
dominant. The main deciduous tree is beech (Fagus sylvatica).

Beech-pine and pine-beech woods dominate in the catchment. The age
of trees ranges from 40 to 80 years, the oldest classes being rarely found. The
results of dendrometric studies in the Ratanica catchment indicate a large potential
productivity. The most dynamic tree species in this region is beech. Its expansion
and regression of Scots pine and larch might have been caused by changes in the
forest management and increased atmospheric input of nitrogen.

In order to compare the behaviours of our model with nature, initial and fi-
nal values for the volume occupied by the trees (i.e. the biomass volume) were taken
(the results for the middle values are not included here due to limited space). For
this comparison, the following information was used: soil configuration (only for
the initial condition), species composition of tree stands and large timber volume
measurements for the lattice composed of square patches with sizes 200 × 200 m
(cf. Fig. 2.6). This makes it possible to compare only patches (not individual
trees; this would be ideal, but very hard to interpret owing to the simplification
and generalisation of the gap model).

Simulations using the proposed hybrid model with the lattice of 30 patches
(they correspond to patches presented in Fig. 2.6) of 10 × 10 cells were stopped
after the periods of one and two years. Simulation results in the form of the error

56 2.3. Coupling gaps with CA’s: Hybrid models

In
it
ia
l
b
io
m
as
s

Si
m
u
la
ti
on
er
ro
rs

fo
r
19
91

fo
r
19
92

fo
r
19
93

P
in
u
s

sy
lv
es
tr
is

05010
0

15
0

20
0

25
0

30
0

35
0

0
5

10
15

20
25

30

Biomass

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

F
ag
u
s

sy
lv
at
ic
a

05010
0

15
0

20
0

25
0

30
0

0
5

10
15

20
25

30

Biomass

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

L
ar
ix

d
ec
id
ua

02040608010
0

12
0

14
0

0
5

10
15

20
25

30

Biomass

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

F
ig
.2
.7
.
S
im
u
la
ti
on
re
su
lt
s
fo
r
th
e
ec
os
ys
te
m
of
th
e
R
at
an
ic
a
ca
tc
h
m
en
t
(t
he
er
ro
rs
ar
e
re
la
ti
ve
an
d
gi
ve
n
in
p
er
ce
nt
s)
.

A CA approach to ecological modelling 57

resulting from comparison with the corresponding measured values are given in
Fig. 2.7. The initial configuration of the lattice was built on the basis of the
decomposition map for the tree age and its biomasses. The values of biomasses in
each patch are evaluated as the sums of component cells. The error values for the
first and second year of simulations (max. 4.8% for 1992 and 8% for 1993) allow this
model to be used for prediction of the growth tendency and general biomass states.
Some errors may result from incorrectly tuned parameters of the gap model: the
model relies on Polish species which are not so well documented in the gap context.
In order to solve this problem, the unknown parameters of the gap model were
estimated using the adaptive random search [86] (the algorithm and estimation
process are described in detail in Chapter 4): the measurements at hand were
used to run the hybrid model and to evaluate the respective descrepancy measure
between observations and model outputs. The problem is not trivial because the
model behaviour is discrete (due to the use of the CA) and stochastic (probabilistic
rules of birth and death).

Unfortunately, our model does not take into account human and nature
intervention (fire, cutting trees, pollution, etc.) which may additionally involve
difficulties in obtaining good simulation quality.

2.4. Multi-cell specimen approach

2.4.1. Problem statement

As we know from Section 2.1.1, most models operate on modelling the
forest using individual trees. Moreover, most gap models [70, 80, 47, 9] evaluate
the growth equation for each tree. All those models must solve spatial problems
like reproduction by seed transport, crowding stress, death and competition for
solar energy. The foregoing model uses some specific formulae: (2.5) for defining
the crowding stress and (2.3.1.2) for decisions about the crowding stress. For
correction of these simplifications, we should define a more detailed model which
would assure a better description of the phenomena. Using CA’s, we could solve to
some extent the specified problems if we found a method to describe each individual
tree space by a cell on the lattice. The problem is not trivial, as in the ecosystem
the behaviour of the growth process depends on many parameters and some of
observed phenomena (information about the global body size and shape) can be
modelled only for a huge neighbourhood (which may include a maximal body size).
Additionally, tree behaviours characterise a variable growth intensity (greater in
the beginning of the life and much slower at the end). The growth process cannot
be modelled only by the spread of tree biomass, because tree crowns move up with
time. Thus we have to tune the bottom space accordingly and not to disturb the
growth process.

In this section the CA approach to modelling forests by each tree will be
described. To attain this objective, each cell describes a smallest part of space (in
the previous model one or more trees, e.g. an area of 20m×20m and now a cube
of 10cm×10cm×10cm). Thus each tree is described by many cells (we obtain a

58 2.4. Multi-cell specimen approach

Fig. 2.8. Space discretisation process.

1

11

10 9

8

76
54

2
3

One tree Neighbourhood

Fig. 2.9. Tree representation on the CA lattice, and the definition of the simplified neighbour-
hood in the 2D view.

tree-space discretisation) [41].

2.4.2. Proposed approach

Because the research on the tree growth dynamics and forest dispersion is
based on the analysis of interactions between trees and their neighbourhoods, CA’s
seem especially suited as a modelling tool for this process. The simplest method to
use CA’s in ecological models is to represent each individual (tree) by one cell and
to update vegetation parameters on the basis of gap equations. In this case, such
a CA consists of a lattice of cells characterised by their state values representing a
given parameter of vegetation. The CA evaluates the state value for each cell and
passes this information to a gap model. Additionally, it evaluates the coefficients
responsible for additional discrete phenomena.

The delineated approach was already employed [33, 49] and proved to im-
prove simple and precise evaluation of space dynamics (seed transport, birth and
death rules, etc.), but there still remains the problem that in a gap model we must
take account of the crowding and solar effects depending on the current state of
the neighbouring gaps. As a solution to this problem, we propose here to refine
the description of one tree by enlarging the set of cells which represent this tree.
In fact, this idea is implemented in nature, as all plants are built of many cells
(cf. Fig. 2.8 and 2.9). Of course, the proposed model does not attempt to build
trees from billions of cells like in nature. This methodology only provides a sim-

A CA approach to ecological modelling 59

SUN

Fig. 2.10. A typical tree representation for gap models.

ple description of photosynthesis intensity and space stress. In the classical gap
models, in order to determine the size of the green part which has direct contact
with solar rays, we use a quite general formula which calculates this value from the
diameter of the tree and the diameter of neighbourhood. Each tree is represented
by a flat green part located perpendicularly to the trunk (Fig. 2.10). In the model
proposed, we allow for a competition between all trees aiming at winning as wide
space as possible, and we can easily detect how many cells are exposed to the sun
light (top cells enumerated as 1–7).

The recommended CA consists of a regular three-dimensional lattice, in
which each cell is characterised by a particular state taken in a discrete finite set
of admissible states. The dynamics of each cell is defined by a set of transition
rules which specify the future state of this cell as a function of its previous state
and the states of neighbouring cells. The proposed neighbourhood definition is of
von Neumann’s type.

In the presented model, the state S is characterised by the vector, with the
following components:

• Species type St: it has possible values Nothing, Species1, SpeciesSeed1, . . . ,
Speciesn, SpeciesSeedn, where n stands for the number of species;

• Specimen index Si: an integer label which identifies which tree a given
cell belongs to;

• Tree diameter D in the form of a float value to be calculated by the gap
model;

• Biomass B: the number of cells constituting the tree.

• Age A: the age of the tree expressed in iterations.

In the context of the proposed approach, the most important component is
the transition function f . Since it is very hard to describe growth phenomena by
simple rules, a straightforward manner is to use known and already validated gap

60 2.4. Multi-cell specimen approach

Pg3

Pg2Pg1

Pg1 Pg2 Pg3

PgΣ0

Fig. 2.11. Manner of choosing which tree grows to an empty cell.

models. The gap model (the same as that used for the previously proposed model,
i.e. (2.18) for trees and (2.19) for shrubs) is thus used to estimate the growth
tendency in the next iteration. This tendency can be used by empty cells which
are in the neighbourhood of the tree for computing the probability of growth. The
rules for the birth law can be defined by dispersal rules for seeds. The death rule
simply evaluates the death probability equation [70], which depends on the current
conditions and life length.

Summarising, the following situations may take place:

• A cell is empty. Then the neighbourhood must be analysed (four cells in
the case of the von Neumann definition). If one of these neighbours belongs
to an individual, then the probability of growth onto this cell is calculated
according to the formula

Pg,i =
fB(Di)−Bi

Nf,i
, (2.35)

where Nf,i is the number of cells which are in the neighbourhood of the in-
dividual i and are not occupied by other individuals. In case a cell is located
between two or more specimen (more than one neighbour belong to individ-
uals), the probability of growth is calculated for each of those neighbours.
Then the probabilities are written into the sequence (cf. Fig. 2.11) and a
value from 0 to

∑
Pg,i is drawn at random. The membership of the drawn

value into the range representing one of individuals decides about the winner
(i.e. the individual chosen to grow in the site). For the case when

∑
Pgi

< 1,
and the upper part of neighbours represents a seed, we draw a real value
from the range from 0 to 1 and values greater than

∑
Pg,i mean that this

seed is captured.

• A cell transports a seed and its bottom neighbour represents the ground. Then
a new individual must be born. This is achieved by generating a unique label
Si to mark it and setting the corresponding type flag St.

• A cell represents a tree’s body.

– If a cell is on the bottom of the body (bottom neighbours do not be-

A CA approach to ecological modelling 61

long to the same individual sSi(c) 6= sSi(c3)), we compute the death
probability,

Pd = (0.01)1/A +
|fB(D)−B|

Bmax
, (2.36)

where fB(D) is a function which estimates the biomass value from the
diameter D and Bmax is a maximal biomass value. Both the parameters
depend on the considered species.

– Otherwise, the cell does not change its state value (except updating D
based on the gap model).

2.4.3. Simulation results

Since the proposed model operates on a precise description of the trees, it
is a good idea to validate it on a small part of an ecosystem. Similarly to the
simulation of the previous model, the Ratanica catchment was used as the real
ecosystem.

For initial conditions the shapes of trees are generated from species composi-
tion of tree stands and large timber volume measurements for the lattice composed
of 30 patches with the sizes 200 × 200 m (cf. Fig. 2.6). This makes it possible to
compare only patches (not individual trees, as this would be ideal but very hard
to interpret owing to simplification and generalisation of the gap model).

Simulation using our CA with the lattice of 1200 × 1400 × 200 cells was
stopped after the periods of one and two years. Simulation results together with the
corresponding measured values are given in Fig. 2.12. The first column represents
the initial biomasses of each species in each patch for the year 1991. The second
and third columns present the biomasses obtained from simulation reduced by
the real measurements, and thus they presents simulation errors. Similarly to the
previous model, we can see small values of simulation errors. Unfortunately, owing
to limited measurement data, we cannot carry out a more detailed analysis of the
model behaviour. It can be concluded that the proposed model is fit to predict
the growth tendency and general biomass states.

2.5. Conclusion

Simulation results confirm that the proposed models constitute interesting
alternatives to single gap models. They allow us to describe many phenomena
more intuitively and still obtain satisfactory results. These approaches make it
possible to prepare universal tools which can be used by foresters and biologists
who are not, in most cases, interested in a PDE description of all phenomena—a
rule description is simpler to understand and develop. The results respect the
same mechanics as that used by Brufau in [9], but the complexity of both the
presented models is lower.

The first model offers a simplified model construction and still good mod-
elling quality. The results obtained are comparable with the work of Tongeren [80]

62 2.5. Conclusion

In
it
ia
l
b
io
m
as
s

Si
m
u
la
ti
on
er
ro
rs

fo
r
19
91

fo
r
19
92

fo
r
19
93

P
in
u
s

sy
lv
es
tr
is

05010
0

15
0

20
0

25
0

30
0

35
0

0
5

10
15

20
25

30

Biomass

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

F
ag
u
s

sy
lv
at
ic
a

05010
0

15
0

20
0

25
0

30
0

0
5

10
15

20
25

30

Biomass

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

L
ar
ix

d
ec
id
ua

02040608010
0

12
0

14
0

0
5

10
15

20
25

30

Biomass

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

02468101214

0
5

10
15

20
25

30

Error

P
at

ch
 n

o

F
ig
.2
.1
2
.
Si
m
u
la
ti
on
re
su
lt
s
fo
r
th
e
m
u
lt
i-
ce
ll
sp
ec
im
en
ap
pr
oa
ch
(t
he
er
ro
rs
ar
e
re
la
ti
ve
an
d
gi
ve
n
in
p
er
ce
nt
s)
.

A CA approach to ecological modelling 63

for shrubs, except that the proposed model is more universal: it operates on shrubs
and bigger trees and more than one tree can live on the same territory at the same
time (cf. only one in [80]). Application of the modified gap model permits us to
significantly reduce the number of differential equations (only one per species for
each cell). Thus we obtain a considerable improvement in the performance: on a
low-cost PC, the developed LUCAS simulator generates the next iteration (which
often means one year) in two seconds for the terrain represented by 200×150 cells
(each gap equation is interpreted from any form given by the user).

A model with detailed tree description offers a possibility of observation of
only one or two simulated trees. This can give forest experts more information
about the simulation quality than a table of figures resulting from integration of
gap equations—it is a continuation of single-tree models presented at the beginning
of this chapter. It better respects the influence of light terms (they are evaluated in
more detail) and local disturbances of spatial configurations (the crowding stress).

A direction for future research is to improve the proposed model in order for
it to better represent the shape of the trees and to modify parameters for better
adaptation to the studied phenomena and validate them on bigger ecosystems for
longer periods (for more than 10 years).

Chapter 3

Modelling spread phenomena

3.1. Introduction

So far, much of the research on CA’s has been of an experimental type. In
recent years, however, attempts have been made to insert it into general modelling
theory [44, 45]. Moreover, it is possible to slightly modify the entire analysis and
control theory of systems evolving in space and time so as to include CA models.
As a consequence, the CA method could be considered as an alternative approach
to modelling the so-called spreadable systems. For that purpose, in this chap-
ter appropriate transition rules will be defined and characterised for spreadable
CA’s. Then the concepts of passive control in CA’s will be introduced and some
connections with spreadability will be indicated.

The problem of ecological modelling has a potential to take full advantage of
the power of CA’s. Spreadability is particularly motivated by vegetation dynamics
problems, but its study involves various other fields of applications [61]. A wide
variety of natural processes can be described by the spreading or kinetic growth
(KG) model, see e.g. the fluid flow trough porous media, beverage accidentally
spilled on the table, reproduction of yeast, fire on the flammable material, epidemic
spread, etc. Like in any of model designing tasks, the main problem is a proper
selection of a model. They are two ways to do that: to create model equations
on the basis of detailed knowledge of the studied problem or to approximate its
behaviour by a general model. In both the cases we obtain a model described
by partial differential equations which may be complex and hard for analysis.
Additionally, this kind of models may be hard to apply (known methods are rather
numerically complex, and it goes without saying that they are time-consuming).
The CA approach allow us to describe the problem by simple and comprehensible
rules which do not necessarily cause a substantial loss of accuracy. Additionally,
a cellular architecture considerably simplifies the visualisation task. In this case
the discrete character of the CA state do not yield a discretisation error because
the spreadable feature as well as space are not continuous.

There are different choices to construct CA’s which concern the lattice geom-
etry, neighbourhood type, boundary and initial conditions, state set and transition
rules. As is shown below, a suitable choice of these parameters may lead to the

Modelling spread phenomena 65

spreadability in CA models.
We recall that spreadability is a process in which an object or a feature ex-

tends itself over an increasingly larger area by incorporating neighbouring regions
to itself. Let A = (L,S, N, f) be a CA (cf. Def. 1.1, p. 6) and P be a property to
be spread or absorbed (a negative spread), defined by

Pst(c) ⇔ st(c) = sD, (3.1)

where sD ∈ S corresponds to a desired state and is assumed to be reachable from
initial time t0. Consider now the family of subsets

ωt = {c ∈ L | Pst(c)} = {c ∈ L | st(c) = sD}. (3.2)

Definition 3.1 A cellular automaton A is said to be P-spreadable from ωt0 if

ωt ⊂ ωt+1, ∀t ≥ t0. (3.3)

It is necessary to emphasise that P is a property (most often, it consists in
attaining a given value of the state or part of the state vector), not a dimension.
A good example is a group of cluster-spreadable models, where the spreading
property P is represented by the cluster membership. In other words, we observe
expansion of cells belonging to the cluster (st(c) = sD, where sD means the cluster
membership).

Good examples of cluster-spreadable CA’s are implementations of an Eden
model and a single percolation cluster model proposed here. The former one was
introduced by biologists and, due to its simplicity, is excellent to illustrate spread-
ability phenomena and CA usefulness in spread modelling. The latter exemplifies
how simply we can extend the previous model to make it useful in modelling
complex phenomena by adding new features.

3.1.1. Eden model

The Eden model [27] is an original kinetic growth model which was intro-
duced by a biologist (for whom it is named) to represent the growth of tumours.
The Eden model operates on a two-dimensional square lattice system. It starts
with a cluster of cells consisting of a spread origin and its neighbourhood. The
state set is composed of three values:

• an empty cell,

• an occupied cell (the cell being a component of the cluster),

• a member of the cluster border (the empty cell in the direct neighbourhood
of the cluster).

At any step we randomly choose a cell from the border and join it to the cluster.
Then we need to define a new set of the cluster border (by adding the empty cells
from the neighbourhood of the joined cell, which do not belong currently to the
border).

66 3.1. Introduction

3.1.1.1. Eden algorithm

The original algorithm implementing the Eden model employs global rules
with global variables. At the beginning, two lists of coordinates are created. The
first list is composed of the coordinates of cluster cells

VC =
(
(x1, y1), . . . , (xnC

, ynC
)
)

(3.4)

and the other of the coordinates of the border cells

VB =
(
(x1, y1), . . . , (xnB

, ynB
)
)
, (3.5)

where nC is the number of cells forming the cluster and nB is the number of cells
in the direct neighbourhood of the cluster. The neighbourhood in original form
is defined in the von Neumann style (1.5), but the Moore (1.7) or modified von
Neumann neighbourhoods (1.6) can be also employed. Then we randomly pick
a cell b from VB for joining it to the cluster (the cell is thus moved from VB to
VC). Next, the nearest neighbour sites of b that are not in VB yet are added to
VB . Another site is then randomly selected from VB , and so on. This process
continues until the cluster list reaches some maximum size nC max.

The scheme of this algorithm is shown in Fig. 3.1. Figure 3.2 presents an
exemplary sequence of five steps of the Eden algorithm.

3.1.1.2. CA implementation of the Eden algorithm

The Eden algorithm is very simple, which suggests that it must be also
simple to apply it in the CA framework. It is not true, however, as in a CA each
cell updates its state based on the neighbourhood configuration and not on global
parameters like lists of cluster or border cells. To introduce the corresponding CA
model, we can define the cluster border as all cells outside the cluster with one of
their neighbours occupied by the cluster. Each border cell becomes a cluster cell
with a fixed probability pC .

On the analogy of the original Eden algorithm, the appropriate CA im-
plementation should add new cells into the cluster only from among its actual
neighbours. An essential difference is the state set which consist of only two val-
ues:

S = {EMPTY,CLUSTER} (3.6)

The third value BORDER is not necessary, because the detection of whether
or not an EMPTY cell is a border cell can be performed using a simple rule like
the following one:

Modelling spread phenomena 67

END

?

false

Q
Q

Q
QQ
�

�
�

��Q
Q

Q
QQ
�

�
�

��

nC < nC max -
true The nearest neighbour sites of

VC [nC] that are not in VB or VC

yet are added to VB

?

Select b ∈ [1, nB]. Move
coordinates VB [b] from VB into

VC .

�

Define initial values of VC , nC ,
nC max, VB , nB .

?

Fig. 3.1. Eden algorithm.

− cluster cell
− border cell
− empty cell

Fig. 3.2. An exemplary sequence configurations of the Eden model.

68 3.1. Introduction

I sBorder := fa l se ;
for i :=1 to n
i f (s (N(c) [i]) = CLUSTER)
begin
I sBorder :=true ;
break ;

end ;

where the function s(c) returns the state of a cell c, N(c) stands for the neighbour-
hood and n is the neighbourhood size (cf. Def. 1.1). The main difference lies in
the cluster growth method. In the original model, at each time step we draw one
of the border cells and move it into the cluster. Because the CA dynamics is based
on local rules, we cannot operate on a global list of border cells and so we cannot
simply pick one of its elements. A solution is to define some fixed probability pC

of joining a border cell to the cluster. In this case we realize the main goal (the
cluster spread), but at a given time step it may happen that no cells or more than
one cell will be joined (this situation is impossible in the original model). For
the correctness of this implementation, the value of pC is crucial: a small value
makes the growth difficult, while a large one may produce an avalanche spread.
To complete the description, we also need to define a neighbourhood N(c): for
most cases the von Neumann one is sufficient (see Section 1.3).

Example 3.1
Exemplary simulation results of a CA for a lattice of 130×100 cells, von Neumann
neighbourhood and probability pC = 0.1 are shown Fig. 3.3. Because in the CA
case the growth intensity strongly depends on pC , we can observe the exponential
increase of the cluster set as time elapses. This behaviour perfectly fits to a
real situation corresponding to the intensity of growth depending on the size of
tumours. In nature each border cell of tumour strives to reproduce and does not
care about the reproduction of other cells. There is no central mechanics which
decides about the growth intensity. Thus in real situations the growth process is
never linear as is suggested in the original Eden algorithm. Figure 3.4 presents
the comparison of the growth intensity for three values of pC = {0.01, 0.1, 0.5}.

The scale of the lattice presented here is enough to show a way of cluster
growth. Its increase will change only the scale, but the character of results will be
still retained.

The CA approach to the Eden model considerably simplifies the problem
(we need neither to update the border at each time moment, nor to save lists of
cluster and border cells). By joining several cells instead of one we do not disturb
simulation results, as they are like the original Eden model played more quickly.

The presented results perfectly reflect spreadable phenomena. In our case
the property to be spread is the membership to the cluster. Specific properties of
CA’s allow us to easily build a spreadable model and to observe its evolution. Ad-
ditionally, the problem description by local rules makes this model more intuitive.

Modelling spread phenomena 69

Fig. 3.3. Evolution of the CA implementing the Eden model.

3.1.2. Single percolation cluster model

The single (or random) percolation cluster model constitutes a derivative
of the Eden model and can be used to describe the epidemic spread of a disease
[28]. Similarly to its ancestor, the discrete lattice is split into four sets:

• the set of empty cells,

• the set of cells representing the spreading phenomenon (the cluster),

• the set of cells representing the border of the phenomenon, and

• the set of cells resistant to the spreading phenomenon.

In contrast to the Eden model, not all the cells chosen from the border set are
included into the cluster. This process is controlled by the probability pj of joining
a selected cell from the border to the cluster. In each time step we randomly choose
a cell b from the border set VB to possibly add it into the cluster. Then we draw
a number from the interval p ∈ (0, 1) and we compare it with probability pj . If its
value is less than pj , we add b to the cluster, otherwise it becomes resistant. No
matter whether or not a cell is added to the cluster, the new border is determined
(if a cell is resistant to the cluster spread, it will not be considered for joining to
the cluster any more).

Because the border cells surround both the cluster cells and resistant ones,
when we draw a cell b from VB , it can be a neighbour of a resistant cell. Thus we
can say that in this model the cluster growth appears not only near the cluster
cells. Unaffected cells are also a potential source for the cluster growth. It is much
like in nature: very often unaffected individuals are a carrier of a disease. Thus
we can say that they are also a spread medium like infected ones.

70 3.1. Introduction

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

C
lu

st
er

 s
iz

e
[#

 o
f c

el
ls

]

Time steps

(a) Pc = 0.01

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140 160 180 200

C
lu

st
er

 s
iz

e
[#

 o
f c

el
ls

]

Time steps

(b) Pc = 0.1

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140 160 180 200

C
lu

st
er

 s
iz

e
[#

 o
f c

el
ls

]

Time steps

(c) Pc = 0.5

Fig. 3.4. The cluster growth for the CA implementation of the Eden model.

Modelling spread phenomena 71

− cluster cell
− border cell
− empty cell

Fig. 3.5. Consecutive configurations of a single percolation cluster model.

An exemplary evolution sequence of the discussed model is presented in
Fig. 3.5.

3.1.2.1. CA implementation of the single percolation cluster model

In the CA implementation of the Eden model we have used a two-valued
state set. Here we need to introduce a new state RESISTANT which corresponds
to the state of an unaffected cell, i.e. we have

S = {EMPTY,CLUSTER,RESISTANT}. (3.7)

This state augmentation is necessary because, as opposed to border cells, we cannot
detect the resistant cells arithmetically. Furthermore, this new state helps us to
simply detect border cells. In the CA implementation of the Eden algorithm we
mark an empty cell as the border if one or more of its neighbours are members of
the cluster. As we see in Fig. 3.5, in this model sometimes a border cell has no
neighbours belonging to the cluster (Configurations 3 and 4). The introduction of
a new state RESISTANT which means a free cell resistant to the cluster expansion,
solves this problem. Now we mark a cell as a border one if one or more cells in its
neighbourhood are members of the cluster or a resistant one. The corresponding
algorithm can be written as follows:

I sBorder := fa l se ;
for i :=1 to n
i f ((s (N(c) [i])=CLUSTER) or (s (N(c) [i])=RESISTANT))
begin
I sBorder :=true ;
break ;

72 3.1. Introduction

Fig. 3.6. Simulation results for the CA implementation of the single percolation cluster model.

end ;

To complete our CA model description, we should add that at every iteration for
cells with probability of joining in the cluster greater than pC , we are to draw
a number p ∈ (0, 1) and compare it with pj . The result of this comparison will
permit us to qualify the cell for either the cluster, or the border.

Example 3.2
Some simulation results of a CA with a lattice of 130×100 cells, von Neumann
neighbourhood, pC = 0.1 and pj = 0.1 are demonstrated in Fig. 3.6. Empty cells
are presented as white squares, the grey ones correspond to resistant cells and
black squares represent the cluster area.

At first glance the results are very close to those for the ancestor model and
yet some cells marked with the grey colour mean empty and resistant cells. Its
amount is directly proportional to pj . In the model, the real probability of the
cluster growth p′C is of the form

p′C = pCpj . (3.8)

The corresponding graph of the cluster growth graph is presented in Fig. 3.7.
On this graph we clearly see the difference from the Eden model. For the simple
percolation cluster model the growth process is slower (not all cells join in the
spread phenomenon) because of the smaller value of p′C .

Modelling spread phenomena 73

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180 200

C
lu

st
er

 s
iz

e
[#

 o
f c

el
ls

]

Time steps

Fig. 3.7. The cluster growth process for the CA implementation of the single percolation model.

3.2. Spray Control

As developed in [44, 78, 45], it is possible to make time-continuous systems
spreadable by means of appropriate controls, called spray controls. In the case
of CA modelling, it is possible to extend this idea. To this end, we have first to
define what a control can be. Let A = (L,S, N, f) be a CA and L1 be a subset of
the lattice L.

Definition 3.2 A control u : L1×T → S is a function which is defined on L1 ⊂ L
(L1 can be reduced to a one-cell subset {c} and varying in both time and space),
where T signifies the discrete time horizon. A becomes then a non-autonomous
cellular automaton.

Below, two examples of the control influencing a CA are briefly discussed.

3.2.1. Invasion percolation model

The invasion percolation model is another derivative of the Eden model.
It also operates on a two-dimensional rectangular lattice, with coordinates lists
for cluster and border sites. In this model, every cell in the border set has an
associated random number. The cluster spreads by incorporating a border site
with the lowest associated number. If there are more than one cell with the lowest

74 3.2. Spray Control

END

?

false

Q
Q

Q
QQ
�

�
�

��Q
Q

Q
QQ
�

�
�

��

nC < nC max
-

true
The nearest neighbour sites of VC [nC]
that are not already in VB and VC yet

are added to VB .
VR is updated.

?

Find b ∈ [1, nB], where
VR[b] = min VR[1, . . . , nB].

Move coordinates VB [b] from VB

into VC .

�

Define initial values of VC , nC ,
nC max, VB , nB and VR

?

Fig. 3.8. Algorithm for the invasion percolation model.

value, a winner is randomly selected. Thus this model describes the process of
spreading that “follows the path of the least resistance”. It can be used to describe
the fluid flow through porous media, which occurs e.g. in tertiary oil recovery.

3.2.1.1. Algorithm

In much the same way as in the Eden model, at the beginning we create
lists of cluster sites VC and the corresponding border sites VB (cf. (3.4) and (3.5)).
Additionally, we have to define the list of resistance numbers VR corresponding to
elements of VB . Then we select a site from the VB list with the lowest resistance
associated with the corresponding VR site. Next, we append this site to the cluster
and update the border list VB . Simultaneously, we have to randomly generate new
resistance values of VR corresponding to the new sites added to VB . If the cluster
size is less than a maximum possible threshold NC max, we select a new site from
VB , and the process is repeated.

The block scheme of the algorithm is given in Fig. 3.8. To make the un-
derstanding of the invasion percolation algorithm easier, in Fig. 3.9 an exemplary
sequence of five consecutive steps is presented.

Modelling spread phenomena 75

1
2

3
4 2

3
4

12
3

4
3

2
3

4
2

3

4
33

4

2
3

4

3 4
33

4

3
4

3
4

3

− cluster cell
− border cell
− empty cell

Fig. 3.9. An exemplary evolution of the invasion percolation model.

3.2.1.2. CA implementation of the invasion percolation model

As regards the CA implementation, the spread process in the invasion per-
colation model is driven by the local resistance. In the application of the model
presented in [28], the resistance was drawn for new cells which were added to the
border (VB) and its value was stored in a vector of resistances VR. Because VB

is not needed (we can detect the border arithmetically, cf. Eden and single per-
colation cluster models), the state should include information about the type of
the cell (an empty or a cluster component) and the local resistance for the empty
case. We have two possibilities:

• Use one state variable, where the state set S is composed of the information
about the cluster membership and the group of sets representing different
resistances for empty cells:

S = {CLUSTER,EMPTYRmin , . . . ,EMPTYRmax}, (3.9)

• Extend the scalar state to the state vector:

S = {(v1, v2) | v1 ∈ {EMPTY,CLUSTER}, v2 ∈ [Rmin, Rmax]}. (3.10)

Both the approaches allow us to define a map of resistances which drives the
spread effect (this is a more realistic situation because we can observe spreading
phenomena on previously defined diversified media). This map depends on the
initial conditions.

76 3.2. Spray Control

Once the state set has been defined, we should define mechanics of the
cluster growth. Similarly to the Eden model, the inclusion of a cell into the cluster
depends on the probability pj . Thus for each border cell we draw a number
p1 ∈ [0, 1] and compare it with pj . The result of this comparison will determine
the new state: as a candidate for the cluster member or still the border. A
major novelty constitutes the condition for checking the resistance. If a cell has
been selected by the rule of joining it as a candidate for the cluster member, we
draw the second number p2 ∈ [Rmin, Rmax] and compare it with the local value
of resistance. Only this rule finally will permit us to qualify a cell for either the
cluster, or the border.

Example 3.3
Application of a randomly generated resistance map such as that in [28] causes
some problems with the analysis of the influence of the resistant map on the
cluster spread process. Thus it is better to use the regular one, e.g. like the one
presented on the first panel in Fig. 3.10. The grey and black colours represent sites
with R = 98 and R = 36, respectively. The remaining (white) region represents
the zone which lies outside the cluster spread, i.e. the cells there correspond to
R = Rmax = 100. The cells with values 98 and 100 can be interpreted as supports
of the so-called passive control as their states do not change and they constitute a
barrier for other cells which cannot thus colonize the region outside the cross on
the top-left panel in Fig. 3.10.

Exemplary simulation results of a CA with a lattice of 130×100 cells and
von Neumann neighbourhood are shown in Fig. 3.10. The first panel shows the
resistance map. The next five panels present CA configurations after 1, 20, 50, 100
and 150 iterations, respectively. We can observe that cells with smaller resistances
are attached to the cluster (the black colour on the resistance map) in the first
place, and then those with larger ones are joined in. The cells with R = Rmax are
never joined to the cluster since the drawn value p2 ∈ [Rmin, Rmax] is always less
than or equal to Rmax, i.e.

p2 ≤ Rmax, ∀p2 ∈ [Rmin, Rmax]. (3.11)

The graph of the corresponding cluster growth is presented in Fig. 3.11.
We clearly see a difference from the Eden and simple percolation cluster models.
In the 87-th step we observe a deterioration of the cluster growth process after
exhausting free places with smaller resistances. The results prove that the spread
phenomenon in this model is controlled by the the local value of resistance because
a change in the resistance of a cell will only change the value of itself.

3.2.2. Limited-energy walker model

Many physical and natural processes can be modelled as moving particles.
They can be e.g. diffusion, fluid flow, tension distribution, etc. Two main elemen-
tary CA models used for modelling walking particles are the following:

Modelling spread phenomena 77

Resistance mask. CA after 1 step, 20 steps,

50 steps, 100 steps, and 150 steps.

Fig. 3.10. Simulation results for the CA implementation of the invasion percolation model.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200

C
lu

st
er

 s
iz

e
[#

 o
f c

el
ls

]

Time steps

Fig. 3.11. Cluster growth for the CA implementing the invasion percolation model.

78 3.2. Spray Control

• Multiple random walkers [27] being a model which operates on a rectangu-
lar lattice with periodic boundary conditions. The state set defines a walk
direction or the free space. Its transition function scans the modified von
Neumann neighbourhood for free space to move a cell. The collisions are
detected (particles randomly choose new directions).

• Noise-driven diffusion [77] being a deterministic CA model operating on
the Margolus neighbourhood and on a rectangular lattice. The transition
function depends on a particular variant of the model, but in general it
allows for a particle movement and collision detection (molecules avoid one
another, or collide elastically and change their direction of movement).

The idea to limit the movement energy was introduced so as to restrict
the region of spreading particles. It is well-known that in some situations natural
mixing of liquids is impossible (consider e.g. an oil spot on the water, water in
petrol, etc.). Similarly, grains spilled on a table never cover it evenly. In this
situations, typical models are of no use. An analysis of this fact and above-
mentioned models (and others, cf. [77, 28, 27]) suggests a natural idea to expand
the models by limiting the movement energy of the particles. These types of
models are more appropriate for modelling liquids and solids.

In order to develop that model, we have to define a transport method for
the property (a state set) which represents a particle. A problem arises however,
when solving collision situations. There are three ways to overcome them:

• to check a neighbourhood of the target cell (the idea used in multiple random
walkers [27]),

• to use the idea of the Margolus neighbourhood (using different cluster con-
figuration for even and odd iterations),

• to use a hidden step, i.e. an iteration is made up of two steps:

– a collision flag is evaluated according to the configuration (it is set to
true if both the cell c is empty and particles in two or more cells in the
neighbourhood N(c) point towards c);

– if a cell is occupied by a particle and the particles in the neighbouring
cells have activated the collision flag, their directions are changed; oth-
erwise, if the cell is occupied, it passes the particle for the empty cell
pointed by the particle.

A similar solution was used in [77] for tracing the flow.
The third approach above may look complicated, but it makes it possible

to significantly simplify the transition function and makes it clearer (especially for
larger neighbourhoods, when the first two solutions are more complicated).

Then we have to define a lattice and a neighbourhood type. A large neigh-
bourhood size involves a sophisticated transition function. A good solution seems

Modelling spread phenomena 79

to be a hexagonal lattice with Moore neighbourhood. It ensures both a good ac-
curacy (particles can move in six directions, whereas for the rectangular lattice we
have only four directions) and a relatively simple transition function.

Finally, we have to define the state set. We know that each movement is
related to a force with a defined direction, thus it is natural to define the state
reflecting this value. If we assume that all possible direction values are as follows:

D = {0, 1, 2, 3, 4, 5, 6},

where the values {1, 2, . . . , 6} signify the directions of the moving particle as given
below:

2

3

45

6

1

The value 0 in D means that a cell is empty (not occupied by a moving particle). If
we base a movement only on directions, we obtain an unlimited energy movement
model (useful in gas modelling tasks, e.g. diffusion). To generate a limited energy
movement model, we should supply a state with an energy level value. If we decide
that each particle in the lattice can have one of nE energy levels, i.e.

E = 0, 1, 2, . . . , nE ,

then our state set is of the form

S = {(d, e) | d ∈ D, e ∈ E}. (3.12)

3.2.2.1. Algorithm

Each cell on a limited-energy walker lattice may be in one of three general
states:

• When a cell c is empty, its neighbourhood should be checked for a cell oc-
cupied by a moving particle and directed to c. If more than one particle are
directed towards c, a collision is detected and the cell c remains in the same
state (direction dc,t+1 = 0 and energy dc,t+1 = 0). In this case a collision flag
Fc is set to be true (this flag is used later in the hidden step). Otherwise,
c takes the value of the moving particle directed towards it, and the energy
level is decreased.

• When cell c is occupied by a moving particle (dc,t > 0 and ec,t > 0), the
neighbouring cell pointed by dc,t is to be checked. If the pointed cell is
occupied by a stopover particle (dγ,t > 0 and eγ,t = 0), only the energy
value is decreased (e.g. eγ,t+1 = ec,t − 1). If the pointed cell is empty and
its collision flag is clear (set to false), c takes the value of the empty cell

80 3.2. Spray Control

Tab.3.1. External forces for a cell c depending on the direction dc and the energy level ec (when
assuming that the force is directly proportional to ec).

dc F1 F2 F3 F4 F5 F6

1 ec 0.5ec −0.5ec −ec −0.5ec 0.5ec

2 0.5ec ec 0.5ec −0.5ec −ec −0.5ec

3 −0.5ec 0.5ec ec 0.5ec −0.5ec −ec

4 −ec −0.5ec 0.5ec ec 0.5ec −0.5ec

5 −0.5ec −ec −0.5ec 0.5ec ec 0.5ec

6 0.5ec −0.5ec −ec −0.5ec 0.5ec ec

(dc,t+1 = 0 and ec,t+1 = 0). Otherwise, we have a collision. A new direction
is selected (we randomly turn the particles left or right). Some exemplary
collisions are shown in Fig. 3.14.

• When cell c is occupied by a stopover particle (dc,t > 0 and ec,t = 0), its
neighbourhood is checked for a cell occupied by a moving particle and di-
rected to c. If such a cell or cells are found, the energy level ec,t+1 is increased
in proportion to the number of those cells (e.g. if three cells from N(c) point
to c, then ec,t+1 = ec,t + 3). The new direction depends on the directions of
cells which make the particle in cell cmoving, and their energy levels. For the
movement on a hexagonal lattice, we can distinguish three main directions,
e.g. 1, 2 and 3 (the choice of the opposite directions can be expressed as −1,
−2 and −3). It is simple to calculate the force in each of these directions:

F1 = F1,4 − F4,1 + F2 cosα− F3 cosα (3.13)

where F1 represents the force in direction 1, F1,4 is the external force directed
to 1 from cell 4 (c.f. Fig. 3.12), and α represents an angle between the
directions. The values of external forces are shown in Tab. 3.1. All the forces
are presented in Fig. 3.13. Similarly, we calculate the forces in directions 2
and 3:

F2 = F2,5 − F5,2 + F1 cosα+ F3 cosα (3.14)

F3 = F3,6 − F6,3 − F1 cosα+ F2 cosα (3.15)

An exemplary situation of the movement on a stopover cell is shown in
Fig. 3.15.

One iteration of this model consists of two steps. First, we update the
collision flag Fc for every empty cell c. Then, we perform the main step: depending
on the state of the cell described above, we update the state value:

Modelling spread phenomena 81

1 2

45

6 3

Fig. 3.12. Moore neighbourhood for a hexagonal lattice.

F2

F4,1

F1,4

F3
cos α F 2

cos α F 3

α

α

Fig. 3.13. Forces which affect F1.

• the empty cell with cleared collision flag gets the incoming particle or stays
empty;

• the empty cell with enabled collision flag remains empty;

• the occupied cell with a free way in the neighbourhood for its moving particle
passes this particle to it;

• the occupied cell with a blocked way changes the movement direction or the
return part of energy for the stopover particle.

8

66

5 4

7

5

5

3

4

4

6

Fig. 3.14. An exemplary sequence with collisions.

82 3.2. Spray Control

6 60 5 1 5 4
41

Fig. 3.15. An exemplary sequence with energy transfer.

Initial conditions. Configuration after 200, 600,

1000, 2000, and 4000 iterations.

Fig. 3.16. Evolution of the CA implementing the limited energy walker model.

Example 3.4
Exemplary simulation results of a CA and a hexagonal lattice of 130×100 cells
and von Neumann neighbourhood are shown in Fig. 3.16. The source of moving
particles are placed in the centre of the lattice. This place represents a control,
which by modification of its value generates an evolution of the neighbours. In
each iteration, the control generates a state representing a moving particle with
random direction and moving energy e = 30.

In contrast to another walking particle model [77, 28, 27], in this model the
motion of the particles is limited. For this reason, particles form a cluster and they
do not disperse. Due to its simplicity (we do not consider the pressure, viscosity
and surface film) the model better expresses the character of the moving particles
of a solid, but not a fluid where other phenomena are of greater importance.

Modelling spread phenomena 83

3.3. Conclusions

Spreading is a process in which an object extends itself over an increasingly
larger area by incorporating regions adjacent to itself. A wide variety of natural
processes can be described by the spreading or kinetic growth model. Examples
include tumour growth, epidemic spread, gelation, rumour-mongering, and fluid
flow through porous media. In this chapter, four models were proposed to model
spreading phenomena via CA’s. Two of them (Eden and single percolation cluster
models) can be used to describe the epidemic spread of a disease. The next
two (invasion percolation and limited-energy walker models) involve the notion of
control, which seems to constitute a new idea regarding CA’s (CA’s are normally
considered as fully autonomous systems). The control making a system spreadable
is called spray control.

It turns out that simulations of spreadable systems through CA’s are rela-
tively simple, and beyond doubt much simpler than those implied by using partial
differential equations [44, 45, 78]. The results are especially important e.g. in in-
stances of invasions of a biological entity into an environment previously free from
that entity (for example, yellow stripe rust in a field of wheat) or in the case of
spreading forest fires. The continued development of the theory is thus needed,
as good theory will be invaluable in predicting coming events and hopefully in
successfully intervening to check the spread of invaders.

Chapter 4

Parameter estimation of cellular automata models

4.1. Introduction

Model and modelling are catchwords with many different interpretations.
In systems analysis a model is a mathematical description of a real process, built
with a definite aim in mind. The modelM of the system is a rule to compute, from
quantities known a priori or measured from the system, other quantities that we
are interested in and which we hope will resemble their actual values in the system.
Whatever the structure chosen for the model, it will in general involve unknown
quantities, usually assumed to be constant, to be estimated from available prior
knowledge and data. These quantities are the parameters ϑ. One then speaks of a
parametric model, the main type of model to be considered in what follows. The
choice of M is a critical step in modelling. Once the model structure has been
selected, its parameters must be chosen according to a specified criterion, usually
the optimization of some cost function being a measure of the output error, i.e.
the difference between the system and model outputs.

As we know from Section 1.5, the transition function f determines the
dynamics of the corresponding CA. In some cases the creation of this function
may be very simple, e.g. when we know the modelled phenomenon in detail and
we can describe it by a transition function directly. Unfortunately, some of the
phenomena may be very hard to describe in this manner, because we know only
a general form of the rules which govern its behaviour, up to a set of unknown
parameters to be determined based on observations. In other situations, even
the form of the rules may be unknown, so that we can postulate a model (this
is the so-called black-box approach) and then the problem reduces to finding the
appropriate parameters of the assumed model.

An example of such a parametric transition function (PTF) for a two-
dimensional CA is the following formula:

f(st(ci,j), st(ci−1,j), st(ci+1,j), st(ci,j−1), st(ci,j+1))

= ϑ0st(ci,j) + ϑ1st(ci−1,j) + ϑ2st(ci+1,j) + ϑ3st(ci,j−1) + ϑ4st(ci,j+1) (4.1)

Parameter estimation of cellular automata models 85

which make it possible to model simple phenomena based on the von Neumann
neighbourhood. For example, if we set ϑ1 as one, and the remaining parameters
as zero:

ϑi = 0, i = 0, 2, 3, 4,

we obtain the up-down scrolling effect. Another model of the form

f(st(ci,j), st(ci−1,j), st(ci+1,j), st(ci,j−1), st(ci,j+1))

=
1
5
(st(ci,j) + st(ci−1,j) + st(ci+1,j) + st(ci,j−1) + st(ci,j+1)) (4.2)

is used in graphical applications when introducing a blend effect. In this case
parameters ϑi = 1/5, i = 1, . . . , 5 determine the intensity of the blend effect in each
of the directions. A proper selection of parameters makes it possible to generate
a wide range of effects, from delicate blending of sharp edges by smoothing lines
to a complete blur of the picture.

A disadvantage of parametric models is sometimes an arbitrary choice of
the model structure. For example, we may try to develop a parametric model
with a fixed von Neumann neighbourhood type whereas the real dynamics of the
studied phenomenon is based on the Moore neighbourhood. In this case even the
best selection of parameters produces only an approximate model. On the other
hand, if we choose a model with a vast neighbourhood, it will introduce a lot of
parameters which must be tuned.

Up to now, the problem of parameter estimation of CA models was only
taken into consideration by Uciński [79] and Yang [93]. Here those results are
generalized. First, we propose a parameter estimation scheme using some known
optimization algorithms. This approach guarantees some robustness against dis-
turbances corrupting observations. Then the parameter estimation problem for
probabilistic CA (PCA’s) models will be considered.

4.2. Parameter estimation problem

In order to define the parameter estimation problem, we need to introduce
a parametric transition function. In general, we can describe it as follows [79]:

st+1(c) = f(st(N(c)), ϑ), (4.3)

where
st+1(c) – the state of the cell c at time t+ 1,

N(c) – the set of cells which form the neighbourhood of cell c, and

ϑ – denotes the vector of unknown constant parameters.

An estimate ϑ̂ of the parameter vector ϑ is to be found based on the results
of observations zt(c) (possibly noise-corrupted) of the actual state st(c) for (c, t) ∈
Q ⊂ L × T . As is commonly accepted in dynamic system identification [30,

86 4.2. Parameter estimation problem

86], we wish to cast this task as an optimization problem. That problem is not
simple to solve in a classical manner because the CA is a discrete system. The
commonly used fit-to-data measure like the sum of errors (4.4) emphasizes this
discrete character:

J(p) =
∑

(c,t)∈Q

ρ(zt(c), ŝt(c;ϑ)) −→ min (4.4)

where ŝt(c;ϑ) signifies the state of the cell c at time t in the solution to eqn. (4.3)
calculated for a given vector ϑ, and ρ(z, s) constitutes a measure of discrepancy
between z and s, e.g.

ρ(z, s) =

{
0 if z = s,
1 otherwise

(4.5)

or ρ(z, s) = |z − s|. Note that in this approach the initial lattice configuration
should be completely known (the same is with boundary conditions, but these are
usually assumed periodical).

To find a minimum of the cost function J , we need to use an optimization
method which operates on non-continuous functions with gradient equal zero where
it exists. In this chapter we will show the usefulness of the global adaptive-random-
search (ARS) algorithm proposed by Walter and Pronzato [86], local search [63]
and simulated annealing [65, 66].

4.2.1. Applying the local search algorithm

The local search algorithm is one of the simplest optimization methods use-
ful for the discrete optimization process. It bases on a search for a better configu-
ration of parameters in the close neighbourhood of the current configuration. It is
stopped after exceeding a maximum number of iterations or when a satisfactory
result is found.

A general scheme of the local search algorithm is as follows [63]:

Initiation: An initial parameter vector ϑ0 is generated. Set n = 0.

Looking for a successor: A direct surrounding of the current ϑn is searched
for a better value of the criterion, i.e. we wish to obtain a ϑn+1 such that
J(ϑn) > J(ϑn+1) (the best of the surrounding combinations is chosen).

Check stop conditions: If there are no better values of the parameters vector ϑ,
a satisfactory result is achieved or the maximum of iteration is exceeded, then
STOP, otherwise increment n and go back to looking for another successor.

In order to increase the speed and accuracy, an adaptive step-size can be
used. This feature consists in gradually decreasing the radius of the vicinity of
the current solution which is used to look for a successor. This decrease is per-
formed from iteration to iteration. Owing to this feature, we ensure a better (more
detailed) search for the final result.

Parameter estimation of cellular automata models 87

Application of this algorithm for parameter estimation of CA models is
simple and does not require any special modifications.

4.2.2. Application of simulated annealing

The method of simulated annealing is a technique that has attracted sig-
nificant attention as suitable for optimization problems of large scale, especially
ones where a desired global extremum is hidden among many, poorer, local ex-
trema. The implementation of the algorithm is relatively simple. At the heart of
the method is an analogy with thermodynamics, specifically the way that liquids
freeze and crystallize, or metals cool and anneal.

The simulated annealing algorithm performs the minimization of a function
E(ϑ) called the energy of the system associated with parameter ϑ. The mini-
mization process is controlled by a parameter ϑ which is called temperature in the
following manner: at the beginning ϑ is set to a high value which is decreased with
the progress of calculations. For large values of ϑ the energy of the system config-
uration can be freely changed, whereas for small values only small modifications
are acceptable.

The algorithm of this method can be outlined as follows [65, 66]:

Initiation: An initial parameter vector ϑ0 is set and the corresponding energy
E(ϑ0) is calculated (it is our fit-to-data criterion). Set n = 0.

Try a new parameter: A new parameter ϑ+ is randomly created.

Evaluate the energy: The energy of the new parameter E(ϑ+) is evaluated.

Calculate the probability of transition: The probability ‘prob’ of changing
the current parameter ϑn into the new one ϑ+ is calculated based on their
energy levels:

prob = exp
(
−E(ϑ+)− E(ϑn)

kθ

)
where k is the Boltzmann constant. In the case when E(ϑ+) < E(ϑn), the
value of ‘prob’ is greater than 1, so it is truncated to the maximal value
prob = 1.

Toss a coin: Generate a pseudo-random real number between 0 and 1. If its
value is less than ‘prob’, the new parameter becomes the current parameter,
i.e. ϑn+1 = ϑ+ and n is incremented, otherwise try a new parameter.

Chill process: The process temperature θ is decreased. If it attains its minimal
value, then the process is stopped, otherwise try a new parameter.

Example 4.1
Let us consider the parameter estimation problem of the general CA model as
follows:

st+1(ci,j) = nearest(ϑ0st(ci,j)+ϑ1st(ci−1,j)+ϑ2st(ci+1,j)+ϑ3st(ci,j−1)+ϑ4st(ci,j+1))

88 4.2. Parameter estimation problem

initial configuration after 2 iterations after 5 iterations

after 10 iterations after 20 iterations after 40 iterations

Fig. 4.1. An exemplary evolution of the CA modelling heat transfer.

where nearest(a) means the number from the state set S which is the nearest to a.
Because for the experiment the same value of true parameters ϑ0 = · · · =

ϑ4 = 1/5 is assumed, the model represents the classical blending effect used in
graphical applications or phenomena of heat transfer in homogeneous media.

Fig. 4.1 shows an exemplary evolution of this model for the 32-elements
state set (S = {1, 2, . . . , 32}) and the rectangular lattice of 50×30 cells.

For the process of parameter estimation by using local search and simulat-
ing annealing algorithms, the set of 3000 samples (each sample consisted of the
initial and first configurations for the von Neumann neighbourhood) generated
from random initial conditions were used. 10% of these data samples were ran-
domly changed to another value randomly drawn from the state set with uniform
distribution (consequently, sometimes the difference between real and disturbed
states was really large, e.g. st(c) = 1 could change to st(c) = 32). The local search
was implemented by veryfying all the points constructed by adding or subtracting
a fixed step from the components of the vector ϑ (all possible combinations were
thus checked). The step was gradually changed from 1 to 10−6. As for the simu-
lated annealing, the value of 2.76 was assumed for the product kθ. After 4010 cost
evaluations for criterion (4.4) and function (4.5), the following parameters vector
was obtained:

• for the local search algorithm:

ϑ̂ = [0.201583, 0.193562, 0.196325, 0.210187, 0.189647],

the corresponding relative error was

δϑ = [0.79%, 3.22%, 1.84%, 5.09%, 5.18%];

Parameter estimation of cellular automata models 89

• for the simulated annealing:

ϑ̂ = [0.201422, 0.200138, 0.190213, 0.205234, 0.192253],

the corresponding relative error was

δϑ = [0.71%, 0.07%, 4.89%, 2.62%, 3.87%];

where the true values were

ϑ∗ = [0.200000, 0.200000, 0.200000, 0.200000, 0.200000].

4.2.3. Applying an adaptive random search algorithm

The adaptive random search (ARS) algorithm [86] consists in changing the
current estimate ϑ̂ of the parameter vector by adding a random vector r which
possibly improves the current solution (reduces the performance index J). It is
assumed that the parameter belongs to a set of admissible values Θ.

The ARS algorithm is especially suited for that purpose if the set of admis-
sible parameters Θ is a hypercube, i.e. the admissible range for ϑi, i = 1, . . . , n is
in the form

ϑi min ≤ ϑi ≤ ϑi max. (4.6)

The routine chooses the initial point ϑ0 at the centre of Θ. After q iterations,
given the current best point ϑq, a random displacement vector ∆ϑ is generated
and the trial point

ϑ+ = ΠΘ(ϑq + ∆ϑ) (4.7)

is checked, where ∆ϑ follows a multinormal distribution with zero mean and
covariance

cov{∆ϑ} = diag[σ1, . . . , σn] (4.8)

ΠΘ being the projection onto Θ.
If J(ϑ+) < J(ϑq), then ϑ+ is rejected and consequently we set ϑq+1 = ϑq,

otherwise ϑ+ is taken as ϑq+1. The adaptive strategy consists in repeatedly alter-
nating two phases. During the first one (variance selection) cov{∆ϑ} is selected
from among the sequence σ1, σ2, . . . , σ5, where

σ1 = ϑmax − ϑmin (4.9)

and

σi = σ(i−1)/10, i = 2, . . . , 5 (4.10)

With such a choice, σ1 is large enough to allow for an easy exploration of
Θ, whereas σ5 is small enough for a precise localization of an optimal point. In
order to allow a comparison to be drawn, all the possible σi’s are used 100/i times,

90 4.2. Parameter estimation problem

starting from the same initial value of ϑ. The largest σi’s, designed to escape local
maxima, are therefore used more often than the smaller ones.

During the second (exploration) phase, the most successful σi in terms of the
criterion value reached during the variance selection phase is used for 100 random
trials started from the best ϑ obtained so far. The variance-selection phase then
resumes, unless the decision to stop is taken.

To use ARS algorithm, the user must only provide:

• the prior feasible domain for the parameters, assumed to be the box

Θ = {ϑ : ϑi min ≤ ϑi ≤ ϑi max, i = 1, . . . , n}, (4.11)

• the definition of the cost function J(ϑ) for any ϑ ∈ Θ,

• the maximum number of evaluations of the cost allowed,

• the minimum cost value which satisfies the user as a solution.

Example 4.2
Let us consider the CA model

st+1(ci) = bϑ1st(ci−1) + st(c) + ϑ2st(ci+1)c (mod 5) (4.12)

bxc being the greatest integer less than or equal to x. The CA is observed over the
whole space-time domain (Q = L × T), where the simulated data were generated
for a 50-cell lattice and 50 time steps, ϑ1 = −1, ϑ2 = 2 and the initial state defined
as

s0(ci) =

{
1 if i = 23, . . . , 28
0 otherwise

(4.13)

In the considered example, the admissible set Θad = [−100, 100]2 was as-
sumed for the estimates. First, the noise-free case was examined. After 131 eval-
uations of J using the function (4.5), its zero value was attained for the estimate

ϑ̂ = (34.003504, 12.054030), δϑ = (0.01%, 0.45%)

being the relative error. These values are only apparently strange, because one
has

34 = −1 (mod 5), 12 = 2 (mod 5)

But this phenomenon suggests that the estimates may be non-unique. This issue
has been studied more deeply by calculation of the cloud of points representing the
boundary of the region around ϑ̂ for which the fit-to-data criterion J also takes
the zero value (the appropriate method is delineated in [86, pp.238–239]). This
region is shown in Fig. 4.2(a). All the points within this region are equally well,
i.e. for them the value of J is minimum.

Furthermore, a noisy case has also been studied. For all 2500 data points,
the gathered data were simulated to be smeared with additive noise, each with

Parameter estimation of cellular automata models 91

34 34.05 34.1 34.15 34.2 34.25
12

12.05

12.1

12.15

12.2

12.25

p
1

p 2

−16 −15.95 −15.9 −15.85 −15.8 −15.75
12

12.05

12.1

12.15

12.2

12.25

p
1

p 2

(a) (b)

Fig. 4.2. Characterization of the boundary of the posterior admissible parameter set by a cloud
of 1000 points: noise-free (a) and 20%-noise-level (b) cases.

probability 0.2. Adding noise amounts to adding +1 or −1 (each value, in turn,
with probability 0.5). As a result, 498 data points actually changed their values.
After 3080 cost evaluations, the vector

ϑ̂ = (−15.902937, 12.030210), δϑ = (6.02%, 0.25%)

being the relative error, has been obtained, along with the cloud of points evi-
denced in Fig. 4.2(b). Surprisingly, the results are still correct, which confirms
that the adopted estimation method is also robust against outliers [86].

Example 4.3
To check the more complex example let us to consider parameter estimation of the
crystalization process CA model.

The crystallisation process itself produces some effects that tend to inhibit
crystal growth: the diffusion of latent heat at the solid-liquid interface and surface
tension. The model employs a square lattice of 405×405 cells. Each site in the lat-
tice has an ordered pair as a value. The first component is a Boolean value, where
1 represents a site that is crystalline and 0 represents a site that is amorphous.
The second component of the ordered pair is a nonnegative real number which
can change continuously, representing the temperature of the site. At t = 0, the
lattice consists of (0, 0) pairs except for the central 5×5 crystal seed, consisting of
random (0, 0) and (1, uc), where uc is a given positive temperature. This initial
state is assumed to be known to the experimenter.

The crystallisation process proceeds over nt = 40 time steps, in each of
which two consecutively executed events occur (a detailed model is given in [27]):

• An amorphous site becomes crystalline if it is adjacent to at least one crys-

92 4.2. Parameter estimation problem

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

Crystalization flag Temperature level

Fig. 4.3. An exemplary state (t = 40) of the CA modelling growing crystal.

talline site and if some condition related to the local interface curvature and
temperature is met. Latent heat of crystallisation is produced at a crystal-
lizing site, which raises its temperature. An amorphous site that does not
meet the prerequisite condition remains liquid and a crystalline site remains
unchanged (i.e. there is no melting in the model).

The phase and temperature values of each site in the lattice are updated
based on its temperature and phase and on the phases of the sites lying in
its Moore neighbourhood.

• Heat diffuses to adjacent cells, i.e. the temperature of each site in the lattice
and the temperature of the nearest Moore neighbour sites.

As regards observations, we assume that only the temperatures at t = 10,
20, 30 and 40 are known (so we do not know e.g. whether a site is crystalline or
amorphous). To illustrate evolution of this automaton, Fig. 4.3 shows the solid-
liquid configuration (the left panel) and the temperature field (the right panel) at
t = 40 (it is only a fragment of the whole lattice, but the other sites have zero
values).

Based on those measurements, two coefficients: the diffusion constant D
and the latent heat h are to be identified. Since significant persistent experimental
noise is assumed in the model (10%), the minimized fit-to-data criterion is the sum
of absolute values of the errors at the observed sites, as such a criterion is more
robust to the presence of outliers in the data.

After 2500 criterion evaluations by the ARS global minimization algorithm,
the values D̂ = 3.720626 and ĥ = 0.917713 have been obtained, which is quite good
when compared with the true values D∗ = 4.0 and h∗ = 1.0 (the corresponding
relative errors values are δD = 6.98% and δh = 8.23%). For the same conditions,
but with the 5% level of noise, after 3000 criterion evaluations, the values D̂ =
3.983624 and ĥ = 0.979168 (δD = 0.41% and δh = 2.08%) have been achieved.

Parameter estimation of cellular automata models 93

Tab. 4.1. Transition table for an exemplary probabilistic CA.

st(N(ci)) st+1(ci)

st(ci−1) st(ci) st(ci+1) 0 1

0 0 0 p0 1− p0

0 0 1 p1 1− p1

0 1 0 p2 1− p2

0 1 1 p3 1− p3

1 0 0 p4 1− p4

1 0 1 p5 1− p5

1 1 0 p6 1− p6

1 1 1 p7 1− p7

4.3. Parameter estimation of stochastic CA models

In contrast to parameter estimation of deterministic models where deter-
ministic rules were used, for probabilistic cellular automata (PCA) models the
transition rules have probabilistic character. Parameter estimation of those mod-
els seems to be rather complex and only simple situations are considered in the lit-
erature [1]. In this section the maximum-likelihood [86] approach is recommended
for this purpose.

In much the same way as for deterministic CA models, we assume that the
model structure is given and information about its parameters should be gained
from observation of the modelled phenomena. In the general case, probabilistic
phenomena will be described by a set of probabilities which define possibilities of
state changes for a given configuration. In this case, we can simply put together
all these probabilities into a probabilistic transition table. An example of such
a table for a one-dimensional automaton, the neighbourhood definition N(c) =
(ci−1, ci, ci+1) and a binary state set is shown in Table 4.1.

Each sum of probabilities located in the same row is always 1. In the general
case, when the size of the neighbourhood is equal to n and the state set contains
m states, we must build a table of mn rows and m columns related to particular
transition probabilities (pi,j), where for each i meaning the same configuration of
the neighbourhood (the same row), we have

m∑
j=1

pi,j = 1

For the framework so defined, a probabilistic event Ek of changing the state
for a given state of the neighbourhood st(N(c)) to st+1(c) = sk ∈ S eliminates the
possibility of appearance of another event E` (which would change the state from
the same state of the neighbourhood st(N(ci)) to another value s` (s` 6= sk and
s` ∈ S). Thus the probability of the event Ek is approximately equal to the relative

94 4.3. Parameter estimation of stochastic CA models

frequency of the occurrence of Ek for the same neighbourhood configuration. For
example, if we observe 100 changes of the state for the neighbourhood configuration

st(N(ci)) = (0, 1, 0), N(ci) = (ci−1, ci, ci+1)

for the PCA with the state set S = {0, 1, 2}, then observing event E0 45 times,
event E1 35 times and event E2 20 times, the probability of changing the state
for configuration st(N(ci)) = (0, 1, 0) to st+1(ci) = 1 is approximately p1 ≈ 0.35.
To better understand this mechanism, let us present the observation results in the
following table:

st(N(ci)) Number of events Probability of events

st(ci−1) st(ci) st(ci+1) nE0 nE1 nE2 pE0 ≈
nE0

nE
pE1 ≈

nE1

nE
E2 ≈

nE2

nE

0 1 0 45 35 20 0.45 0.35 0.20

In this way we can outline the general algorithm to approximate all the
parameters from the probabilistic transition table. Assume that the respective row
of the transition table (note that each row corresponds to a unique configuration
of the neighbourhood) is indexed by k and the state values are indexed by ` (so
that S = {s1, . . . , sm}). The algorithm reads as follows:

Initiation: Set all table counters (nk,`) to zeros.

Get Data: Check whether a new observation exists. If not, go to Step Calculate
Probabilities, otherwise go to Update Counters.

Update Counters: Observe what happens for the neighbourhood configuration
st(N(c)) corresponding to the current observation, i.e. which value st+1(c)
produced. If st+1(c) = s`0 , increase the counter of the corresponding event
(nk,`0). Then go to Get Data.

Calculate Probabilities: For each row, first of all calculate the global number
of events nk =

∑m
`=1 nk,`, then evaluate the approximated probabilities for

all events (pk,` ≈ nk,`/nk).

It is simple to conclude that the quality of estimation strongly depends on
the amount of data and their quality (diversity). The block scheme of the proposed
algorithm is presented in Fig. 4.4.

The above method relies on the frequency interpretation of probability. In
more complex situations, the maximum-likelihood can turn out to be very useful.
This is shown in what follows, based on some examples.

Example 4.4
Consider calculation of the immunity probability p2 and lighting probability p3 in
the stochastic forest fire model discussed in Sec. 2.2.2, p. 40. These probabilities
are jointly present in two rules related to transitions from state 1 to state 2. For
brevity, introduce the following notation:

Parameter estimation of cellular automata models 95

Init

?

Get data

?

-
New data

Update counters

�

No data

Calculate probabilities
STOP

Fig. 4.4. Block diagram for the algorithm of parameter estimation of PCA models using the
frequency interpretation of probability.

n1–the number of observed transitions from 1 to 2 if at least one neighbour
is burning,

n2–the number of observed transitions from 1 to 1 if at least one neighbour
is burning,

n3–the number of observed transitions from 1 to 2 if no nearest neighbour
is burning,

n4–the number of observed transitions from 1 to 2 if no nearest neighbour
is burning.

The likelihood function [86] related to this situation is then given by the formula

L = (1− p2)n1pn2
2 [p3(1− p2)]n3 [1− p3(1− p2)]n4 . (4.14)

The maximum-likelihood estimates of p2 and p3 [86] are those which maximize
L, and we can obtain them by calculating the derivatives ∂(logL)/∂p1 and
∂(logL)/∂p2 and setting the results to zero. Solving the obtained system of equa-
tions, we get

p̂2 =
n2

n1 + n2
, p̂3 =

n3

p̂2(n3 + n4)
(4.15)

For the estimation process it is very important to use a sufficiently diversified
set of data. It is very interesting how the initial conditions affect on the quality of
results. Because the initial conditions depend on the tree density and fire presence
in the initial configuration, we could try to determine how to choose these values
so as to improve the quality of results. Simulations confirm that for estimation it
is better that the initial configuration be strongly filled with trees and fire. But

96 4.3. Parameter estimation of stochastic CA models

Tab. 4.2. Probabilistic transition table for the model of the spatial host-parasite dynamics.

st(c) P (st+1(c) = 0) P (st+1(c) = 1) P (st+1(c) = 2)

0 (1− pG)n1(c) 1− (1− pG)n1(c) 0

1 0 (1− pT)n2(c) 1− (1− pT)n2(c)

2 pV 0 1− pV

this is clear, because it is hard to determine the probability of fire if we have only
a few events of fire.

Simulations carried out for a lattice of 32 × 32 cells and 100 time steps,
the following estimates were obtained: p̂2 = 0.05 (p∗2 = 0.05) and p̂3 = 0.148
(p∗3 = 0.15). This confirms a good agreement with true values and the effectiveness
of the method.

Example 4.5
Let us try to discover a model describing spatial host-parasite dynamics. The
character of this problem is also stochastic, but the process itself is more compli-
cated, as we observe the competition for living space where parasite species need
hosts for life and, as for hosts, a meeting with parasites may be tragic.

The basic model of the host-parasite dynamics can be described as a two-
dimensional probabilistic CA with periodic boundary conditions [48]. The state
set consists of three values representing basic states: empty (st(c) = 0), occupied
by a healthy host (st(c) = 1) and occupied by a parasitised host (st(c) = 2). The
behaviour of the system is stochastic; the probability of transition to another state
is determined by the four nearest neighbours (north, south, east, and west, i.e. the
von Neumann neighbourhood).

A healthy host (st(c) = 1) grows into an empty site (st(c) = 0) in its
neighbourhood with probability of transition pG (we assume that infected hosts
cannot grow) and is infected by a parasitised host in its local neighbourhood with
probability of transmission pT . The parasite (st(c) = 2) is assumed to be fatal,
that is, sites occupied by parasitised hosts become empty at the next iteration
with probability pV (it defines the rate of virulence). Table 4.2 summarises the
transition probabilities, with n1(c) and n2(c) being the number of healthy host

Parameter estimation of cellular automata models 97

initial configuration after 10 iterations

after 40 iterations after 100 iterations

Fig. 4.5. An exemplary evolution of the host-parasite model.

and parasite sites in the neighbourhood N(c), respectively:

n1(c) =
∑

γ∈N(c)

σ
(
st(γ), 1

)
, (4.16)

n2(c) =
∑

γ∈N(c)

σ
(
st(γ), 2

)
, (4.17)

σ(s1, s2) =

{
1 if s1 = s2,
0 otherwise.

(4.18)

An exemplary dynamics of this model for probability of growth pG = 0.05,
probability of transition pT = 0.6 and virulence pV = 0.9 on the two-dimensional
lattice of size 160×100 is shown in Fig. 4.5. The white colour represents vacant
sites, the black ones signifies the healthy hosts and the grey ones represents the
parasitised hosts. Globally, we can observe the oscillation process of disappearing
healthy hosts and, afterwards, an increase in their number.

The idea of estimating the probabilities pG and pT will be explained for the
former, as the latter is estimated in the same manner. The probability pV can be
estimated based on its frequency interpretation. First note that the coefficient n1

can take values from the set {0, . . . , 4}. Denote by n1
1,k the number of observed

98 4.3. Parameter estimation of stochastic CA models

transitions from state 0 to state 1 provided that n1 = k, k = 0, . . . , 4. Similarly,
write n1

1,k for the number of observations in which cells remain in state 0 while
n1 = k, k = 0, . . . , 4.

The likelihood function for these observations takes the following form:

L =
4∏

k=0

(1− pG)kn0
1,k

4∏
k=0

[1− (1− pG)k]n
1
1,k (4.19)

Unfortunately, this time it is impossible to obtain a closed-form expression for the
estimate of pG and it has to be calculated numerically. The ARS algorithm turns
out to be very convenient in this case.

The data generated by this PCA were used for estimation of the probabilistic
transition table. For better quality of these data, the initial configuration was
defined randomly.

The results of applying the ARS algorithm to the maximization of the log-
likelihood function are as follows (the true values are marked with asterisks and
the relative error as δ):

• probability of growth p̂G = 0.047834 (p∗G = 0.05, δG = 4.33%),

• probability of transition p̂T = 0.601677 (p∗T = 0.6, δT = 0.28%),

• virulence p̂V = 0.898131 (p∗V = 0.9, δV = 0.21%).

Example 4.6
Let us try to discover two constant parameters of the probabilistic transition func-
tion of a generic forest fire model. This model is based on a two-dimensional square
lattice where each cell corresponds to 4 ha of forest [21, pp. 109]. The ecological
state of each cell is described by its age since the last fire. This age is related to
a successional stage of the vegetation, which is not considered in more detail in
the model. The model operates on 50 state values (1, . . . , 50) which correspond to
vegetation and one (0) to fire. The following transitions rules were used:

• If a cell represents a vegetation, we check the probability of catching fire
from a burning neighbour, according to the formula:

pF (ci,j) =
∑

γ∈N(ci,j)

ϑ1 + ϑ2st(γ)2,

where ϑ1 and ϑ2 are constant parameters. If this probability is too small to
burn the cell, we increase the vegetation age if it is less than a prescribed
maximal value:

st+1(c) =

{
st(c) + 1 if st(c) < 50,
50 otherwise.

• If the cell burns, go to the next iteration and start the new vegetation, i.e.

st(c) = 0 → st+1(c) = 1

Parameter estimation of cellular automata models 99

An exemplary evolution of such a model on the lattice of size 200×200, 100
time steps and the parameters ϑ1 = 0.17 and ϑ2 = 10−5 is presented in Fig. 4.6.
The same parameters were used to generate the data used for estimation. The
following values of estimates were obtained by maximizing the corresponding log-
likelihood function using the ARS algorithm (the corresponding true values are
marked with asterisks and the relative error as δ): ϑ̂1 = 0.171034 (ϑ∗1 = 0.17,
δϑ1 = 0.61%) and ϑ̂2 = 9.120501× 10−5 (ϑ∗2 = 10−5, δϑ2 = 8.79%).

Example 4.7
One of the most interesting phenomena for ecological modellers is the spread pro-
cess of a disease. A good example of such a plague is the spread of rabies observed
in the past few decades through Europe from East to West.

In Central Europe, the main agent for the spread of rabies is the red fox
(Vulpes vulpes). This animal lives in territorial clans of a few adults and come cubs.
Rabies is a viral disease transferred by bites. If a member of a clan is infected,
it enters into an infectious state and dies after some weeks, but before, it infects
the rest of its clan because of the close contact between the animals. In October
or November on average four sub-adult foxes leave their home territory and may
migrate distances of up to 30 km. In this way, they may recolonize territories left
empty because of fox death from rabies, but if they migrate from an infectious
territory, they may transfer rabies over long distances.

These few facts are sufficient to construct a preliminary model based on the
rectangular lattice of clan territories (by 5 km2, which represents a typical fox clan
area) [21, pp. 97]. Each site in the lattice will be empty or occupied by a healthy
or infected clan. The dynamics of this model defines the following rules:

• If a site is occupied by an infected clan (I), we assume that all foxes are sick
and they die (the site becomes empty (E)) with probability p:

st+1(ci,j) =

{
E with probability p,
I elsewhere.

• If a site is occupied by a healthy clan (H), the probability of infection from
neighbouring infected clans pT is equal to the sum of infection probabilities
from each neighbour separately T . The probability of infecting clan ci,j by
an infected neighbour ck,`, T (ci,j , ck,`), depends on the distance between
them, in accordance with

T (ci,j , ck,`) =

{
0 if ck,` ∈ {E,H},
1− exp(−aT e

−bT u(ci,j ,ck,l)
2
) for ck,` = I,

where u(ci,j , ck,`) stands for the distance between ci,j and ck,`:

u(ci,j , ck,`) = |i− k|+ |j − `|,

aT and bT being constant globally defined coefficients which define the maxi-

100 4.3. Parameter estimation of stochastic CA models

initial configuration after 100 iterations

after 400 iterations 1000 iterations

Fig. 4.6. Exemplary behaviour of the generic forest fire model.

Parameter estimation of cellular automata models 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-15 -10 -5 0 5 10 15

T

u

T(u)

Fig. 4.7. Influence of the distance u on the transition probability T .

mal range of infection in one jump and the maximal value of the probability,
respectively (cf. Fig. 4.7).

Then the probability of infections is to be described as follows:

pT (c) =
∑

ci∈N(c)

T (c, ci).

• When a site is empty (E), it can be colonized by a healthy (H) clan with the
probability proportional to the distance from this clan:

U(c, ci) =

{
0 if site ci = {E, I},
1− exp(−aUe

−bU u(c,ci)
2
) for site ci = H,

where u, a and b are to be interpreted in much the same way as those for
the T (c, ci) function above.

The probability of colonization by healthy neighbours is described as follows:

pU (c) =
∑

ci∈N(c)

U(c, ci)

The rules described above can be expressed by the following probabilistic transition

102 4.4. Conclusions

initial configuration after 10 iterations

after 50 iterations after 100 iterations

Fig. 4.8. Exemplary evolution of PCA modeling for the spatial model of rabies spread. White,
black and grey squares represent empty sites, sites occupied by healthy foxes, and those with
infected clans, respectively.

table:
st+1(c)

st(c) E H I

E 1− pU (c) pU (c) 0

H 0 1− pT (c) pT (c)

I p 0 1− p

An example evolution of the PCA model using these rules for the lattice
of size 200×100, 100 time steps and the following values of parameters p = 0.4,
aT = 2, bT = 0.05, aU = 4 · 10−5 and bU = 10−6 is shown in Fig. 4.8. The same
model was used to generate simulation data.

After the estimation process maximizing the likelihood function using the
ARS algorithm for 5% of disturbed data (by changing the states of selected cells by
randomly drawn state values), the following values were obtained: p̂ = 0.398432,
âT = 2.101034, b̂T = 0.051221, âU = 0.000041 and b̂U = 1.045321 · 10−6 (the
relative errors are δp = 0.39%, δaT

= 5.05%, δbT
= 2.44%, δaU

= 2.5% and
δbU

= 4.53%). A good agreement of the estimated and actual parameter values is
thus observed in spite of the disturbances.

4.4. Conclusions

In this chapter, the problem of parameter estimation for both deterministic
and stochastic CA’s has been considered and some computational techniques of

Parameter estimation of cellular automata models 103

moderate complexity have been proposed and tested for its solution.
In the case of parameter estimation of deterministic CA models several

fit-to-data criteria have been tested. In all situations, noise-corrupted data were
considered, which constitutes a considerable extension compared with the classical
monograph by Adamatzky [1]. This fact qualifies the proposed methods as conve-
nient approaches to parameter estimation of real spatio-temporal systems, where
many of measurements are disturbed by noise. It turns out that the estimates may
be non-unique, which necessitates characterizing the posterior feasible set for the
estimates e.g. by a cloud of points, as is a routine in bounded-error set estimation.
Of course, the attained performances are not extraordinary as far as the number
of error function evaluations is concerned, but this is a common problem in global
discrete optimization and it goes without saying that much can still be done in
this connection.

In turn, satisfactory results obtained from application of the maximum-
likelihood approach to estimation of parameters of probabilistic transition tables
offer new possibilities for developing probabilistic models. It is specially useful
for ecological models where, instead of a detailed description of the underlying
mechanisms for very complex systems, probabilistic rules are used [68, 69, 67].
The usefulness of the proposed approach is additionally increased by the robust-
ness against disturbances in the observation dataset. In the presented examples,
disturbances in 5% of samples did not affect the quality of estimation, and the
results were still quite satisfactory.

Chapter 5

Structural identification of cellular automata

5.1. Introduction

From Chapter 4 we know how to determine parameters of a given CA transi-
tion function f . But in many cases only the behaviour of the studied phenomenon
is known, the neighbourhood and structure of the mapping f describing the au-
tomaton being unknown. The difficulty in designing CA’s which have to exhibit
a specific behaviour or to perform a particular task has severely limited their ap-
plications. Automating the design (programming) process would greatly enhance
the viability of CA’s [73].

One of the promising approaches to alleviate the above-mentioned predica-
ment consists in exploiting some ideas from genetic algorithms. Those concepts
have already been employed successfully for both uniform and non-uniform CA’s,
see e.g. [37] and the excellent monograph [73] with many references given therein.
A similar approach proposed in [93] proved the usefulness of genetic algorithms
in designing CA transition functions even when the data used for estimation are
noise-corrupted. On the other hand, the idea of making use of genetic program-
ming seems to be more appropriate for constructing CA programs and it was
already suggested by Koza [51], but the presented examples considered only some
elementary problems. All those papers show how to discover a transition function
for a given neighbourhood. Of course, we can freely choose its definition, but in
many cases the user may make a bad choice many times before satisfactory results
are obtained. A good example of this situation represents a model of vegetation
dynamics for fens (cf. Sec. 5.3.3), where one part of the neighbourhood is of the
von Neumann type and the second is not necesssarily so. In this case, the known
approaches may inidicate a relationship between the chosen neighbourhood and
system behaviour which do not exist in reality and may result in a too long time
of calculations and excessively high errors.

If we introduce an appropriate fitness (target) function for the GP algo-
rithm, we can force it to found both the neighbourhood and the transition func-
tion operating on it. Some results have already been published [42, 43, 91, 52]
and they consider only the general behaviour of binary CA’s. In this chapter,
some results are given concerning the application of genetic programming to the

Structural identification of cellular automata 105

design of CA’s modelling the behaviour given as measured data or coming from an
unknown system (model). Both of the presented examples try to discover a model
emulating the behaviour of a given probabilistic cellular automaton (PCA) model.
The stochastic character of the model introduces an additional difficulty to the
intuitive detection of a proper neighbourhood and a transition function, but even
this proposed approach has made it possible to find quite satisfactory results.

5.2. Genetic algorithms and genetic programming

In 1975 John Holland [36] described how the evolutionary process in nature
can be applied to artificial systems using the genetic algorithm operating on fixed-
length character strings. Holland demonstrated that a population of fixed-length
character strings (each representing a proposed solution to a problem) can be ge-
netically bred using the Darwinian operation of fitness proportionate reproduction
and the genetic operation of recombination. The recombination operation com-
bines parts of two chromosome-like fixed length character strings, each selected
on the basis of their fitness, to produce new offspring strings. Holland estab-
lished, among other things, that the genetic algorithm is a near-optimal approach
to adaptation in that it maximises the expected overall average pay-off when the
adaptive process is viewed as a multi-armed slot machine problem requiring an
optimal allocation of future trials given currently available information. Genetic
algorithms have proven successful at searching nonlinear multidimensional spaces
in order to solve, or approximately solve, a wide variety of problems [5].

Genetic programming [51] (GP), like the conventional genetic algorithm, is a
domain-independent method. It extends the genetic model of learning to the space
of programs. It is a major variation of genetic algorithms in which the evolving
individuals are themselves computer programs instead of fixed-length strings from
a limited alphabet of symbols. GP is a form of program induction that allows to
automatically discover programs that solve or approximately solve a given task.

Individual programs in GP might be expressed in principle in any current
programming language. However, the syntax of most languages is such that GP
operators would create a large percentage of syntactically incorrect programs. For
this reason, Koza chose a syntax in prefix form analogous to LISP and a restricted
language with an appropriate number of variables, constants and operators defined
to fit the problem to be solved. In this way, syntax constraints are respected and
the program search space is limited. The restricted language is formed by a user-
defined primitive function set and a terminal set. The functions chosen are those
that are a priori believed to be useful for the problem at hand, and the terminals
are usually either variables or constants. In addition, each function in the function
set must be able to accept as arguments any other function return value and any
data type in the terminal set, a property that is called syntactic closure. Thus the
space of possible programs is constituted by the set of all possible compositions
of functions that can be recursively formed from the elements of the function and
terminal sets.

It is important to note that programs are thus represented as trees with

106 5.2. Genetic algorithms and genetic programming

ordered branches in which the internal nodes are functions and the leaves are
terminals of the problem. Evolution in GP is similar to GA’s, except that dif-
ferent individual representations and genetic operators are used. Once suitable
functions and terminals have been determined for the problem at hand, an initial
random population of trees (programs) is constructed. From there on the popu-
lation evolves as with a GA where fitness is assigned after actual execution of the
program (individual) and with genetic operators adapted to the tree representa-
tion.

GP proceeds by genetically breeding populations of compositions of prim-
itive functions and terminals (i.e. computer programs) to solve problems by exe-
cuting the following three steps:

1. Generate an initial population of random computer programs composed of
the primitive functions and terminals of the problem.

2. Iteratively perform the following sub-steps until the termination criterion
has been satisfied:

(a) Execute each program in the population and assign it a fitness value
according to how well it solves the problem.

(b) Create a new population of programs by applying the three primary
operations below. The operations are applied to programs in the the
population selected with a probability based on the fitness (i.e. the fitter
the program, the more likely it is to be selected).

i. Reproduction: Copy existing programs to the new population.

ii. Crossover : Create two new offspring programs for the new pop-
ulation by genetically recombining randomly chosen parts of two
existing programs. The genetic crossover (sexual recombination)
operation operates on two parental computer programs and pro-
duces two offspring programs using parts of each parent.

iii. Mutation: Modify small parts of programs so as to make changes
in the fitness.

3. A single best computer program in the population produced during the run
is designated as the result of the run of genetic programming. This result
may be a solution (or an approximate solution) to the problem.

GP is particularly useful for program discovery, i.e. the induction of pro-
grams that correctly solve a given problem with the assumption that the form
of the program is unknown and that only the desired behaviour is given, e.g. by
specifying input-output relations. GP has been successfully applied to a wide va-
riety of problems from many fields [5]. It has been empirically shown to be quite
a powerful automatic or semi-automatic program-induction and machine learning
methodology.

Structural identification of cellular automata 107

st+1(ci) = (st(ci) + st(ci−1) + st(ci+1))/3

m

��
��
/

���
HHH

��
��
+

���
HHH

3

st(ci) ��
��
+

�
��

H
HH

st(ci−1) st(ci+1)

Fig.5.1. An exemplary transition function for a one-dimensional CA and its tree representation.

5.3. Discovering state transition rules via genetic programming

Since GP operates on programs, it seems to be ideal for discovering CA
transition functions which are a special kind of programs. If we add appropriate
information about possible neighbourhood cells which can be used in the searching
process, GP is in a position to sort them out and finally return a best function
consisting of neighbours chosen as essential with respect to the fitness criterion
used. The neighbourhood selected in this manner is recognised as the neighbour-
hood definition of the selected model. This approach introduces additional values
to set up the components used to build up the desired function or program. It
is natural for combinatorial problems that a small extension of the parameter set
introduces a significant difficulty in discovering the best result. This is especially
important in the GP case, where in contrast to the classical approaches to com-
binatorial problems operating on fixed-size solutions, solutions with varying sizes
are generated.

In this section two examples of using genetic programming are used to
illustrate the discovering of state transition functions. Both the examples base on
the data obtained from probabilistic two-dimensional CA models.

108 5.3. Discovering state transition rules via genetic programming

5.3.1. Adapting the GP algorithm for identifying CA structures

Consider the transition function defined as follows:

st+1(c) = f(st(N(c))) (5.1)

and assume that it can be interpreted as a tree whose each node represents one
of operators and each leaf can be seen as the state of a selected neighbouring cell
in the CA lattice (cf. Fig. 5.1). This method is frequently used for evaluating
complex functions on computers: functions and their parameters are stored on a
stack as a sequence and later they are taken and evaluated. The function shown
in Fig. 5.1 has then the following representation on the stack:

/ + st(ci) + st(ci−1) st(ci+1) 3

When this function is to be evaluated, the first component is taken (in this case it
is the division operator /) because it has two parameters, the first one being taken
from the stack (this is the sum operator +). Because this operator also has two
parameters, the first one is taken (the value of st(ci)) and then the second (the
sum operator +). In this manner, all the parameters of functions are collected
and then the results of the individual operators are evaluated. Finally, the result
of the entire function is obtained.

Such a representation offers a possibility of employing GP as a tool for the
design of local state transition functions. For a proper implementation of the de-
lineated technique, a fitness criterion should be defined to measure the discrepancy
between the observed CA evolution and the desired behaviour. A classical manner
to form it is based on the calculation of the modelling error. For a two-dimensional
rectangular lattice L of size Q×R, the most commonly used form looks as follows
[51, 42, 52]:

J(f,N) =
1

TQR

T−1∑
t=0

Q∑
i=1

R∑
j=1

δ
(
st+1(ci,j), f

(
st(N(ci,j)

))
(5.2)

where δ represent the error value and can be defined as follows:

δ(s1, s2) =

{
1 for s1 = s2,

0 otherwise.

For some cases it is necessary to emphasise high values of the error so as to
distinguish better large deviations of the model from the data. In such a case the
criterion consisting of the sum of squared errors could be used (i.e. the classical
least-squares criterion with (5.2) for δ(s1, s2) = (s1 − s2)2).

If the CA is stochastic in nature, the expectation of the criterion (5.2),
i.e. E{J(f,N)}, should be calculated in lieu of J(f,N). But then the Monte
Carlo method can be employed [25, 59] for approximately solving the resulting
stochastic optimization problem. It reduces to generating independent and iden-
tically distributed initial CA configurations, and then running the system to be

Structural identification of cellular automata 109

estimated many times, starting from those configurations. This makes it possible
to replace the expectation by the sample mean obtained from these runs.

The above-mentioned performance index guarantees finding a function
which reflects the observed behaviour satisfactorily in most cases. Unfortunately,
it does not limit the size of its tree representation. The depth of the trees may in
principle increase without limits under the influence of crossover, a phenomenon
that goes under the name of ‘bloating’. The increase in the size is often accompa-
nied by a stagnant population fitness. Consequently, a good GP implementation
must have a parameter which prevents tress from becoming too deep, thus filling
all the available memory and requiring longer evaluation times. To further avoid
bloating, a common approach is to introduce a size-penalty term into the fitness
expression, possibly in a self-adapting way. As a result, in order to remedy the
above inconvenience, we modify the fitness function as follows:

J ′(f,N) = J(f,N)−W (f) (5.3)

where W (f) is a function proportional to the size of the tree representation of
f (e.g. the number of all nodes and leafs). Accordingly, we obtain a function
which prevents the algorithm from the excessive increase in the size of the sought
function. The additional component W (f) causes that for the same fitness values
simple functions are preferred.

At this moment, if the fitness criterion is defined, the evolution process can
be described. The structure of the algorithm used to obtain the CA transition
function can be written as follows:

1. Initiation

(a) Choose:

• population size np,

• initial lengths l(fi,0) of the functions fi,0 in the initial generation
G0, i = 1, . . . , np,

• mutation probability Pmut,

• maximum number of iterations nmax,

• desired fitness value Jmax,

• number of best functions copied to the next generation nb,

• number of iterations before calculation of the fitness nfit (if we
evaluate it at each iteration, then nfit = 1),

• size of tested CA lattices SL.

(b) Clear the iteration counter (n = 0).

(c) Define the function set F (for a binary CA it can be composed of ele-
mentary logical operators, e.g. F = {AND,OR,XOR,NOT}).

(d) Set the terminal set (leafs in the tree) T (for a binary, two dimensional
CA it can look like T = {s(ci,j), s(ci−1,j−1), s(ci,j−1), . . . , s(ci+1,j+1)}).

110 5.3. Discovering state transition rules via genetic programming

(e) Draw at random an initial population of CA transition functions f`,0

(i.e. trees) of size l(f`,0):

G0 = {f1,0, f2,0, . . . , fnp,0},

where f`,n means the `-th function of generation n.

(f) Draw at random N initial CA configurations

L = {C1,0, . . . , CN,0}

2. Calculate the fitness:

(a) Perform nfit iterations for each of the initial configurations in L.
(b) Calculate the mean fitness J̄ for each transition function from the cur-
rent generation Gn for all initial conditions belonging to L.

If J̄ = Jmax, then STOP.

3. Perform selection. In this way, nb functions are copied from the current
generation Gn to the new generation Gn+1, with the probability proportional
to their fitness J(f,N).

4. Perform crossover. The remaining np − nb functions in the new generation
Gn+1 are constructed as new functions which are the result of crossover of
randomly selected two functions from the mother generation Gn.

(a) Select two functions fk,n and f`,n from population Gn with probability
proportional to their fitness (pk ∝ J(fk,n) and p` ∝ J(f`,n)).

(b) Select one of the nodes (i.e. a sub-function fa
k,n) from function fk,n and

one (f b
`,n) from function f`,n.

(c) Create a new function as a copy of fk,n where part fa
k,n is replaced by

f b
`,n (cf. Fig. 5.2).

5. Perform mutation. For each tree in the current population, remove with
probability Pmut a sub-tree at a selected node and replace it with a randomly
generated tree.

6. If n = nmax − 1 then STOP, otherwise set n = n+ 1 and go to Step 2.

The above algorithm starts with a population of randomly generated state
transition functions (Step 2). Once an initial population has been created, the
algorithm opens the main loop. Step 2 is to calculate the fitness of each transition
function. In Step 3 a selection process is applied to create a new intermediate
population of np “parent functions”, i.e. np independent extractions of individuals
from the old population are performed, where the probability for each individual
of being extracted is proportional to its fitness. Once the intermediate population
has been extracted, the new generation of functions will be produced through

Structural identification of cellular automata 111

fi,n
a

fi,n

c0,1c2,−1 c−1,1c1,1

c0,−1

fj,n

fj,n
b

c1,1 c2,−1

c1,0

XOR

AND

OR

OR

AND

XOR

Mother functions.

c0,1c2,−1

c1,1 c2,−1

c1,0

AND

OR AND

OR

c0,−1

c−1,1c1,1

XOR

XOR

New functions created after the exchange of sub-functions fa
i,n with fb

j,n in mother functions.

Fig. 5.2. Process of creating new functions by crossover of two mother functions.

112 5.3. Discovering state transition rules via genetic programming

the application of crossover and mutation. To apply crossover (Step 4), couples
are formed with the same entries from all parent functions. Then, with some
probability Pcross, each couple undergoes crossover: for the same entries (trees) in
two functions, random crossover points are selected and then the corresponding
sub-trees are exchanged. Mutation (Step 5) is implemented by a random procedure
that, with a certain probability Pmut, removes a sub-tree at a selected point and
replaces it with a randomly generated tree. Steps 2–5 are repeated until either the
maximum number of iterations is exceeded or some of the state transition function
has achieved a perfect fitness Jmax.

5.3.2. Synthesis of CA’s for modelling desired behaviours

For the problems described below the value of the mutation probability
Pmut = 0.006 was used. It should be underlined that the GP algorithm described
in Section 5.2 is supplemented by inversion. This is a method which changes
randomly the order of the arguments of a selected sub-function. To apply the in-
version on a function fk,n, two sub-functions should be selected (e.g. fa

k,n and f
b
k,n),

then their positions are exchanged in the main function fk,n. For the problems
described below, the inversion probability is Pinv = 0.003.

5.3.3. Discovering the model of a plant population in fens

The approach described above can be used to find a CA model on the basis
of observed data. These data can be measured or generated by a model. In what
follows, the latter approach was chosen. In order to generate data, the model
proposed by Weimar [88] was used.

In a fen the most significant environmental influences which can be managed
are floodings (and cutting if we consider a human intervention). Based on this fact,
a simple probabilistic model of a plant population in fens was proposed in [88]. This
model concentrates on two plant species which are used as representatives of groups
of species. They are Water Sweet-grass (Glyceria Maxima – it proliferates in
sufficiently wet conditions and dies off in excessively dry conditions) and dandelion
(“Lions tooth” – it proliferates by airborne seeds when conditions are dry enough
and dies off if the environment is too wet).

In the case of the extreme discretisation into two values for the above-
mentioned vegetation, we can easily define probabilistic rules operating on a state
vector. This vector includes two values representing the vegetation levels of both
the modelled species (we suppose that both the species can occupy the same
terrain) denoted by sG

t (c) for Water-Sweet grass and sL
t (c) for dandelion. We

construct a CA in two dimensions on a square lattice. There are two sets of
rules, one for wet conditions, and one for dry conditions. Since the natural growth
cycle is one year, we model one year in one CA step. The type of conditions for
consecutive years is given by the sequence {et}, where et = 0 and et = 1 stand for
dry and wet conditions, respectively.

The first set of rules is for the Water Sweet-grass and it says that for dry
environmental conditions (et = 0) the vegetation (which corresponds to sG

t (c) = 1)

Structural identification of cellular automata 113

Tab. 5.1. Transition table for the model of a plant population in fens.

Water Sweet-grass Dandelion

(sG
t (c), sL

t (c)) et P (sG
t+1(c) = 0) P (sG

t+1(c) = 1) P (sL
t+1(c) = 0) P (sL

t+1(c) = 1)

(0,0) 0 1 0 p3 1− p3

(0,0) 1 % 1− % 1 0

(0,1) 0 1 0 0 1

(0,1) 1 % 1− % p2 1− p2

(1,0) 0 p1 1− p1 p3 1− p3

(1,0) 1 0 1 1 0

(1,1) 0 p1 1− p1 0 1

(1,1) 1 0 1 p2 1− p2

dies (i.e. sG
t+1(c) = 0) with probability p1 or it remains the same elsewhere. For

a wet vegetation case, i.e. et = 1, it appears, i.e. st+1(c) = 1, if at least one
neighbour possesses this vegetation, and remains the same for all other situations.
For the Dandelion case and wet conditions (et = 1), the vegetation (st(c) = 1) dies
off (i.e. st+1 = 0) with probability p2 or remains the same elsewhere. For the dry
vegetation case (et = 0), an empty cell (st(c) = 0) starts having the vegetation
(sL

t+1(c) = 1) with probability p3, and the states remain the same in all other
situations. This model is described by the probabilistic transition table shown in
Tab. 5.1, where

%(c) =

0 if
∑

γ∈N(c)

sG
t (γ) > 0,

1 otherwise.

An exemplary dynamics of the model for an average wetness of 0.5 and
p1 = 0.3, p2 = 0.4 and p3 = 0.05 on the two-dimensional lattice of size 30×30
is shown in Fig. 5.3. The white colour represents vacant sites and the black
one signifies the cells occupied by vegetation. The pictures are grouped in four
sequences by three pictures to show vegetation of both the species in all conditions.

Experiments with GP were performed for the square lattice L of size 30×30
with periodical boundary conditions. Because this is a binary CA, logical operators
can be used to define the function set

F = {NOT , AND , OR , XOR ,RND}

(other operators can be obtained as a combination of this basic set), the component
RND representing a function which generates 0 or 1 with equal probabilities 0.5.
The set of terminals T was composed of two possible state values (0 and 1) and
possible neighbour positions in the neighbourhood of the maximum radius of 3
from the central cell in the von Neumann sense. The size of the drawn functions in
the initial generation G0 of size 300 is adjusted as 20. It is assumed that the fitness

114 5.3. Discovering state transition rules via genetic programming

Wet conditions et = 1

Water sweet grass Dandelion

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

Dry conditions et = 0

Water sweet grass Dandelion

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

Fig. 5.3. An exemplary evolution of plant populations in fens.

function J is the mean value of the performance criterion for 20 initial conditions
generated at random every time for each function. As for the probabilities, they
were set as p1 = 0.5, p2 = 0.5 and p3 = 0.25.

Three criteria were used so as to evaluate the mean fitness function in GP:

• Efficiency:

JE(f,N) =
1

TQR

T−1∑
t=0

Q∑
i=1

R∑
j=1

δ
(
st+1(ci,j), f

(
st(N(ci,j)

))
−W (f) (5.4)

where

δ(s1, s2) =

{
1 for sG

1 = sG
2 and s

L
1 = sL

2 ,
0 otherwise,

T is the length of the discrete time horizon, Q and R represent respectively
the width and height of the lattice, and W (f) is the sum of all nodes and
leafs in the function f divided by 4. The values of this criterion are between
zero, which means the total lack of fitness, and 1, which means the perfect
adaptation.

• Squared efficiency:
JS(f,N) = JE(f,N)2. (5.5)

Similarly to the previous criterion, it evaluates between 0 and 1, but the
fitness differences are emphasised.

Structural identification of cellular automata 115

Tab. 5.2. The results obtained after running the GP algorithm for efficiency (JE), squared
efficiency (JS) and Median of efficiencies (JM).

Criterion Best fitness Average time [h]

JE 0.922598 9.5

JS 0.924683 8.5

JM 0.919802 9

• Median of efficiencies. This notion is well-known in statistics, and consti-
tutes an alternative to the mean as the “centre” of the data. The efficiences
are sorted and the median is the value such that half of the efficiences lie
above and half of the efficiences below it.

The results obtained after running the GP algorithm for each of these cri-
teria are shown in the Tab. 5.2.

In all cases the desired fitness value was Jmax = 0.95, but unfortunately,
the algorithm did not reach this value and stopped after the assumed maximum
number of iterations nmax = 10 000. In this example the criterion of squared
efficiency led to the fastest convergence.

For better understanding how GP is capable of discovering the model, let
us describe it as follows:

sG
t+1(ci,j) = sG

t (ci,j) AND sL
t (ci,j) OR

NOT sG
t (ci,j) AND sL

t (ci,j) AND RND AND

(sG
t (ci,j+1) OR sG

t (ci,j−1) OR sG
t (ci−1,j) OR sG

t (ci+1,j)) OR

sG
t (ci,j) AND NOT sL

t (ci,j)

sL
t+1(ci,j) = NOT sG

t (ci,j) AND NOT sL
t (ci,j) AND (RND AND RND) OR

sG
t (ci,j) AND NOT sL

t (ci,j) OR

sG
t (ci,j) AND sL

t (ci,j) AND RND.

116 5.3. Discovering state transition rules via genetic programming

The estimated function with the best fitness of the type JS is as follows:

sG
t+1(ci,j) = sG

t (ci,j) AND sL
t (ci,j) AND (RND OR RND) OR

NOT sG
t (ci,j) AND sL

t (ci,j) AND RND AND(
sG

t (ci−1,j) OR sG
t (ci+1,j) OR sG

t (ci,j−1)
)

AND sG
t (ci,j+1) OR

sG
t (ci,j) AND NOT sL

t (ci,j)

sL
t+1(ci,j) = NOT sG

t (ci,j) AND NOT sL
t (ci,j) AND

(RND OR RND AND RND) OR

sG
t (ci,j) AND NOT sL

t (ci,j) AND RND AND RND OR

sG
t (ci,j) AND sL

t (ci,j) AND RND.

5.3.4. Estimation of the parasite transmission model

Let consider the structural identification problem for the model described
in Example 4.5 on p. 96. Experiments with GP were performed for the lattice L of
size 30×30 with periodical boundary conditions. For this case the GP algorithm
can be used in order to find the form of probability functions fi,j of transitions
from state i to j. Because the problem is not binary, logical operators in the
functions set F should be replaced by elementary arithmetic operators completed
by constants and information about the neighbourhood configuration. Finally, we
get the following functions set:

F = {+,−, ∗, /, pow, abs},

where ‘pow’ stands for the power function and ‘abs’ returns the absolute value.
The terminal set was

T = {1, . . . , 10, ci−2,j−2, . . . , ci+2,j+2}.

So as to ensure the compatibility with probability values, it is defined that the
results of the evaluation of the resultant functions are truncated to values from
the interval [0, 1]. The size of the drawn functions in the initial generation G0 of
size 300 was selected as 20. It is assumed that the fitness function J is the mean
value of evaluating the criterion for each 20 initial conditions drawn at random
every time for each function.

The results obtained after running GP for criteria from Section 5.3.3 and
pG = 0.05, pT = 0.6 and pV = 0.9 are shown in the Tab. 5.3.

In experiments the following structure of δ was used:

δ(s1, s2) = 2− |s1 − s2|.

In all the cases the desired fitness value was Jmax = 0.95. Unfortunately, the
algorithm did not reach this value, and it stopped after do maximum number
of iterations nmax = 10 000. In this case too, the criterion of squared efficiency

Structural identification of cellular automata 117

Tab. 5.3. The results obtained after running the GP algorithm for efficiency (JE), squared
efficiency (JS), Median of efficiencies (JM) and pG = 0.05, pT = 0.6 and pV = 0.9.

Criterion type Best fitness Average time [h]

JE 0.905473 13

JS 0.921002 12

JM 0.903523 12.5

caused the fastest convergence. The resulting table of probabilities, obtained for
the criterion JS is as follows:

st(c) P̂ (st+1(c) = 0) P̂ (st+1(c) = 1) P̂ (st+1(c) = 2)

0 9/10 (1/10)ε1 0

1 0 (4/10)ε2 (8/10)ε3

2 9/10 0 0

where

ε1 = |st(ci−1,j)− 1|+ |st(ci,j−1)− 1|+ |st(ci+1,j+1)− 1|+ |st(ci,j+1)− 1|

ε2 = |st(ci−1,j)− 2|+ |st(ci,j−1)− 2|+ |st(ci+1,j)− 2|+ |st(ci,j+1)− 2|

ε3 = |st(ci−1,j)− 2|+ |st(ci,j−1)− 2|+ |st(ci,j+1)− 2|+ 1

Please note that the value of the power ε2 is just the same as in the original
function.

5.4. Conclusion

In this chapter the usefulness of genetic programming in finding state transi-
tion rules of CA’s was tested and attention was mainly focused on stochastic CA’s,
where some concepts of the Monte Carlo method were employed for justification
of the choice of the performance index being a mean of the results for many model
runs. As can be seen from the presented simulation results, genetic programming
constitutes a very useful tool to discover the state transition function in situations
for which the size of the transition rules is limited and we can define an appro-
priate fitness function. Moreover, the choice of an optimal neighbourhood for the
lattices was also considered, which has not been considered in the literature so
far. In most cases, the cells adjacent to the central cell have been selected as the
‘optimal’ ones, which confirms in a sense the reasonableness of introducing local
rules in general CA’s defined on adjacent cells.

The results obtained allow us to classify this approach as useful for build-

118 5.4. Conclusion

ing ecological models on the basis of observations from satellites or airplanes,
taken in conjunction with some advanced image processing (based on mathemat-
ical morphology), as in those situations the presence of considerable noise should
be included into the formulation.

Additionally, the influence of the applied fitness function on the search pro-
cess was tested for general cases. The efficiency criterion is found to be appropriate.
For both the examples discussed here, an adequate function scale was crucial for
founding solutions. The criterion of squared efficiency seems to be the best choice,
as it produced better results.

Chapter 6

Conclusions and future research directions

As pointed out in [21], ecology needs new ideas and methods to deal with dy-
namics of processes in a spatial setting. These models help in developing intuition
about how ecological systems behave and show repeatedly how new, unexpected
phenomena emerge when a spatial structure is introduced.

Since the pioneering work of John von Neumann in the 1950’s, CA’s have
been largely employed as a modelling class to approximate nonlinear discrete and
continuous dynamical systems in a wide range of applications. However, the inverse
problem of determining a CA that satisfies general sets of prespecified constraints
has received relatively little attention. One of the most essential problems in this
case is the identification of CA’s, i.e. how to learn the underlying rule that gov-
erns the local behaviour of cells from temporal slices of the global evolution of
the spatio-temporal pattern. The existing solutions are concerned with Boolean
automata and do not address the general problem of determining the CA rules
from an observed, possibly noisy, complex multidimensional pattern. A potential
solution would offer an important step forward in the modelling of spatially ex-
tended systems that arise in diverse fields such as pattern formation, fluid mixing,
brain imaging and in data compression problems.

Bearing this in mind, the original goal of the research reported in this thesis
was simply to develop computationally efficient methods to solve practical design
problems for a wide class of CA’s. In the process of executing this task, some known
methods have been employed and several new algorithms have been constructed.
The following is a concise summary of the contributions provided by this work to
the state-of-the-art in identification of CA models:

• Systematizes characteristic features of the problem and analyses the existing
approaches.

• Develops an effective hybrid method for modelling forest succession models.
This scheme is based on coupling a completely discrete CA model with a gap
model described by systems of ordinary differential equations, which makes
it possible to get benefit from the advantages offered by both the approaches
when applied separately. This technique was validated on real data.

120

• Provides original CA models of spreading phenomena for the Eden and single
percolation cluster models. Spreadability constitutes the original concept
which has been widely developed since seminal works of El Jai and his co-
workers [44, 45]. The notion of spray control is then introduced for spreadable
systems and examples of its use are given.

• Formulates and solves the problem of parameter estimation of CA models.
The framework introduced here is different from the settings considered in
the literature so far in that noisy-corrupted data are assumed and stochas-
tic CA’s are also addressed. The proposed effective methods of parameter
estimation adapt some schemes from general optimization and parameter es-
timation methods, which paves the way for finding links with some existing
and efficient solutions known in systems analysis.

• Employs and adapts genetic programming for finding CA state transition
rules. As a result, a very flexible method is obtained which can be used in
situations for which the size of transition rules is limited and we can define an
appropriate fitness function. In contrast to previous works on this topic, the
choice of the optimal neighbourhood for the lattices has also been considered
and stochastic CA’s have been taken into account.

The approach suggested here has the advantage that it is independent of
a particular form of the CA describing the disturbed system under consideration.
Moreover, it can easily be generalized to three spatial dimensions and the only
limitation is the amount of required computations and memory.

The author believes that his approach has significant advantages which will
make it, with sufficient development, a leading approach to solving CA identifi-
cation problems facing scientists and engineers involved in applications. However,
there still remain open problems regarding some important areas. What follows is
a discussion of the areas for further investigation, besides applications.

Further development of the hybrid approach. Although the proposed hybrid
approach to modelling forest dynamics turns out to work correctly for real data,
some efforts are still expected towards a better representation of the shapes of
trees and validation on larger ecosystems for longer periods (more than 10 years).

Furher development of parameter estimation methods. Parameter esti-
mation techniques presented in this thesis have their origins in statistics. In the
thesis estimates of model parameters were indicated from the data, but no mea-
sures of precision are available. The next step would be (approximate) inference
on the model parameters, e.g. the bias and variance of an estimator are desirable.
Enough distribution theory at hand would allow for performing this step. Some
recent advances in spatial statistics [60] are expected to be helpful to attain this
goal.

Optimum experimental design. The thesis has been primarily concerned with
the problem of extracting information from a given set of data. However, in

Conclusions and future research directions 121

most situations there are a number of variables which can be adjusted, subject to
certain constraints, so that the information provided by the experiment be max-
imized. Optimum experimental design is devoted to a study of the design of the
experimental conditions so that the experiment is maximally informative. For
dynamic systems, experiment design includes choice of input and measurement
ports, test signals, initial conditions, sampling instants, etc. In the context of pa-
rameter estimation of CA models, this necessitates introduction of some measures
of information provided by an experiment and then solving the corresponding op-
timization problem, which seems to be a quite complex task which is, however,
extremely important in applications.

Possible links with reinforcement learning. The work on parameter and
structure identification suggested that there may be some links of this problem with
a reinforcement learning problem. In this language, the state transition function
of a CA can be seen as a sought policy, i.e. the decision-making function (control
strategy) of the agent, which represents a mapping from situations to actions. Most
reinforcement learning algorithms can be viewed as stochastic approximations of
exact dynamic programming algorithms, where instead of complete sweeps over
the state space, only selected states are backed up (which are sampled according
to the underlying probabilistic model). Potential results in this field would be
very interesting, since the reinforcement learing has devoloped rapidly over the
last years.

STRESZCZENIE

Układy dynamiczne z czasoprzestrzenną dynamiką, lub inaczej tzw. układy dy-
namiczne o parametrach rozłożonych, stanowią ważną klasę szeroko rozumianych
układów dynamicznych. Wiele różnorodnych procesów fizycznych daje się opisać
jedynie za pomocą równań różniczkowych cząstkowych określonych w odpowiednio
zdefiniowanych obszarach i przy zadanych różnego typu warunkach brzegowych.
W literaturze specjalistycznej dotyczącej teorii systemów i teorii sterowania ist-
nieje bardzo wiele prac związanych bezpośrednio z takimi układami. Związane
jest to z jednej strony z szerokimi możliwościami aplikacyjnymi, a z drugiej strony
z istnieniem wielu trudnych problemów teoretycznych nie w pełni do tej pory
rozwiązanych.
W skutek częstego występowania silnych nieliniowości w układach tego typu, do
ich opisu stosuje się nieliniowe równania różniczkowe cząstkowe, których rozwiązy-
wanie nawet na poziomie prostych zagadnień okazuje się bardzo złożone pomimo
coraz szerszej dostępności wydajnych narzędzi numerycznych i informatycznych.
Przykładowo, rozwiązania mogą być silnie wrażliwe na warunki początkowe,
co prowadzi do zachowań chaotycznych. Ponadto, ich analiza wymaga bardzo
wyrafinowanego aparatu matematycznego (zaawansowana analiza funkcjonalna).
Wyznaczanie rozwiązań prowadzi też zazwyczaj do numerycznego rozwiązywania
układów równań o bardzo dużej liczbie niewiadomych (dokładne modelowanie im-
plikuje stosowanie gęstych siatek przestrzennych), co stanowi problem sam w sobie
i wiąże się zarówno z zagadnieniami stabilności i odporności na błędy numeryczne,
jak również koniecznością stosowania wysoko wydajnych narzędzi obliczeniowych.
Modele oparte na automatach komórkowych stanowią interesującą alternatywę w
badaniach nad układami z czasoprzestrzenną dynamiką. Ze względu na swoją
prostotę i dyskretny charakter używanych wielkości, są one potencjalnie prost-
sze w analizie niż układy ciągłe, a zagadnienia numeryczne są wolne od błędów
zaokrągleń. Modele tego typu stają się coraz bardziej popularne, zwłaszcza wśród
badaczy zajmujących się zastosowaniami, np. w ekologii, co spowodowane jest ich
prostotą i nadzwyczajną łatwością w implementacji komputerowej.
Automat komórkowy jest dyskretnym układem dynamicznym zdefiniowanym w
dyskretnym czasie i przestrzeni. Jego podstawowymi elementami składowymi są
jednakowe komórki uporządkowane w regularną siatkę przestrzenną (np. pros-
tokątną lub sześciokątną w przypadku dwuwymiarowym). Komórka jest rodzajem
pamięci przechowującej stany. Stan każdej komórki jest zmienną, która przyjmuje
wartość z zadanego skończonego zbioru wartości dopuszczalnych. Automat ewolu-
uje w dyskretnych chwilach czasu, w których stany jego komórek są uaktualniane
synchronicznie z zastosowaniem zestawu lokalnych reguł przejść, które określają
zależność stanu komórki w danej chwili czasowej od stanów jej i komórek sąsiednich
w chwili poprzedniej. Wszystkie komórki stosują ten sam zestaw reguł.

Conclusions and future research directions 123

Jednym z podstawowych zastosowań automatów komórkowych jest modelowanie
złożonych procesów fizycznych, gdzie okazują się często pełnowartościowymi alter-
natywami modeli w postaci równań różniczkowych cząstkowych. Przykładowo, w
symulacjach hydrodynamicznych do modelowania przepływu, jak również w kine-
tycznej teorii gazu, płynów nie mieszających się, konwekcji i magnetohydrodynam-
ice, bardzo popularne są modele tzw. gazów siatkowych HPP i FHP (można np.
pokazać, że gazy siatkowe imitują przepływ Naviera-Stokesa). Komórkowe modele
zjawisk czasoprzestrzennych stały się szczególnie rozpowszechnione wśród biologów
i badaczy związanych z ekologią, co wiąże się przede wszystkim z niewielkim stop-
niem skomplikowania tych modeli, intuicyjną interpretacją reguł przejść i prostotą
wprowadzania np. składowych losowych. W tym kontekście, równania różniczkowe
cząstkowe i automaty komórkowe stanowią dwa odmienne podejścia do modelowa-
nia tych samych procesów: pierwsze z nich modelują populacje gatunków opisane
gęstościami osobników zmieniającymi się wczasie i przestrzeni, a drugie pojedyncze
osobniki poruszające się po siatce przestrzennej i wchodzące w interakcje z os-
obnikami sąsiednimi. Obydwa podejścia stanowią uproszczenia rzeczywistości.
Równania różniczkowe cząstkowe interpretowane jako opisy w wielkiej skali ab-
strahują od lokalnych korelacji. Z kolei automaty komórkowe operują na poziomie
molekularnym i skupiają się na lokalnych korelacjach, jednak nie opisują korelacji
dalekiego zasięgu tak dobrze jak równania różniczkowe cząstkowe.

Wraz z intensywnym rozwojem techniki komputerowej obserwuje się coraz większe
zainteresowanie symulacjami z zastosowaniem automatów komórkowych i należy
spodziewać się, że wraz z upływem czasu modele komórkowe, rozwijane ze zmien-
nym zainteresowaniem od kilkudziesięciu lat, staną się równoważną alternatywą ich
ciągłych odpowiedników klasycznych intensywnie rozwijanych przez długie dziesię-
ciolecia.

Jedną z najistotniejszych przeszkód w rozpowszechnieniu automatów
komórkowych jako modeli procesów rzeczywistych jest brak efektywnych metod
rozwiązywania zagadnień odwrotnych, a w szczególności konstruowania lokalnych
reguł przejść automatu w oparciu o dostępne dane pomiarowe. Zdecydowana
większość znanych automatów opiera się bowiem na dokładnej znajomości fizyki
rozważanego zjawiska, co pozwala na określenie postaci funkcyjnej reguł, oraz na
arbitralne przyjętych wartościach występujących w niej parametrów. Oczywiście,
jest to wystarczające na etapie badania przydatności modeli komórkowych do
odzwierciedlania pewnych cech jakościowych zjawisk rzeczywistych, jednak nie
wystarcza w zastosowaniach mających na celu dokonywanie predykcji zachowania
obserwowanego procesu lub określania optymalnego oddziaływania (sterowania)
na rozważane zjawisko w celu otrzymania jego określonego zachowania. W
dostępnej literaturze znanych jest zaledwie kilka prac z tego zakresu, które opisują
na dodatek rozwiązania obciążone wieloma niedogodnościami podającymi w
wątpliwość ich praktyczną użyteczność. Klasyczną pozycją jest tu monografia
Adamatzky’ego (1994), w której przedstawiono zestaw algorytmów pozwalających
określić tablicę przejść automatu (co jest równoważne określeniu lokalnej funkcji
przejścia) w oparciu o dane pochodzące z obserwacji zachowania automatu.
Autor abstrahuje jednak od modeli parametrycznych i wyklucza możliwość

124

występowania zakłóceń pomiarowych (jest to podstawowe założenie stosowalności
proponowanych algorytmów).
W ostatnich latach można zaobserwować wysiłki rozmaitych badaczy mające
na celu wykorzystanie algorytmów genetycznych w celu określenia nieznanych
parametrów założonego modelu automatu (Yang i Billing, 2000) lub identyfikacji
tablicy przejść automatu (Mitchell, 1975; Crutchfield i Hanson, 1999; Koza i Hall,
1993; Sipper, 1997). Wprawdzie próby te uwzględniają możliwość występowania
zakłóceń wdanych pomiarowych, jednak ograniczają się do automatów determin-
istycznych i binarnych, a przedstawione przykłady obliczeniowe ograniczają się
do abstrakcyjnych problemów nie związanych z modelowaniem zjawisk fizycznych.
Ograniczenia te stanowiły motywację badań podsumowanych niniejszą rozprawą.
Tematem niniejszej pracy jest zbadanie przydatności wybranych metod i pode-
jść znanych z identyfikacji układów dynamicznych i programowania nielin-
iowego w konstruowaniu modeli deterministycznych i stochastycznych automatów
komórkowych w oparciu o obserwowane dane pomiarowe.
Celem pracy było opracowanie możliwie uniwersalnych i efektywnych metod oraz
algorytmów określania reguł przejść automatu zarówno w sytuacji znanej, jak i
nieznanej ich postaci funkcyjnej, z zamiarem ich stosowania w sytuacjach gdy
przed badaczem staje do rozwiązania konkretne zagadnienie praktyczne związane
z modelowaniem realnego procesu.
Na treść książki składa się wstęp, cztery zasadnicze rozdziały, uwagi końcowe oraz
spis literatury. We wprowadzeniu przedstawiono definicję automatu komórkowego,
omówiono szczegółowo jego podstawowe składowe (typy siatek, rodzaje sąsiedztwa,
warunki brzegowe, opisy funkcji przejścia) ilustrując je przykładami (Gra w Ży-
cie), a następnie dokonano przeglądu zastosowań automatów, a w szczególności
ich wykorzystania w badaniach nad uniwersalnością obliczeniową oraz (znacznie
obszerniej) w modelowaniu procesów fizycznych, z przykładami dotyczącymi mod-
elowania procesu dyfuzji i przepływu płynów. Wprowadzono również pojęcie au-
tomatu z opóźnieniami. Rozdział kończy przegląd literaturowy istniejących metod
rozwiązywania zagadnień odwrotnych, sformułowanie zakresu pracy.
Rozdział drugi poświęcono w całości problemowi modelowania dynamiki wzrostu
drzew w obszarach leśnych. Dokonano obszernego przeglądu modeli matem-
atycznych, skupiając się przede wszystkim na najczęściej stosowanym modelu
typu szczelina (ang. gap) mającym postać równania różniczkowego zwyczajnego
opisującego czasową dynamikę średnicy pojedynczego drzewa. Układ złożony z
wielu drzew różnych gatunków modeluje się więc odpowiednim układem równań
różniczkowych zwyczajnych, który nie uwzględnia jednak oddziaływań przestrzen-
nych między pojedynczymi drzewami. Oddziaływania te mają charakter lokalny
i odnoszą się do transportu nasion i wzajemnego wpływu drzew na warunki
nasłonecznienia oraz dostęp do wody i składników odżywczych. Szczegółowy
model uwzględniający te czynniki przyjmuje postać układu nieliniowych równań
różniczkowych cząstkowych, które są jednak zbyt skomplikowane do zastosowania
w praktyce. W rozprawie proponuje się więc wykorzystanie w tym celu automatu
komórkowego opisującego przemieszczanie się nasion i generującego impulsy oz-
naczające obumarcie danego drzewa według odpowiednio zdefiniowanych reguł.

Conclusions and future research directions 125

Otrzymuje się w ten sposób model hybrydowy, w którym stany poszczególnych
komórek są parami składającymi się ze średnicy drzewa i jego wieku (ich ewolucję
opisuje model typu szczelina), a interakcje między poszczególnymi drzewami odby-
wają się według reguł przejścia automatu. Połączenie tego typu stanowi oryginalny
pomysł autora, nie spotykany do tej pory w literaturze i dokładniej oddający
rzeczywistość niż oryginalny model szczelinowy , co potwierdziły badania symula-
cyjne oparte na danych rzeczywistych dotyczących lasu mieszanego w zlewni rzeki
Ratanicy koło Krakowa.

Rozdział trzeci dotyczy zagadnienia rozszerzalności w układach opisywanych au-
tomatami komórkowymi. Rozszerzalność jest oryginalnym pojęciem wprowad-
zonym przez prof. El Jai (El Jai i Kassara, 1996; Uciński i El Jai, 1997) w celu
scharakteryzowania sytuacji często występującej w praktyce, gdy obszar będący
nośnikiem pewnej cechy rozszerza się na coraz większą powierzchnię wchłaniając
przyległe do niego punkty. Przykładami tego zjawiska są rozrost komórek nowot-
worowych, rozprzestrzenianie się epidemii, proces krystalizacji, przepływ płynu
w środowisku porowatym, rozprzestrzenianie się obszarów pustynnych lub pow-
iększanie się obszarów pokrytych roślinnością. Dotychczasowe badania wskazują,
że zjawisko rozszerzania jest trudne do opisania z zastosowaniem klasycznego
aparatu równań różniczkowych cząstkowych (z wyjątkiem równań typu hiperbol-
icznego). W pracy pokazano, że może ono być stosunkowo łatwo odzwiercied-
lone z zastosowaniem automatów komórkowych, na przykładzie dwóch modeli
rozprzestrzeniania się epidemii (model Eden i jego pochodna w postaci modelu
pojedynczego skupienia perkolacji), które autor proponuje jako komórkowe im-
plementacje modeli stosowanych dotychczas w biologii. W drugiej części rozdzi-
ału wprowadzono pojęcie sterowania, co umotywowane jest sytuacją często spo-
tykaną w praktyce, gdy czynniki zewnętrzne wpływają istotnie na zachowanie
procesu (automaty komórkowe definiuje się zazwyczaj jako układy autonomiczne).
Jako przykłady podaje się model inwazyjnej perkolacji (rozmieszczenie początkowe
komórek odpornych na chorobę ma istotny wpływ na sposób rozprzestrzeniania
się zarazy) oraz model dyfuzji cząstek o ograniczonej energii (na przebieg procesu
wpływa się przez rozmieszczenie źródeł cząstek). Modele te są bardzo proste i
zjawisko rozszerzania występuje w nich w sposób naturalny, w przeciwieństwie do
modeli ciągłych.

Rozdział czwarty, poświęcony w całości estymacji parametrów modeli
komórkowych, zawiera najwięcej oryginalnych rezultatów z uwagi na bardzo
niewielką liczbę publikacji literaturowych poświęconych temu zagadnieniu. W
proponowanym sformułowaniu postać funkcyjna reguł przejścia jest dana, nie
są znane natomiast niektóre z występujących w niej parametrów, które można
odtworzyć na podstawie obserwacji zachowania procesu opisywanego modelem
komórkowym. W przypadku automatów deterministycznych dopuszczono wys-
tępowanie obserwacji zaszumi onych i sprowadzono zadanie estymacji do problemu
minimalizacji kryterium niedopasowania modelu do danych pomiarowych (badano
kryteria sumy odległości Hamminga, sumy wartości bezwzględnych błędów i sumy
kwadratów błędów). Ponieważ najczęściej parametry mogą przyjmować wartości
dyskretne, podobnie jak minimalizowane kryterium, które na dodatek posiada

126

wiele minimów lokalnych, rozwiązanie problemu wymaga zastosowania algoryt-
mów optymalizacji globalnej i/lub dyskretnej. W rozprawie zaproponowano w tym
celu metodę poszukiwania lokalnego, metodę symulowanego wyżarzania i metodę
adaptacyjnych poszukiwań losowych. Przedstawione rezultaty badań symula-
cyjnych dotyczących zarówno modeli abstrakcyjnych, jak i modeli opisujących
złożone zjawiska rzeczywiste (krystalizacja przechłodzonej cieczy), potwierdzają
efektywność zastosowanego podejścia. Wskazano ponadto na możliwość wys-
tępowania niejednoznaczności estymat parametrów. W celu scharakteryzowania
niepewności estymat proponuje się zastosowanie podejścia opartego na określeniu
granicy obszaru niejednoznaczności przez tzw. chmurę punktów (podejście to za-
proponowali Walter i Pronzato (1997) w kontekście ogólnego zadania estymacji
parametrów). Druga część rozdziału dotyczy estymacji parametrów stochasty-
cznych modeli komórkowych i stanowi istotne uogólnienie metody zaproponowanej
w klasycznej monografii Adamatzky’ego (1994), gdzie rozważano jedynie esty-
mację prawdopodobieństw przejść między stanowych w oparciu o częstościową
definicję prawdopodobieństwa (tzn. nieznane prawdopodobieństwo przejścia z
jednego stanu do innego przybliżano częstością występowania takiego przejścia w
długiej serii obserwacji). W rozprawie autor uogólnia te rezultaty i rozważa o wiele
bardziej złożone sytuacje (prawdopodobieństwa przejść międzystanowych mogą
mieć złożone postacie funkcyjne), a do estymacji proponuje zastosowanie metody
największej wiarygodności. Podejście ilustrują przykłady, w których rozwiąza-
nia otrzymuje się zarówno analitycznie (stochastyczny pożar lasu), jak i z zas-
tosowaniem algorytmu adaptacyjnych poszukiwań losowych (modele przestrzennej
dynamiki typu pasożyt-żywiciel, pożar lasu, rozprzestrzenianie się wścieklizny).

W rozdziale piątym zaproponowano podejście do identyfikacji struktury funkcji
przejścia automatu komórkowego oparte na zastosowaniu programowania gene-
tycznego. Programowanie genetyczne stanowi jedną z mniej znanych technik
ewolucyjnych obejmujących m.in. algorytmy genetyczne, i polega na zastosowa-
niu klasycznych operatorów genetycznych (reprodukcja, krzyżowanie, mutacja) do
populacji funkcji, zamiast populacji ciągów binarnych. Funkcje reprezentowane są
w postaci drzew, których węzłami są operatory (np. suma, różnica, potęgowanie),
a liściami elementy pewnego skończonego zbioru terminali. W rozprawie pokazano,
że taka reprezentacja doskonale nadaje się do odwzorowania struktury funkcji
przejścia automatu o ile do zbioru terminali włączy się komórki z założonego
sąsiedztwa automatu (np. sąsiedztwa Moore’a). Zadanie określenia struktury au-
tomatu sprowadzono w ten sposób do poszukiwania drzewa minimalizującego kry-
terium niedopasowania modelu do obserwowanych danych pomiarowych. Jako is-
totne uogólnienia, rozważano dobór optymalnego sąsiedztwa automatu oraz dobór
struktury automatów stochastycznych (poprzez zastosowanie podejścia opartego
na metodzie Monte Carlo). Problemów tych nie rozważano dotychczas w liter-
aturze, chociaż pomysł wykorzystania programowania genetycznego w określaniu
struktury funkcji przejścia znany jest od dawna (zob. np. publikacje Kozy z
początku lat 90-tych, odnoszące się jednak do bardzo prostych automatów bina-
rnych).

Książkę kończy rozdział zawierający podsumowanie i kierunki przyszłych badań,

Conclusions and future research directions 127

dotyczących m.in. dalszego rozwoju podejścia hybrydowego i metod estymacji
parametrów, zagadnienia optymalnego planowania eksperymentu i potencjalnych
związków zadania identyfikacji funkcji przejścia z problemem uczenia ze wzmoc-
nieniem.
Za oryginalne osiągnięcia pracy autor uznaje: opracowanie nowego hybrydowego
modelu dynamiki wzrostu drzew w obszarach leśnych, pozwalającego w prosty
sposób uwzględniać interakcje między różnymi drzewami wielu gatunków, ijego
weryfikacja z zastosowaniem danych rzeczywistych; opracowanie metod esty-
macji parametrów funkcji przejścia automatów deterministycznycyh w oparciu o
wybrane metody optymalizacji globalnej i automatów stochastycznych w oparciu
o metodę największej wiarygodności; opracowanie metody identyfikacji struktury
funkcji przejścia i otoczenia automatu z zastosowaniem programowania genety-
cznego.
Książkę realizowano w ramach projektu promotorskiego finansowanego przez KBN,
programu polsko-francuskich działań zintegrowanych POLONIUM oraz projektu
europejskiego ENV4CT96-0320 (w ramach tego ostatniego, we współpracy z Lab-
oratoire de Théorie des Systèmes Uniwersytetu w Perpignan we Francji, zreali-
zowano badania opisane w rozdziałach 2 i 3).

BIBLIOGRAPHY

[1] A. Adamatzky. Identification of cellular automata. Taylor & Francis Ed.,
1994.

[2] J. Albert and K. II Čulik. A simple universal cellular automaton and its
one-way totalistic version. Complex Systems, 1:1–16, 1987.

[3] M. Alpert. No just fun and games. Scientific American, 499, 1999.

[4] M. Ya. Antonovski, M. T. Ter-Mikaelian, and V. V. Furyaev. A spatial model
of long-term forest fire dynamics and its applications to forest in western
siberia. In H. H. Shugart, R. Leemans, and G. B. Bonan, editors, A Systems
Analysis of the Global Boreal Forest. Cambridge University Press, Cambridge,
1992.

[5] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing Ltd, Bristol and Oxford University
Press, New York, 1997.

[6] E. R. Banks. Universality in cellular automata. I.E.E.E. Ann. Symp. Switch-
ing and Automata Theory, 11:194–215, 1970.

[7] D. B. Botkin, J. F. Janak, and J. R. Wallis. Rationale, limitations and
assumptions of a northeastern forest growth simulator. IBM J. Res. Develop.,
16:101–116, 1972.

[8] D. B. Botkin, J. F. Janak, and J. R. Wallis. Some ecological consequences of
a computer model of forest growth. Journal Ecological, 60:849–873, 1972.

[9] H. Brufau. Analyse et Modélisation de Dynamiques de Végétation. PhD
thesis, Universitè de Perpignan, 1995.

[10] E. Burks. Theory of Self-reproduction. University of Illinois Press, Chicago,
1966.

[11] P. Callahan. Wonders of math – the game of life. Availabe at:
http://www.math.com/students/wonders/life/life.html.

[12] B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems.
Cambridge University Press, 1998.

[13] F. E. Clements. Plant succession an indicators. Wilson, New York, 1928.

[14] E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

BIBLIOGRAPHY 129

[15] S. Cole. Real-time computation by n-dimensional iterative arrays of finite-
state machine. IEEE Trans. Comput., C-18:349–365, 1969.

[16] J. H. Connell and R. O. Slatyer. Mechanisms of succession in natural com-
munities and their role in community stability and organization. Am. Nat.,
111:1119–1144, 1977.

[17] M. Cronhjort. Models and Computer Simulations of Origins of Life and Evo-
lution. PhD thesis, Kungliga Tekniska Högskolan, Stockholm, Sweden, 1995.

[18] M. Cronhjort and C. Blomberg. A mechanism for resistance against parasites
in self-replicating systems. In J. Weinstein, editor, Artificial Life V, Proceed-
ings of the Fifth International Workshop on the Synthesis and Simulation of
Living Systems, pages 413–417, Cambridge, 1997. USA: MIT Press.

[19] J. P. Crutchfield and J. E. Hanson. Computational Mechanics of Cellular
Processes. Princeton Univ Press, Princeton, 1999.

[20] M. Delorme and J. Mazoyer. Cellular Automata. A Parallel Model. Kluwer
Academic Publishers, Dordrecht, 1999.

[21] U. Dieckmann, R. Law, and J. A. J. Metz, editors. The Geometry of Ecological
Interactions: Simplifying Spatial Complexity. Cambridge University Press,
Cambridge, United Kingdom, 2000.

[22] B. Dossel and F. Schwabl. Formation of space-time structure in a forest-fire
model. Physica A, 204:212–229, 1994.

[23] W. H. Drury and I. C. T. Nisbet. Succession, volume 54, pages 331–368. J.
Arnold Arbor, 1973.

[24] A. R. Ek and R. A. Monserud. Forest: A computer model for the growth and
reproduction of mixed species forest stands. Technical Report A2635, College
of Agricultural and Life Sciences, University of Wisconsin, Madison, 1974.

[25] G. S. Fishman. Monte Carlo - Concepts, Algorithms, and Applications.
Springer-Verlag, New York, 1996.

[26] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-
stokes equation. Phys. Rev. Lett., 56:1505–1508, 1986.

[27] R. J. Gaylord and K. Nishidate. Cellular Automata simulations with Mathe-
matica. Springer–Verlag, New York, 1996.

[28] R. J. Gaylord and P. R. Wellin. Computer Simulations with Mathematica.
Springer–Verlag, New York, 1995.

[29] H. A. Gleason. The individualistic concept of the plant association. Am.
Midl. Nat., 21:92–110, 1939.

130 BIBLIOGRAPHY

[30] G. C. Goodwin and R. L. Payne. Dynamic System Identification – Experi-
ment Design and Data Analysis. Mathematics in Science and Engineering.
Academic Press, New York, 1977.

[31] D. G. Green. Cellular automat (Environmental and Information sciences).
Charles Sturt University, 1989.

[32] K. Grodzińska and R. Laskowski, editors. Environmental assessment and
biogeochemistry of a moderately polluted Ratanica catchment. Państwowa In-
spekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, 1996.

[33] L. J. Gross. Behavioral ecology and individual-based modeling. Available at:
http://ecology.tiem.utk.edu/ gross/behav.txt, 1998.

[34] J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions. Phys. Rev.,
A13:1949–1960, 1976.

[35] F. Hegyi. A simulation model for managing jack-pine stands. In J. Fries, edi-
tor, Growth Models for Tree and Stand Simulation, pages 74–87. Departament
of Forest Yeld Research, Stockholm, 1974.

[36] J. H. Holland. Adaptation in natural and aritificial systems. The University
of Michigan Press, 1975.

[37] W. Hordijk. The structure of the synchronizing-ca landscape. Available at:
ftp://ftp.santafe.edu/pub/wim/struct.CA.ps.Z, 1996.

[38] H. S. Horn. Forest succession. Sci. Am., 232:90–98, 1975.

[39] H. S. Horn. Succession. R. M. May (ed.), Theoretical Ecology:187–204, 1976.

[40] A. Smith III. Simple computation-universal spaces. Journal of ACM, 18:339–
353, 1971.

[41] P. Jacewicz and J. Korbicz. A cellular automata approach to modeling forest
dynamics. In Proc. 10th Int. Conf. System Modelling Control, volume 1, pages
307–314, Zakopane, Poland, 2001.

[42] P. Jacewicz and S. El Yacoubi. A genenetic programming approach to struc-
tural identification of cellular automata. In 3rd International Conference on
Parallel Processing and Applied Mathematics, pages 148–157, 1999.

[43] P. Jacewicz and S. El Yacoubi. Structural estimation of cellular automata.
In Proc. 4th IFIP WG 1.5 Meeting AUTOMATA’99 – Workshop on Cellular
Automata, page 31, Lyon, France, 1999.

[44] A. El Jai and K. Kassara. Spreadability of transport systems. Int. Journal
Sys. Sci., 27(7):681–688, 1996.

BIBLIOGRAPHY 131

[45] A. El Jai, S. El Yacoubi, and J. Karrakchou. Spreadability and spray actua-
tors. Applied Mathematics and Computer Science, 8(2), 1998.

[46] L. Kadanoff. On two levels. Phisics Today, 39:9:7–9, 1986.

[47] R. E. Keane, S. F. Arno, and J. K. Brown. Firesum – an ecological process
model for fire succession in western conifer forests. Technical Report INT-266,
United States Department of Agriculture, Forest Service, 1989.

[48] M. J. Keeling. Evolutionary dynamics in spatial host-parasite systems. In
U. Dieckmann, R. Law, and J. A. J. Metz, editors, The Geometry of Ecological
Interactions: Simplifying Spatial Complexity. Cambridge University Press,
Cambridge, United Kingdom, 2000.

[49] A. Kleczkowski, D. J. Bailey, and C. A. Gilligan. Scaling-up of the variability
in the plant-pathogen. University of Cambridge, 1995.

[50] A. Kowalewski. Optimal control of infinite dimensional distributed param-
eter systems with delays. Uczelniane Wydawnictwa Naukowo-Dydaktyczne,
Academy of Mining and Metallurgy, Cracow, Poland, 2001.

[51] J. R. Koza and M. Jacks Hall. Discovery of rewrite rules in lindenmayer sys-
tems and state transition rules in cellular automata via genetic programming.
In Symposium on Pattern Formation (SPF-93) at Claremont, 1993.

[52] B. Kuczewski and D. Uciński. Structure identification of cellular automata
using genetic programming. In 10th International Conference on System Mod-
elling Control, volume 1, pages 413–418, Technical University of Łódź, 2001.
Institute of Computer Science.

[53] R. L. Lindeman. The trophic-dynamic aspect of ecology. Ecology, 23:399–418,
1942.

[54] R. Margalef. On certain unifying principles in ecology. Am. Nat., 97:357–374,
1963.

[55] N. Margolus. Physics-like models of computation. Physica, 10D:128–134,
1984.

[56] J. McCormick. Succession. Via, 1:1–16, 1968.

[57] R. P. McIntosh. Forest Succession: Concepts and Application, pages 10–23.
Springer-Verlag, New York, 1981.

[58] K. J. Mitchell. Dynamics and simulated yeld of douglas-fir. For. Sci. Monogr.,
39, 1975.

[59] D. P. Morton and E. Popova. Monte-carlo simulations for stochastic opti-
mization. In C. A. Floudas and P. M. Pardalos, editors, Encyclopedia of
Optimization, pages 439–447. Kluwer Academic Publishers, 2001.

132 BIBLIOGRAPHY

[60] W. G. Müller. Collecting Spatial Data (Optimum Design of Experiments
for Random Fields). Physica-Verlag. Springer-Verlag, Heidelberg, Germany,
2001.

[61] J. D. Murray. Mathematical Biology. Springer–Verlag, 1993.

[62] E. P. Odum. The strategy of ecosystem development. Science, 164:262–270,
1969.

[63] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: algo-
rithms and Complexity. Prentice-Hall, New Jersey, 1982.

[64] S. T. A. Pickett. Succession: An evolutionary interpretation. Am. Nat.,
110:108–119, 1976.

[65] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1993.

[66] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C++: The Art of Scientific Computing. Cambridge University
Press, 2002.

[67] D. A. Rand and H. B. Wilson. Using spatio-temporal chaos and intermediate-
scale determinism to quantify spatially extended ecosystems. Proceedings of
the Royal Society of London, 259:111–117, 1995.

[68] A. Ratz. Long term spatial pattern created by fire: A model oriented towards
boreal forests. International Journal of Wildland Fire, 5:25–34, 1995.

[69] A. Ratz. A Generic Forest Fire Model: Spatial Patterns in Forest Fire Ecosys-
tems. PhD thesis, University of Magdeburg, Germany, 1996.

[70] H. H. Shugart. A Theory of Forest Dynamics (The Ecological Implications of
Forest Succession Models). Springer-Verlag, New York, 1984.

[71] H. H. Shugart. Terrestrial ecosystems in changing environments. Cambridge
University Press, Cambridge, 1998.

[72] H. H. Shugart and D. C. West. Development of an appalachian deciduous
forest succession model and its application to assessment of the impact of the
chestnut blight. Journal Environ. Manag., 5:161–179, 1977.

[73] M. Sipper. Evolution of Parallel Cellular Machines. The Cellular Program-
ming Approach, volume 1194 of Lecture Notes in Computer Science. Springer,
Berlin, 1997.

[74] D. S. Solomon. Simulation of the development of natural and silviculturally
treated stands of even-aged northern hardwoods. In J. Fries, editor, Growth
Models for Trees and Stand Simulation, pages 327–352. Department of Forest
Yeld Research, Royal College of Forestry, Stockholm, 1974.

BIBLIOGRAPHY 133

[75] A. D. Sullivan and J. L. Clutter. A simultaneous growth and yeld model for
loblolly pine. For. Sci., 18:76–86, 1972.

[76] T. Suzuki and T. Umemura. Forest transition as a stochastic process. In
J. Fries, editor, Growth Models for Trees and Stand Simulation, pages 327–
352. Department of Forest Yeld Research, Royal College of Forestry, Stock-
holm, 1974.

[77] T. Toffoli and N. Margolus. Cellular Automata Machines: A New Environ-
ment for Modelling. MIT Press, 1987.

[78] D. Uciński and A. El Jai. On weak spreadability of distributed-parameter
systems and its achievement via linear-quadratic control techniques. Journal
of Mathematical Control and Information, 14:153–174, 1997.

[79] D. Uciński and S. El Yacoubi. Parameter estimation of cellular models. In
3rd International Conference on Parallel Processing and Applied Mathemat-
ics, Technical University of Czȩstochowa, 1991. Institute of Mathematics and
Computer Science.

[80] O. van Tongeren and I. C. Prentice. A spatial simulation model for vegetation
dynamics. Vegetatio, 65:163–173, 1986.

[81] J. von Neumann. Probabilistic logic and the synthesis of reliable organisms
from unreliable components. Princeton University Press, Princeton, 1956.

[82] J. von Neumann. The Computer and the Brain. Yale University Press, New
Haven, 1958.

[83] J. von Neumann. The general and logical theory of automata. Collected
Works, 5:288–328, 1963.

[84] J. von Neumann. Theory of Self-reproducing automata. University of Illinois
Press, Chicago, 1966.

[85] P. E. Waggoner and G. R. Stephens. Transition probabilities for a forest.
Nature, 255:1160–1161, 1970.

[86] E. Walter and L. Pronzato. Identification of Parametric Models from Ex-
perimental Data. Communications and Control Engineering. Springer-Verlag,
Berlin, 1997.

[87] A. S. Watt. Pattern and process in the plant community. Journal Ecological,
35:1–22, 1947.

[88] J. R. Weimar. Simulation with Cellular Automata. Logos-Verlag, Berlin, 1998.

[89] S. El Yacoubi and P. Jacewicz. Cellular automata as a means for mod-
elling complex spatio-temporal systems. In Proc. 5th International Conference
Mathematical Population Dynamics, 1998.

134 BIBLIOGRAPHY

[90] S. El Yacoubi and P. Jacewicz. Systems theory via cellular automata. In
Proc. 2nd International Workshop on Analysis and Optimization of Complex
Environemental Systems, pages 15–20, 1998.

[91] S. El Yacoubi and P. Jacewicz. Cellular automata and controllability problem.
In Proc. 14th Symposium of Mathematical Theory of Networks and Systems
MTNS 2000, pages CD–ROM, Perpignan, France, 2000.

[92] S. El Yacoubi, A. El Jai, and P. Jacewicz. Lucas: an original tool for landscape
modelling. Journal of Environmental Modelling & Software (accepted), 2002.

[93] Y. Yang and S. A. Billings. Extracting boolean rules from ca patterns. Cy-
bernetics, 30(4), 2000.

