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Abstract

Engel laws and positive laws have attracted attention of many authors. These laws
have many common properties, e.g. each finitely generated group satisfying any
of these laws has a finitely generated commutator subgroup. There are still many
open problems concerning these laws.
MSC-2000: 20E10, 20F45, keywords: positive laws, Engel laws.

1 Notation

Let F=〈x, y〉 be a free group of rank 2. We denote xyi
=y−ix yi, [x, y]=x−1y−1xy,

[x, 0y] = x and [x, i+1y] = [[x, iy], y]. The law [x, ny] ≡ 1 is the n-Engel law. We
introduce the following subgroups.

En =〈 [x, iy], 0≤ i≤n〉, E =〈 [x, iy], 0≤ i〉.

Let A be the variety of all abelian groups, and Ap – the variety of all abelian groups
of exponent p. By Nc we denote the variety of all nilpotent groups of nilpotency
class c, and by Sd – the variety of all soluble groups of solubility class d. By Be

we denote so called restricted Burnside variety of exponent e, that is the variety
generated by all finite groups of exponent e. It follows from Zelmanov positive
solution of the Restricted Burnside Problem that all groups in Be are locally finite
of exponent dividing e.

For the text below we have to recall the following
Definition A group G is called locally graded if every nontrivial finitely genera-
ted subgroup of G has a proper subgroup of finite index.

The class of locally graded groups was introduced in 1970 by S. N. Černikov [8]
in order to avoid groups such as infinite Burnside groups or Ol’shanskii-Tarski
monsters. This class contains all soluble groups, locally finite groups, residually
finite groups. It is closed under taking subgroups and extensions. It is also closed
under taking groups which are locally- or residually- in this class.

2 Positive laws

Positive laws are the laws of the form u(x1, x2, .... xn) ≡ v(x1, x2, ... xn), where u, v
are distinct words in the free group 〈x1, x2....〉, written without negative powers of
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the variables x1, x2, ... xn. The law is cancelled if u and v have different first (and
last) letters. The degree of a cancelled law is the length of the longer word u or v.

Each positive law implies a binary positive law u(x, y) = v(x, y) if substitute
xi → xyi.

It was shown by J.&T. Lewins [18], that if a group satisfies a positive law, then
the variety it generates has a basis consisting of positive laws.

In 1953 A. I. Mal’tsev [21] and independently in 1963 B. H. Neumann and T. Taylor
[27] proved that nilpotency can be defined by a positive law. Indeed, let P ≡ Q be
a positive law defining nilpotency of class n−1, and z be a variable which does not
occure in P, Q. Let G satisfies the law PzQ ≡ QzP . This law implies PQ ≡ QP
and then PQ−1z ≡ zPQ−1. Hence the quotient of G by its center satisfies the law
P ≡ Q, and is by assumption nilpotent of class n−1. So G is nilpotent of class n.
Let P1 ≡ Q1 be the abelian law xy ≡ yx. Let P2 = P1z1Q1, Q2 = Q1z1P1

and inductively Pn = Pn−1zn−1Qn−1, and Qn = Qn−1zn−1Pn−1. Then the positive
law Pn ≡ Qn defines the variety Nn. Note that this law has n + 1 variables
x, y, z1, ..., zn−1. If we put 1 for each zi we get a binary positive law

Pn(x, y, 1) ≡ Qn(x, y, 1).

It follows that groups which are nilpotent-by-(finite exponent), in particular virtu-
ally nilpotent groups (i.e. nilpotent-by-finite groups) satisfy positive laws.

The question whether a finitely generated group satisfying a positive law must
be nilpotent-by-finite has a negative answer. For example a free Burnside group
B(r, n), r > 1 satisfying the law xn ≡ 1, or a free finitely generated group satisfying
the law xyn = ynx, are not nilpotent-by-finite for n sufficiently large by results of
Novikov and Adian (see [1]).

The question whether a finitely generated group satisfying a positive law must
be nilpotent-by-(finite exponent) was open for more then forty years. A counterex-
ample was found in 1996 by Ol’shankii and Storozhev [25]. Their groups are not
even (locally soluble)-by-(finite exponent).

However the affirmative answer was found for many types of groups. In 1997
it was done for so called class C ([5], Theorem B) defined inductively. The class
C, as it was shown later [4], consists of groups which locally are residually SB-
groups (groups lying in finite products of varieties Sd and Be for varying d, e).
This result, combined with results of Kim and Rhemtulla ([15] Theorem A), saying
that a finitely generated locally graded group G satisfying a positive law must be
polycyclic-by-finite (hence in the class C) implies the affirmative answer for locally
graded groups. So since 1997 it is known that

a locally graded group G satisfying a positive law of degree n, must be in the
product variety NcBe, where c and e depend on n only.

3 Three Questions on Engel laws

In 1936 M. Zorn proved that every finite n-Engel group is nilpotent. This is not true
in general. An n-Engel law for n>2 does not imply nilpotency (see [24] 34.62). In
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1971 S.Bachmuth and H. Y. Mochizuki [2] constructed a non-soluble locally finite
3-Engel group of exponent 5, every n-generator subgroup of which is nilpotent of
class at most 2n − 1. The local nilpotence of 4-Engel groups of exponent 5 was
shown in 1997 by M.Vaughan-Lee [35].

The following question is open in general.
Q1: Is every n-Engel group locally nilpotent? (In other words, is every
finitely generated n-Engel group nilpotent?)

Question Q1 is approached in two main ways: one is to examine n-Engel groups
for different n. In that case an affirmative answer has been found

• 1942: for n = 2 – F.W. Levi [17],
• 1961: for n = 3 – H.Heineken [14],
• 2005: for n = 4 – G.Havas and M. R.Vaughan-Lee [13] (see also [32] for a

simplification of a part of the proof of Havas and Vaughan-Lee).

The second approach is to investigate the problem in certain classes of groups. It
has been shown that n-Engel groups are locally nilpotent if additionally they are

• 1953: soluble groups – K. W.Gruenberg [12],
• 1957: groups with the maximal condition – R. Baer [3],
• 1991: residually finite groups – J. S. Wilson [36],
• 1992: profinite groups – J. S.Wilson and E. I. Zelmanov [37],
• 1994: locally graded groups – Y. Kim and A. H. Rhemtulla [15],
• 1998: groups in the class C – R.Burns and Yu.Medvedev [6]. They proved

that all n-Engel groups in the class C are contained in the product varieties
NcBe ∩BeNc, where c, e depend on n only.

• 2003: compact groups – Yu.Medvedev [22].

Q2: Does there exist a finitely generated infinite simple n-Engel group?

The Questions Q1, Q2 are equivalent in a sense that one has an affirmative answer
if and only if the other has a negative answer.

Proposition 3.1 There exists a non-(locally nilpotent) n-Engel group if and only
if there exists a finitely generated infinite simple n-Engel group.

Proof If there exists an n-Engel group G which is not locally nilpotent then by
[15], G is not locally graded. Thus G must contain a finitely generated subgroup
H, which has no proper subgroup of finite index. Since H is finitely generated, by
Zorn’s Lemma it has a maximal proper normal subgroup N . Then N is of infinite
index and the factor H/N is a finitely generated infinite simple n-Engel group.

Conversely, if there exists a finitely generated infinite simple n-Engel group then
it is not nilpotent, since the only finitely generated nilpotent simple groups are
cyclic of prime orders. 2
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The following question was posed by A. I. Shirshov in 1963 (Problem 2.82, The
Kourovka Notebook [34]) and still is open.
Q3: Are n-Engel varieties defined by positive laws?

An affirmative answer has been given for 2- and 3-Engel groups – by A. I. Shirshov
[30] and for 4-Engel groups – by G. Traustason [31].

4 Observation

It is not known whether n-Engel groups (for n > 4) satisfy positive laws, however
the Engel laws and positive laws have some common properties:

First it was shown for finitely generated residually finite groups G:

• 1991: If G satisfies an Engel law, then G is nilpotent
(Wilson [36]),

• 1993: If G satisfies a positive law, then G is virtually nilpotent
(Semple and Shalev [29] ).

Later – for finitely generated locally graded groups G:

• 1994: If G satisfies an Engel law, then G is virtually nilpotent
( Kim and Rhemtulla [15]),

• 1997: If G satisfies a positive law, then G is virtually nilpotent
(see page 2 and [7] Corollary 1).

The following question was posed by R.Burns: What do the Engel laws and
positive laws have in common that forces finitely generated locally graded groups
satisfying them to be nilpotent-by-finite?
The answer is that these laws have the same Engel construction.

5 Engel construction of the laws

Let u(x, y) be a word, and S be a subset in the free group F = 〈x, y〉.

Definition 5.1 We say that a law w(x, y) ≡ 1 has construction

u(x, y) ∈̃S

if it is equivalent to a law u(x, y) ≡ s(x, y) for some word s(x, y)∈S.

The laws with the same construction have similar properties. For example
• Every law of the form [x, y] ≡ xp for some prime p has construction

[x, y] ∈̃ {xp, p ∈ P}. These laws define abelian varieties Ap.
• The laws with construction [x, y] ∈̃F ′′ define varieties of groups with perfect

commutator subgroups (i.e. G′ = G′′).
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Definition 5.2 The general Engel construction is a construction of the form

xk0 [x, y]k1 [x, 2y]k2... [x, ny]kn ∈̃ E′,

where E =〈 [x, iy], 0≤ i〉, n ∈ N, ki ∈ Z.

To show that every law is equivalent to a law which has the general Engel
construction, we need the following technical results.

Lemma 5.3 For k ≥ 1 the following inclusions hold

[x, yk+1] ∈ 〈 [x, iy], 1≤ i≤k 〉 · [x, k+1y], (1)

[x, k+1y] ∈ 〈 [x, yi], 1≤ i≤k 〉 · [x, yk+1]. (2)

Proof From the commutator identity [a, bc] = [a, c][a, b][a, b, c] it follows

[x, yk+1] = [x, yk][x, y][[x, y], yk] (3)

[x, y, yk] = [x, y]−1[x, yk]−1[x, yk+1] (4)

For k = 1 in (1) we have by (3): [x, y2] = [x, y]2[x, y, y] ∈ 〈 [x, y] 〉 · [x, 2y]. Now we
assume that

[x, yk] ∈ 〈 [x, iy], 1≤ i≤(k − 1) 〉 · [x, ky].

If replace x → [x, y], we obtain the following consequence of the assumption

[[x, y], yk] ∈ 〈 [[x, y], iy], 1≤ i≤(k−1) 〉 · [[x, y], ky] = 〈 [x, iy], 1<i≤k 〉 · [x, k+1y].

Now we apply the assumption and its consequence to (3) to get required (1),

[x, yk+1] ∈ 〈 [x, iy], 1≤ i≤k 〉 · [x, k+1y].

For k = 1 in (2) we have by (4): [x, y, y] ∈ 〈 [x, y] 〉 · [x, y2]. Now assume

[x, ky] ∈ 〈 [x, yi], 1≤ i≤(k−1) 〉 · [x, yk],

then if replace here x → [x, y] and write [[x, y], ky] as [x, k+1y], we have

[x, k+1y] ∈ 〈 [[x, y], yi], 1≤ i≤(k−1) 〉 · [[x, y], yk]
(4)

⊆

〈 [x, y]−1[x, yi]−1[x, yi+1], 1≤ i≤(k−1) 〉 · [x, y]−1[x, yk]−1[x, yk+1] ⊆

〈 [x, yi], 1≤ i≤ k 〉 · [x, yk+1].

2

Corollary 5.4 The following subgroups coincide for every n, (n ≥ 0).

En := 〈 [x, iy], 0≤ i≤n 〉 = 〈xyi
, 0≤ i≤n 〉.
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Proof By (1) and (2) we have the following equality

〈 [x, iy], 0≤ i≤n 〉 = 〈x, [x, yi], 0≤ i≤n 〉.

Now it suffices to show that 〈x, [x, yi], 1≤ i≤ n 〉 = 〈xyi
, 0≤ i≤ n 〉. Indeed, the

normal closure of x, denoted by 〈x〉F, is freely generated by all conjugates xyi
, i ∈ Z

(see [20], p.138). Hence in the subgroup 〈xyi
, 0 ≤ i ≤ n 〉 we can replace the free

generators xyi
, i 6=0 by x−1xyi

= [x, yi], which gives the required equality. 2

We can now prove that every binary law has the general Engel construction.

Theorem 5.5 Every binary law is equivalent to a law which has construction

xk0 [x, y]k1 [x, 2y]k2... [x, ny]kn ∈̃ E′,

where E =〈 [x, iy], 0≤ i〉, n ∈ N, ki ∈ Z.

Proof By ([24], 12.12) every word is equivalent to a pair of words, one of the
form xk, k ≥ 0, the other a commutator word. Thus every binary law is equivalent
to a law xkw(x, y) ≡ 1, where w ∈ F ′. Since F ′ ⊆ 〈x〉F , w is a product of some
xyi

with say, i≥−m. Conjugation by ym gives us the equivalent law w ≡ 1 where
w ∈ 〈xyi

, 0≤ i 〉. Since by Corollary 5.4, E := 〈 [x, iy], 0≤ i〉 = 〈xyi
, 0≤ i〉, we have

w ∈ 〈 [x, iy], 0≤ i 〉 = E.

Hence every commutator law is equivalent to a law w ≡ 1, where the word w is a
product of commutators [x, iy], 0≤ i. By ordering these factors modulo E′, we get
the law which has construction

[x, y]k1 [x, 2y]k2... [x, ny]kn ∈̃ E′, ki ∈ Z.

Now we add xk0 if the initial law defines a variety of exponent k0. 2

The parameters n, ki and a subset S ⊆ E′ define specific Engel constructions,
responsible for some properties of groups. However the same property can be
defined by different equivalent constructions.

6 Engel construction and properties of R-laws

In 1968 Milnor ([23] Lemma 3) proved that if for all elements g, h in a finitely
generated group G the subgroup 〈ghi

, i ∈ N〉 is finitely generated, and A is an
abelian normal subgroup in G so that G/A is cyclic then A is finitely generated.

The property that for all elements g, h in a finitely generated group G, the sub-
group 〈ghi

, i∈N〉 is finitely generated was considered by many authors. It is called
the Milnor property in (F. Point [26]). The groups with this property are called
restrained (Kim and Rhemtulla [15]). We shall call this property the restraining
property and varieties consisting of groups with this property – the restrained va-
rieties.
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Definition 6.1 A law is an R-law (restraining law) if for all elements g, h in a
group G satisfying this law, the subgroup 〈ghi

, i∈N〉 is finitely generated.

By another words, a law is an R-law if it provides the restraining property.

In 1976 Rosset [28] noticed that in the mentioned above Milnor’s proof the
assumption that A is abelian can be dropped. He proved that if for all elements
g, h in a group G the subgroup 〈ghi

, i∈N〉 is finitely generated then
• (i) the commutator subgroup G′ is finitely generated and
• (ii) if G/N is cyclic then N is finitely generated.

In view of (i) we obtain another equivalent definition of the R-laws [19].

Definition 6.2 A law w ≡ 1 is an R-law if every finitely generated group G
satisfying this law has its commutator subgroup G′ finitely generated.

The following observation shows more clearly how restrained varieties in general
are related to Engel varieties.

Proposition 6.3 A law is an R-law if and only if it implies a law with the follow-
ing Engel construction

[x, ny] ∈̃ 〈x, [x, y], [x, 2y], ..., [x, n−1y] 〉. (5)

Proof A variety is restrained if and only if for some positive integer n it satisfies
a law with construction

xyn ∈̃ 〈x, xy, xy2
, ..., xyn−1〉, (6)

which in view of (1) is equivalent to a law with construction (5). 2

We summarize that a law w ≡ 1 is an R-law if one of the following holds
• Each group satisfying w ≡ 1 is restrained,
• Each finitely generated group satisfying w ≡ 1 has G′ finitely generated,
• The law w ≡ 1 implies a law with the Engel construction [x, ny] ∈̃ En−1.

Corollary 6.4 All Engel laws and all positive laws are R-laws.

Proof Each Engel law has the required Engel construction. In [28] Rosset proved
that a finitely generated group of subexponential growth is restrained. He used only
fact that such a group does not contain a free subsemigroup (by growth reason).
Since groups satisfying positive laws also do not contain free subsemigroups the
same proof implies that groups satisfying positive laws are restrained (see also (e.g.
[12], [16], [26], [5] p.520 ). So we conclude that positive laws are the R-laws. 2

We need the following

Proposition 6.5 Every finitely generated residually finite group G satisfying an
R-law is nilpotent-by-finite, G ∈ NcBe, where c, e depend on the law only.



O.Macedońska, W.Tomaszewski: On Engel and positive laws 8

Proof By result of G. Endimioni [9] every finitely generated residually finite group
G in a variety is nilpotent-by-finite if and only if the variety does not contain a
group CpwrC for all primes p. Since the groups CpwrC have infinitely generated
commutator subgroups they do not satisfy an R-law and hence the first statement
follows. It is also shown in [9] that c and e depend only on the variety and hence
on the R-law (see also [6] Theorem A). 2

A result of a similar kind as the above by Endimioni has been obtained by
G.Traustason [33]. Namely, the property that every finitely generated residually
nilpotent group in the variety is nilpotent holds if and only if the variety contains
neither CpwrC nor CwrCp. It is interesting to note that the Engel varieties satisfy
but the varieties with positive laws do not in general satisfy this property.

Lemma 6.6 Every finitely generated group G satisfying an R-law has its finite
residual R (intersection of all subgroups of finite index in G) finitely generated.

Proof The group G/R is residually finite and by assumption satisfies an R-law,
hence by Proposition 6.5, G/R contains a nilpotent subgroup H/R of finite index.
Now, since |G :H|= |(G/R) : (H/R)|<∞ and G is finitely generated, both H and
H/R are finitely generated. Being a finitely generated nilpotent group, H/R is
polycyclic (see [24] 31.12). So there is a finite subnormal series with cyclic factors
H = N0 ¤ N1 ¤ · · · ¤ Nm = R. Then by means of m successive applications of
Rosset’s result mentioned as (ii) on the page 7, we conclude that R is finitely
generated. 2

Corollary 6.4 and the following Theorem answer the question What do the Engel
laws and positive laws have in common that forces finitely generated locally graded
groups satisfying them to be nilpotent-by-finite?

Theorem 6.7 (cf. [19]) Let G be a finitely generated group satisfying an R-law.
Then either G is nilpotent-by-finite or its finite residual has a finitely generated,
infinite simple quotient.

Proof By Lemma 6.6, finite residual R of G is finitely generated. Let R contain a
proper subgroup T say, of finite index. By a result of M. Hall, R has only finitely
many subgroups of index k = |R : T | and their intersection K is characteristic of
finite index in R. So K is normal in G and K ⊆ T ( R. Since R/K is finite and
G/R is nilpotent-by-finite, the isomorphism (G/K)/(R/K) ∼= G/R implies that
G/K is finite-by-(nilpotent-by-finite). Since finite-by-nilpotent group is nilpotent-
by-finite, whence G/K is nilpotent-by-finite and then residually finite. Then R ⊆
K, which contradicts to K ⊆ T ( R unless R = 1 in which case G is nilpotent-by-
finite by Proposition 6.5.

If R contains no proper subgroup of finite index then by Zorn Lemma it has a
maximal proper normal subgroup N of infinite index. The quotient R/N is the
finitely generated infinite simple group satisfying the R-law. 2

Moreover, in view of Proposition 6.5 we obtain the following.
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Corollary 6.8 For every R-law there exist positive integers c and e depending
only on the law, such that every locally graded group satisfying this law lies in the
product variety NcBe.

Note There are non -(locally graded), non -(virtually nilpotent) finitely generated
groups satisfying R-laws. For example free Burnside groups B(r, n) for r > 1 and
sufficiently large n, the groups satisfying the law xyn = ynx also for n sufficiently
large. Another example was given by Ol’shanskii and Storozhev in [25]. The R-laws
in these examples are positive laws.

In [19] a problem was formulated whether there are R-laws that imply neither
positive nor Engel law? Note that every law [x, ny] ≡ [x, my] for n > m has Engel
construction (5), so it is an R-law. Every finite group satisfies such a law, hence
the law need not be an Engel law. We do not know whether it is then a positive
law.

7 Special kind of R-laws, called Ln

We denote by Ln the laws of the form [x, y] ≡ [x, ny], where n > 1. These laws
are the R-laws because they have construction of the form (5) if we write them as
[x, ny] ≡ [x, y].

Proposition 7.1 (cf. [10]) Every metabelian group and every finite group satis-
fying the law Ln is abelian.

Proof If substitute [y, n−1x] for y in Ln, we get [x, [y, n−1x]] ≡ [x, n[y, n−1x]].
By taking inverse and interchanging x À y we obtain a law with construction
[x, ny] ∈̃F ′′ which in view of Ln, implies a law with construction [x, y] ∈̃F ′′. Clearly,
each metabelian group satisfying a law with such construction is abelian.

Now, if there exists a finite non-abelian group satisfying the law Ln, then there
exists such a group G of the smallest order. By O. Schmidt, a finite group G, all
whose proper subgroups are abelian, is metabelian. Hence by the above, G must
be abelian, which is a contradiction. 2

So every law of the form [x, y] ≡ [x, ny], n > 1 is either abelian or pseudo-abelian
(see [24] Problem 5). It was conjectured in 1966 by N.Gupta [10] that each such
a law is abelian. The proofs were given only for n = 2 and n = 3. We have looked
for a shorter proof and its possible extension for n > 3. Our proofs are based on
the following
Observation Let a group G satisfy the law Ln. If an element b ∈ G is conjugate
to its inverse then b2 = 1.

Proof Let b−1 = ba say, then b2 = (ba)−1b = [a, b] ≡ [a, nb]=[b2, n−1b]=1. 2

In both cases for L2 and L3 we could deduce the law [x, y]2 ≡ 1, which leads to the
abelian law. To do this we used the following
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Proposition 7.2 In the free group F the word [x, ny−1] is conjugate to [x, ny](−1)n

for n = 1, 2, 3.

Proof It suffices to check the following commutator identities which are the equa-
lities in the free group F . Namely (i) [x, y−1]=[x, y]−y−1

which is clear,

(ii) [x, 2y
−1]=[x, 2y]y

−1[x,y]−1y−1
, (iii) [x, 3y

−1]=[x, 3y]−y−1[x,y]−1y−2
.

We prove here only (iii) for which we use the commutator identities (i) and

(iv) [a−1, b]=[a, b]−a−1
, (v) ab =a[a, b], (vi) [a, bc] = [a, c][a, b]c.

Namely, [x, 3y
−1]

(i)
= [[[x, y]−y−1

, y]−y−1
, y]−y−1

= [[[x, y]−1, y]−1, y]−y−3 (iv)
=

[[x, 2y][x, y]−1
, y]−y−3

= [[x, 2y], y[x, y]]−[x, y]−1y−3 (v)
=

[
[x, 2y], y ·[x, 2y]−1]

]−[x, y]−1y−3 (vi)
= [x, 3y]−[x, 2y]−1[x, y]−1y−3

= [x, 3y]−y−1[x, y]−1y−2
.

2

However Proposition 7.2 is not valid for n = 4. We conjecture that the laws Ln

need not be abelian for n > 3.

References

[1] S. I. Adian, The problem of Burnside and identities in groups, Nauka, Moscow,
1975 (Russian), (see also, trans. J. Lennox and J. Wiegold, Ergebnisse der Mathematik
und ihrer Grenzgebiete 92, Springer-Verlag, Berlin, 1979).

[2] S. Bachmuth and H.Y. Mochizuki, Third Engel groups and the Macdonald-Neumann
conjeture, Bull. Austral. Math. Soc. 5 (1971) 379–386.

[3] R.Baer, Engelsche Elemente Noetherscher Gruppen, Math.Ann. 133 (1957) 256–270.
[4] B.Bajorska, On the smallest locally and residually closed class of groups, containing

all finite and all soluble groups, Publ.Math.Debrecen 64(4) (2006) 423–431.
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