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/11 IINlfUH'Ulllt 

ProfaMJr Maria DOROBANŢU 

INTRODUCTION 

That book preacnts 10mc tbcorctical problema rclaled to tbe Mccbaoics of a Cootiouum Solid Bocly, of particular importance 
to Applied Geomccbanics, Oeological Engineering and Structural Oeology. IJ! IDOflt cases, ooly saatic aspccts are discussed, 
but somc dynamic cuca arc also presentcd. 

As a rute, thc lţlOdcm lCOIOrial approach îs used. Tbc linear clasticity and tbe homogeneity ol thc cootimmm IOlid body are 
almost tboroughly auumed to bc valid, but IOIDC clementa of Rhcology arc IWIO prelOllteCl. • 

ln most cases, the scmi-iovcno mcthod ia Uled to IOlvc thc problema. Acconling to it, tbe soludoo îs lllpp0led to bc of a 
panicular fonn, as a comequcnce of the simplified hypothesi1 prcviOUlly aawned. lt îs vcrified tbal solutioa c~ both thc 
con:esponding equations and thc boundary conditions. Basecl on tbe Uniquenca Tbcorcm of thc Uncar Elasticity, it followa 
the assumed panicular 10lution îs just the gcucral solution of thc problem. ln all thc cases dilCUSled bere, the auumed 
simplified hypothclcl allow one to obtain simple, analytical 10lutiom. Al a ftnt glaDQc, thc impor1ancc of u:h IOlutiOOI îs 
minor with respect to lhe real cases, where mainly thc non-homogcneity ol tbe modium plays a great role. However, lhe 
analytical solutions arc thc buii for deriving finite element algorithms, allowing ooe to moclc1 satisfactory the complex n:al 
cases. Such examples arc 8110 pracnted. • 

The lessons arc mainly dcligned to bc used as a part of thc coune of Mechanicl followccl by the ltUdents in Geopbyai01 at 
tbeGcology and Oeophysics Faculty, Univenity ofBucharcst. 

The author is gratcfully to bis collcaguea and to thc refcn,cs. 
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A) BASIC ELEMENTS. 
. . .• 

A.I) The displacement vector. Lagran1ean (material) and Eulerian (spatial) co-ordinata. 

Consider an arbitrary mat~rial point inside a continuum body, subj_ect to a deformation procesa. Al tbe initial time to, that 

➔ 

point bas the position vector denoted by X, with respect to the origin of a co-ordinate system (Fig.Al). At a timc t 2: to, 

➔ ➔ ➔ 

the new position vector ÎS to be x . The difference x - X repreaents the dilplaceaeat vector. Taldng into account that 
➔ ➔ 

thecomponents (x1,x-2,x3)oftbevcctor x areallfunctionsoftbecompooents (X1,X2,X3)of X, thedisplac:emont 

vector can be wriUen as 
➔ ➔ 

U = U(X1,X2,X3,t) (al) 

This represents a Lagranaeu (material) description of tbe deformation proceta. Hcre, (X1 , X 2, X 3) are represcnting the 

➔ 

Lagrangean (material) co-ordinates. Altcrnately, tbe componcnts (X1, X2 ~ X3)of X can be 1ee11 as functions ol the 
➔ . 

components ( x 1, x 2 , x 3) of tbe vector X . Consequently, the displacement vector can be writteo as 

➔ ➔ 

u=u(x1,x2,x3,t) . (a2) 

This represents a Euleriaa (1patial) description of the defonnation proceu, wbere ( x 1, x 2 , x 3) are tbe l11lerlu (apatlal) 
co-ordinates. A basic suppoaition aaumcd thoroughly in that notes is that tbe deformation procesa ia a continuous onc, i.e. all 

➔ ➔ 

the components of u or U are continuous functions together their derivative■ with respect to both tbeir apaUa1 CCM>rdinales 
or to time. Further conditions are cUacussed, for example, in ( Ivan 1996). • 

The Lagrangean ~tes are usual in the Solid Mcchanics. while the Eulerian co-ordina_tcs are commonly UICd in 
Fluid Mechanics. However, in the Linear Elasticity, the distinction betwcen these two kinds of co-onlinates ÎS not important, 
as it will be seen in the next chaptei"s. More de:ails on such aspects can be found in (Ald and Richards 1980; ~naW 1987). 

3 

1 

Fig.A. I. The continuwn defonned body and the diaplacement vector. 

A.2) Invarianta of a tensor. Temor deviator. 

A sccond order tenSQr represent~ mainly a 3x3 matrix. The elements of the tensor are changing aocording to a ccrtain rule 
with respect to a change of the co-ordinate system. Such a change with respect to a rotation will be disculled later. For 
simplicity. ouly symmetric tensors will be considered. A symmetric tensor. is equal to ita transpose 

(a3) 

(or Tjj = Tji ). The superscript "t" shows the transposed tensor (matrix-). 

Lei thc compone111s of thc tensor bc real numbcrs 
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➔ 

The scalar A. and the vector u are representing the eigen-value and the ei gen-vector respectively of that tensor if 

➔ ➔ 

Ţu=A.u 
➔ ➔ 

u -:ţ:. o 
lt's easy to see that the eigen-valucs are not changing with respect to a rotation ofthe co-orclinates system. 

➔ 

(a4) 

(a5) 

Suppose now that the eigen-value Î. and the components of the eigen-vector u are complex numbers. By tak1ng the 
COlnplex conjugate (denoted by an asterisk) into (a5), it follows 

➔ ➔ 

* * * 
Ţu = A. u (a6) 

Taking into account the symmeliy ofthe t~r, the next inner product is evaluated into two different ways 

➔ ➔ ➔ ➔ J➔12 
< T " . "· >=< ,. " • "· >= l • I . (a7) 

and 

➔ ➔ -► ➔ 2 
➔ * ➔ * ➔ * -➔ * * • ➔ 

< Ţ u, u >=< u, Ţ1 u >=< u, Ţu >=< u, A. u >= A. u (a!!) 

From (a7) and (a8) it follows that the eigen-values (and the components of Ilie eigen-vectors) of a symmetric tensor are real 
numbers. 

Eq.(a5) can be written as 

➔ ➔ 

u -:ţ:. o' 

where 1 denotes the unit tensor. From (a9) it follows that the next determinant van.ishes 

T12 

T12 T22 - A T23 =- O 

T13 T23 T33 - A 
Hence the eigen-values are the roots of the third degree equation 

-A.3 +l1A.2-l2A+l3 -=O 
where 

11 = T11 + T22 + T33 = tr(T) , 
• 2 2 2 

12 = Tt 1T22 + T22T33 + T3 3T1 I ·- Tl2 -T23 - Î 13 

13 = TJ 1T22T33 + T12T23T13 +. .= det(T) 

(a9) 

(a JO) 

(al I) 

(al2) 

With respect to a rotation of the co-ordinates system, the elements of the tensor are generally <,:hanging. Because the 
qua111i1ies <lclincd by (a 12) can also be expressed as functions of the roots of (a l l ), it foliows their values are noi cha11ging 
with respect to a rotat ion. They represent the main invariants of the tensor. The first im,ariant is the trace of the tensor, 
wh ile thc third one rcprescnt just its determinant. 

Thc tensor dclincd by 

'l'* == T - ¾tr(T) 1 
https://biblioteca-digitala.ro / https://unibuc.ro



6 

reprcsents t11e tensor deviator, having its trace equal to zero. Elemental}' computations show its second invariant is 

12 = -¼[(T11 ~ T22>2 +(T22 -T33)
2 

+(T33 -T11)2 + { Tţ2 + TJ3 + Tţ3)] (al4) 

That invariant is especially important to define constitutive equation for plasticity. 

A.3) Strain tensor. Stress tensor. Equâ'tion of motion / equilibrium. 

By using the spatial co-ordinat~, thc strain tensor is defi~(as (e.g._:ju, Soos a:JTeodorescu 1977) 

• . E = 2 grad u + grad' u . (aU) 

where "grad" denotes thc gradient. In Cartesian co-ordinates, that symmetric tensor bas the elements 

1 ( a.a i aaj ) • 1 ( ) f: .. =-. -+- .=- Uj 1' +Uj,' Î 
IJ 2 âx J OXj . 2 ,. . 

(al6) 

According to thc CAUCHY's hypotheses there are two kinds offorces acting at an arbitrary point placed insicle a body or on 
· ➔ 

its boundary. The first ones are representcd by tbe mus force1, characterised by a mass density b . For thc problems 
➔ 

discussed in that book, such mass forces are ignored: Or, they are rcpresented by the gravity, when b is just tbe gravitational 

➔ 

acceleration g . Suppose now a mechanical state of tension (stJCSS) is present inside the dcfonned body, ~-8· as a resuit of 

➔ 

the action of a pair forces ± T . An arbitrary cross section is considered through a certain point of tbe body, dividing it into 
a part denoted by DI at lefi and a pert Dr at tiie right respectively (Fig.A.2). A surface element dS is considcn:d on thc 

➔ 

boundal}' of DI , having the outer pointing nonnal vector denoted by n . The material points of the boundary of Dr arc 

➔ 

acting on dS by an elemcntal}' force df. It follows (e.g. Beju, Soos and Teodorescu 1977; Aki and Ricbards 1980; Ranalli 
1987; Ivan 1996) that the next relation is vali<l 

➔ . 
df ➔ 
dS =an • (a.17) 

where the tensor (J represents tbe CAUCHY ■tras temor, spatial co-ordinatcs bcing li.led. Acc:ording to the Principie of 

thc Kinetic Momentum Balance, stress is a syrnmetric tensor. lt can be' shown too that tbe Principie of Inq,ulte Balance leads 
10 the ncxt vectorial equation of motion' /equilibrium .. • • 

➔ 
. ➔ d 2 u 

diva +p b =p-- , 
dt2 

(al8) 

2 ➔ 
That cquation is valid at an arbitntl}' point inside the body , where p _is the density and ·~ 

2
u repraents thc acceleration. . m 

By projccting cq.(a 18) on t1_1e co-ordinat~ systcm axes, three scalar equations arc obtained. 

Fig.A.2. An imaginary cross scction throngh thc dcformcd body. 
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A.4) HOOKE's law. 

Neglecting the initial stress (in most cases), il i.s further assumed a linear relation between the stress and strain tensors, i.e. 

cr =HE , (al9) 

or 

(a20) 

where H is a fourth-order tensor. Eq.(al 9) represents HOOKE's law. In the usual . cases discussed here, an elastic, 

homogeneous, isotropic medium is considered. Then eq.(al9) takes the particular form 

(a21) 

Here, tr denotes the trace of the tensor, 1 is the unit tensor(matrix) and Â., µ are the elastic coefficients of LAME. Hence 

Cî 11 = Â.(€ 11 + € 22 + E 33) + 2µ E 11 • 

Cî 22 = Â.( E 11 + E 22 + E 3 3) + 2µ E 22, 

Cî33=Â.(E11 + E22 + €33) + 2µE33 

cr12 == cr21 = 2µE12· crn = cr31 = 2µE13, 0'23 = cr32 = 2µe23 

Alternately, HOOKE's law ( a21) can be reversed to give 

where the modulus of YOUNG is 

and the transverse contraction coefficient of POISSON is 

V=---
2().. + µ) 

By reversing (a24) and (a25), it follows 

i..= V E 
(1 + v)(l - 2v) 

µ= 1 E 
2(1 + v) 

The parameter defined by 

3,._ + 2µ E 
x=---=----

3 3(1 -- 2v) 

(a .22) 

(a23) 

(a24) 

(a25) 

. (a26) 

(a27) 

represents the incom11rcssibility or bulk modulus. For (theoretical) incompressible rocks, that modulus approaches infinily. 
Other constitutive equations will be discusscd in relation to the rheological bodies. 
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B) DEFORMATION OF A CYLINDRICAL BODY IN THE PRESENCE OF 
GRAVITY 

B. I) The model. 

An elastic homogeneous isotropic body is considered (Fig.BI). lts initial thapc is a right, vertical, w,ry tlll■ cylinder of 

radius equal to r and height equal to H . The bate of the body is placcct on the horizontal, abeolutely rigid, plane X 1 Ox 2 . 

The defonnallon of the body clue to its • own we\ght follows to be studied and the final lhape of the body into the final 
equillbrium state wilt be found. The approximat.l9ns of the linear theory are IIIWIICd and the ~ of the dcnsity is 
ignored. The problem ii iOlvod by following the next 5:tepe: 

i) • the equallons of equilibrium are UIOd, the unknqwns bere being thc componenll of the ltNII ·lâllor (J ; thele equadons 

are processed according to the simptifyh1g hypothesia ofthe problem; 
ii)- by uaing the revel'le(I HOOKE's law, thcequationaofequilibriumare procmed inOldel'to hawonlythec:omponeataof 

the stmin tensor 6 as ualmownl; 

➔ 

iii) - by using the definition of the ltrain te11801', the componenta of the displac,ement vector U are obtaincd and the final 

shape of the body ls found. 

' 
Ţ 
B il l li 
1 ,---r--- ... 

,r : ', 

.,,0: ....... l ... 
1 

(a) 

t3 

...... . . I. ...... . 
: I • 

I 

O l 

(b) 

Fig.B. l. (a) A vertical cylinder iying ~ a rigid plane; (b) The final shape ofa vertical erou .:tion (IOlld line) wkh reapoct 
to the inillai shape (dashed line). [NO SCALE] 

B.2) The equatio111 of equlllbrium. Boundary conditio111. SlmpHfying hypothelia. 

A simplified approach can be demed by uaing cylindrical co-ordinatei. However, the problem bere ia an introductory onc. 
So thcse co-ordlnates will be used biter; in-ielallon to other problema. The equationa of equilibrium in Cartelian co-ordinatei 
are • 

· . • 0'11,1 + CJJ2,2 + 0'13,3 = o 
0'121+CJ222 + CJ23 3 = O 

' . ~ t , 

(bi) 

O'tJ,1 +CJ2J,2 + CJ33,3-P8= O 
Hcre, 6 is the density and g 11 the gravitational acoeleration. The fon:es acting upon the body are the reaction fonie of the 

horizontal plane and the gravity ofthe cylinder. The boundary conditions are: 
-on the lateral surf ace of the cylinder: , 

➔ ➔ 

CJ n = O ,for x3 e[O,H), x1,x2 ef (b2) 

-on the upper base ofthe cyllnder 

➔ ➔ 

CJ n = O , for x 3 = H, x 1, x 2 e ~ (b3) 

Hcre, A is 1he disc of radius equal to r. hnving the centre at thc origin of the co-ordinate system and thc boundary denoted 
b~· r . Thc ou1er pointing norinal at thc laleral surface of thc body is a linear 1;<1mbination wlth vari11ble cocfficients of the 
horizoutal unit vcctors, i.e . . 
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➔ ➔ ➔ 

n =C1(x1,x2)e1 +C2(x1,x2)e2 
For x 3 E [O, H], x 1, x 2 E f eq.(b2) becomes 

➔ ➔ ➔ ➔ ➔ ➔➔ 

(b-1) 

C1 (x1, x2 )[cr11 el + 0'12 e2 + 0'13 e3] + C2(x·1, x2 )[cr12C1 + CT22 e2 + cr 23 e3 ]= O (b5J 

➔ 

The outer pointing normal at the upper base ofthe body is the unit y-ector e3 . For X J = H, X 1, x 2 E !J., eq. (b3) gives 

➔ ➔ ➔ ➔ 

cr13e1 +cr23e2 +cr3je3 = 0 <b6J 

Eq. (bS) is satisfied if the stress tensor has the fonn 

tb7J 

on the lateral surface of the body. 
Because the cylinder is a very thin one, the stress at its inner points is approximately the same one to the stress on the 

lateral surface. So, it is assumed that eq.(b7) holds inside the whole volume of t..iie body. It follows eqs.(bla)-(blb) are 
identical vcrified. From eq. (blc) it follows that • 

Thc problem reprcsentcd by eq.(b8) has the next immediate solu_tien 

Thc ~ve~ HOOKE's law is 

Because 

eqs. (blO) lead to 

€11 = ![o+ v)o-11-v(o11 +cr22 +u33)] 

E22 = ~[(l + v)o22-v(cr11 +<122 + v 33)J 

€33 = ! ((1 + v)cr33 -v(cr.11 + 0:22"': ~33)] 

l+y l+v ' l+v 
E 12 = E cr 12 ·, E i3 = Ea 23 , sn = E cr n 

,I 

Bu2= vpg(H~ x3) 
âx.2 E 

al.13 = pg(x3 - H) 
mt3 E 

0 u2 °u3 - -+--:;;:Q 
&3 âx2 

-ou3 8 u1 --+--=O 
&q âx3 

(b8) 

(b9) 

(blO) 

(bi 1) 

(bl2) 
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By integrating eq.(bl2) it follows that 

u1= v:g(H-x3)x1 +f1(x2,x3) 

u2= v:g(H-x3)x2+f2(x1,x3) • 

x2 
u3=P8(...l.-Hx3)+f3(x1,x2) , 

E 2 

oft + of2 = O âf2 + of3 = vpg x2 
âx2 âxt ' âx3 ox2 E 

(bl3) 

Henc:e thc duplaceJnent fleici ii band if thc unknown f\mctions ft , f 2 , f3 11e ftnally obtained. Diffcrcntiati111 (bile) wilh 
reşpcct to x 1 and (bl3t) wilh rapoct to x 2 and adding tbe rcsults, it f'ollows . 

So, using eq.(bl3d) ii follows 

From eq.(bl5) it followl that 

c32f3 =O 
âx1âx2 

f3(x1,x2)= h1(x1)+ h2(x2) 

wbere h}, h 2 are two uoknown f\mctions, following tobe found. Eqs.(bl3c) and (bl3f) p\'C 

(bl4) 

(bl5) 

(bl6) .. 

(bl7) 

The left side of eq.(bl 7a) ia representcd by a func:tion depending on x 1, x 3 only, wbilc tbe ript liclc ii a funcdoo of x 2 . 
Hence bolh sădea are. equal to a constant, i.c. 

ll follows that 

f2(x1, x3)= -a2x3 + s2(x1) ,h2(x2)= ;: x~ + a2x2 + b2 

ln a similar manner, eq.(bl7b) givcs . 

From eq. (bl3d) it follows that 

dg1 (x2) _ dg2(x1) = K 
dx2 dx1 

whcrc K is a conslanl. Then 
' . 

For si1uplici1y, 111a1crial co-ordinales are uscd to oblain tbe final expresslon of lhc displacemenl fleld 

(bl8) 

(bl9) 

(b20) 

(b21) 

(b22) 
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v(H- X3)X1 

v(H - X3)X2 

li 

2 
X3 v 2 2 
2-HX3 +2(Xl + X2) 

The first tenn in cq.(b23) is the truc displacement, the last one is a translation while the seeond tenu is the rigid rotation 

(b23) 

[~} 1 ~24) 

B.3) The final aha pe of the body. 

a) The final shape of the upper base 

Consider an arbitrary point of co-ordinates equal to (X 1 , X 2, X 3 = H). ln the initial stage, it is placed on the upper base 

ofthe cylinder. Finally, the co-ordinates ofthe point are 

Hence • . 

From eq.(b26) it follows that 

X}= X1 

x2 =X:2 

x = vpg (X2 + x 2 )- pg H 2 + H 3 2E l 2 • 2E 

(b25) 

(b26) 

(b27) 

Hence the circle representing the contour of the upper base remains a circle of the same radius. The plane of the circle is 

moving downward by a quantity equal to pg(H2 - vr2 ) / (2E) . The su!face ofthe disc representing tl1e upper base of the 

body is no longer a plane one. It becomes a rotational parabolic surface having the equation 

'l (b28) 

bj , The final shape of the lowe,r. bose ; . , 

Consider now an arbitrary point initially placed on the lower base of the bod!if. The point l·has ·thei co-ordinatţ:s equa-1 to 
( X J, X 2, X 3 = O) . The final co-ordinate of \he p~int are- . ; , ... : 

[
:,1-] [*)].. [ 'i, HX1 ] ·· ,. ,,,i ., 

:! = :
2 

+ v? (xr::Li2 

-i 

(b29) 

lknce 
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From eq.(b30) it follows that 

12 

x1 =(l+vpgH/E)X1 

x2 =(I+ vpgH / E)X2 

x3 = v;';<x? + X~) 

(bJO) 

(31) 

i.e. thc circle representing the contour of the lower base ren1ains a circle. The new radius is increased by a quantity equal to 

vpgH'/ E. Thc initial horizontal plane of the circle is uplifted by a quantity equal to vpgr2 / (2E) . The surface of the 

disc representing the lowcr basc becomes a rotational paraboloid having the equation 

x3 = vpg (xf +x~) 
2E(l + vpgH / E)2 

(b32) 

c) The final shape of the lateral sur/ace 

Consider now a point initially placed on a gcncratrix line of the cylindcr. Because . of the cylindrical symmeuy of the 
problem, the point having the initial co-ordiNites equal to (XI = O, X 2 = r, X3 ) is considered. Finally, that poi11t has the 

position characterised by the co-ordinates 

(bll) 

From (b33), it follows that the gcncratrix remaina into the initial vertical plane. Ita shapc ii chimgcd from a straight line 
segment to a convex parabolic acgment, having the equation 

E ( )2 E ( ) P8 2 vpg 2 x3 =-- x2 /r-1 -- x2 /r-1 +H---:-H +-r 
2v2pg vpg 2E 2E 

(bl4) 

OBSERVATION. On the lower basc ofthe cyllnder lt is acting the reaction foroe ofthe rigid plane, equal to the wclght ofthe 
body. Whcn thc surface ofthe basc is dccreaslng, approaching the paraboloid of eq.(b32), the nonnal unit cffort (eqll!ll to the 
weight divided by thc contact arca) is increasing. At a certaln moment, its magnitude will cxceed a yielding valuc of the 
material. Then, HOOKE's law, valid in the elastic dornain, will beno longer appropriate herc. 
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C) LEVY's PROBLEM - THE TRIANGULAR DAM 

C.1) The SAINT-VENANT 's equations. 

Differentiating a certain element of the strain tensor 

E· ·=(u· ·+u· ·) 12 
IJ 1,J J, I 

it follows, for example, that 

E11,22 + E22,11 = ( U1,1) 22 + ( U2,2) 11 = lll,122 + U2,211 
' ' 

= (u1,2) 12 +( U2,1) 12 = ( U l,2 + U2,1) 12 = 2 E12,12 
' ' , 

Heilce 

Also, 

E22 33 + E33 22 = 2E23 23 , ' ' 

E3311+E1133 = 2E3131 , ' , 
Ina similar way, it follows that 

(E12,J.+ E23,1-E31,2) 2 = E22,31 · . 
(E2J,l + HJ 1,2 - E 12,3) 3 = EJJ,12 , 

k31,2+E12,J -E23,1) l =E11,2) , 
The above equations (c3)-(c8) represent the SAINT-VENANT's equations of cornpatibili_ty. 

C.l) The model . Simplifying hypothesis. The planar deformation state. 

(el) 

(c2) 

(c3) 

(c4) 

(c5) 

(c6)-(c8) 

A horizontal dam of infinite length is considered. The cross-section ii represented by a rectangular triangle OAB (Fig.CI). 
The length ofthe base is AB='1 and the height is Ok=h. On OA catheter is acting tl1e hydrostatic pressure of a liquid (water) 
having the specific weight equal to y. As a resuit, the dam is defort11ed. Tbe dam is represented by an elastic homogeneous, 
isotropic material. Its specific weight is equal to r and its elastic constauts are E and v. 

N.Hs. o 2 

I 
h 

lg I 
A B 

1 
1 

Fig.Cl. A vertical cross section through the dam. N.Hs. is thc free surface of the water, act ing 011 OA side by a pressure 
linearly increasing with dcpth. 

Bccausc thc shape ofthe dam, thc c!isplacemcnt vector has thc compo11c111s likc 
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Jt follows the strain tensor components are like 

Hence tbc strain matri~ ia 

E11 = U1,1=e11<x1,x2) 

E12 = ½( U1,2 + U2,1) = E12<?'1, x2) 

E13=.!.(u13+U31)=o 2 , , ' 

E22 = U2,2 = E22(x1,x2) 

. E23=½(u2,3+U3,2)=o 

E33=U33=0 , 

[s ]=[e }x1,~2)=(::: :~: :1 
o o ~J 

It COfl'CIPPllds to apla,t.ar ,,_ o/IM 6trafn (tbe plaqe b!:re being 1-2). 
nae conq,ononu fif tbc 1tre111C1110r Ilio • 

0'11 = ~EH +e2J+ 2µ&11 

0-12 = 2µe12 

CJ13 = lµE13 = O 

cr22=~a11 +e22)+ 2µs22 

0'23 = lµe23= 0 
. , . 1 

0'33= ~211 +_e22}+ 2µe33 = ){e11 +s2J= 2(l+µ)(a11 +a2J= ~CJ11+a2J 

HellCC the ltrCa matrix la 

CJ11 CJ12 

[ CJ ]=[ CJ Jx1,x2)= CJ12 CJ22 

o o 

o 
o 

~011 +a·22 

(c9) 

(clO) 

(cil) 

(cil) 

(cl3) 

Because tbc ~nponent 33 of the ltrCa bas a non-zero value, eq.(c13) showl that tbe atrea ll8le correaponding IO a planar 
state of the main i.s, not aencrally a plaliar onc too. 

C.3') Equatio"• of eq11ilibrlum. AIRY'• potential 

Tbe only body forte acling on tbc dam i1 lll wcl3ht. The equationl of equilibrium are 

{
011 .. 1 + 0'12,2_+ r = 0 

<1121+0222= 0 , , 
(c14) 

Because the presence of r. cqs.(c14) rcprcsent a non-homogcneoua syllem. In thc biqinmn,, thc homo,enoous aystem l1 . 
solved, i.e. • 
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{
LI 1,1 + L12,2 = O 

1:12,1 + I22,2 = 0 

Using an unknown function <p, the first equation of (cl5) is verified for 

(J(j) ap 
1:11= oxz ' i12=- &q 

In the urne way, the aecond equation of (cl5) is verified for 
• O\jl 

1:12 = ax
2 

, 

It follows that 

i.e. the unknown functions are 

oA oA 
q>= âx2 , \j/=- &q 

(cl5) 

(cl6) 

. (cl7) 

(cl8) 

(ci 9) 

The unknown function A = A (x1,x2) represents the AIRY's pctential. It allows one to obtain the next expressions 

for the componcntl of the stress tensor when the body force are absent: 

:E11= A,22 • 1:12=-A,12 , • i: 22 = A,11 (c20) 

From (cl3), the trace ofthe stress tensor can be written using LAPLACE's operator in 1-2 co-ordinates 

tr L = (1 + vx L11 + L 22) = (1 + V )t/ A (c2l) 

The components ofthe strain tensor are obtained using the reversed HOOKE's law 

l+v( • ) l+v( * ) 811= 8 A,22-vÂ A •E22= 8 A,11-v.6. A . (c22) 

Using (c22) and (c3) it follows 

A2222-{Â• A) +A1111-{Ll*A) • =-2 A1212 <c23) 
' ,22 ' ,11 ' 

i.e. 

• • o - v).6. .6. A = o 
Because v < 0.5, it follows that AIRY's potential is a solution of the bi-hannonic equation 

• • .6. A A =0 

(c24) 

(c25) 

Becausc the trace of a tensor is an invariant, eq.(c25) holds too in the general case of the orthogonal curvilinear co-ordinates. 
However, eq.(c20) has tobe modified. 

C.4) Boundary conditions.- The final shape of the dam. 

On the side OA of the dam is acting the hydrostatic pressure. It follows that 

➔ -► 

cr (-e2>=rx1 e~ 
On the side 08 of the dam is acting the negligible atmospheric pressure. li follows that • 

➔ ➔ 

cr n = o 
where the outer pointing normal at the dam is 

➔ ➔ ➔ 

n =-sino.e1+cosae2 
On thc side OA, for x 1 E [O, h], x~ =O, it follows that 

(c26) 

(c27) 

(c28) 
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(c29) 

On the side 0B it follows for X} e[O, h], x2 = XJ tan a that 

{
cr12-cr11 tana _= o, 
CJ22-cr12 tana = o 

(c30) 

Eqs.(c29)-(c30) represent 4 boundary conditions, suggesting a solution ofthe bi-harmonic equation (c2.S) wbicb depcnds on 4 
unknown coe.fficients denoted by a, b, c, d , i.e. 

Using (c20), the solution oftbe bomogeneous system is 

. {LI l = CX} + dx2 
l:12 = ... (b~1 + cx2) 

L22 = ax1 + bx2 
A particular solution ofthe non-bomogeneous system (cl4) is 

• {CJ11=CJ22= 0 

0'12 = -rx2 
It follows the general solulion of (cl4) is 

l
(Jll = cx1 + dxz 

CJ12 = -(bx1 + cx2 )- rx2 

0'22 = ax1 + bx2 
Replacing (c34) into (c29)-(c30) it follows that 

It follows that 

aud 

whcre 

Hcnce 

where 

• .,-(bx1 +cx2)-'-rx2 =O,forx1 e(O,h] ,x2 =O 

• ax1 +bx2 =-yx1 ,forx1 e[O,h] ,x2 =O 

....:(cx1 +dx2)tana-(bx1 +cx2)-,Tx2 =O,forx1 e(O,h) ,x2 =x1 tana 

(bx1 +cx2 +rx2)tana+ax1 +bx2 =O,forx1 e[O,h] ,x2 =x1 tana 

a=-y 

b=O 

c=-r+y/tan2 a 

d = r / tan a - 2y I tan 3 a 

f CJ11 = A,q + Bx2 

iCJ12 = -Cx2 

l cr 22 = -yx 1 

(c31) 

(c32) · 

(c33) 

(c34) 

(c3.S) 

(c36) 

(c37) 

(c38) 

(c39) 
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C 1 = (I + v )[ A - v( A - y)] / E , C 2 = (1 - v 2 )B / E 
lt follows that 

u 1= C1xf /2+ C2x 1x2 +f1(x2) 

where the unknown function f I follows tobe found. ln the same manner, 

But 

Hence 

2 u-2=C3x1x2 +C4x2 /2+f2(x1) 

{
C2x1 +f~(x1)=K 

C3x2 +f1(x2)=-K 
where K is an arbitrary constant. lt follows 

f1(x2)= -C3x~ / 2- Kx2 + K1 , f2(x1 ) = - C2xf / 2 + Kx1 + K2 
Hence, the displacement field is 

{

Ul= Cpcf / 2+ C2x1x2...: [C3 + 2(1 + v)C/ E]x~ / 2- Kxz + K1 

u2 =-C2xf /2+C3x1x2 +C4x~ /2 +K:q +K2 

The last terms into (c46) represent a rigid roto-translation. 

(c-10) 

(c-l l J 

(c-12) 

(c43) 

(c44) 

(c45) 

(c46) 

It _should be outli,ned that the above boundary conditions on stress values on the sides OA arid 08 are not complete ones. As a 
resuit, the unknown constants C3, C4 are present in (c46). Boundary conditions 011 stress values (or displacements) on th<! 

side _AB are required in order to obtain an unique solution of the problem 
For example, consider the case when the points A and B are fixed ones. lt follows 

{

u1=c1(xf-h2)12+C2(x1 -h)x2 -[C3 + 2(l+v)C/E]x2(l - x2)/2 
(c47) 

u2 = C2( h2 - xr) I 2 + C3x2(x1 - x2h/ I) + {C2 h -(C3 + 2(1 + v)C / E]l / 2}(x1 - h) 

An arbitrary point placed initially on the side AB bas the initial co-ordinates (X, ;:: h; X 2) . Its final position is 

{

x I = X I + U I (X I, X 2) = h + [ C 3 + 2(1 + v )C / ~ ]X 2 (I - X 2 ) / 2 
(c48) 

_x2 = X2 + u2(X1, X2)= X2_ + C3hX2(l - X2 )/ I • 

Elementary computations show that 

(c49) 

lf 

(c50) 

the final shape ofthe side AB is a concave parabolic segment. Because the possibility ofthe water to flow below the dam, that 
situation is not recommended in real cases. Therefore, it is asked to 

y(l - v)- vf - ,(~ - v)t(h / 1)2 
;5; O , (c51) 

i.e. 

h /I~ v'[r (I - v)- vr] I (2 - v) / y 

For example, assuming that y = I OOO Kgs / m 3 , r = 2400 Kgs / m 3 , v = 0.25 it follows that h ~ 0.291 . 
EXERCISE. Obtain the final shape of the dam in the above hypothesis. 

(c52) 
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D) KIRSCH's PROBLEM - THE CIRCULAR BORE HOLE / TUNNEL 

D.I) The model. 
' ( 

lt is assumed that the whole 3-dimensional space is represented by an elastic, homogeneous, isotropic medium, having the 
elastic constants denoted by E and v , respectively ).. and µ . A C<H>rdinate system having the third axis positive upward 

will be used. The initial state of stress is represented by the homogeneous tens'ar (JO , corresponding to a planar state of 

deformation, i.e. 

o o o CJ11 CJ12 
o o o o cr = CJ12 CJ22 

o o {cr?1 +crgJ 

where the component& cr ~ have constant values. The mass forces are ignored, hence the equilibrium equation 

o ➔ 
divcr = O 

is identically satisfied. 

, (dl) 

(d2) 

Suppose that a circular, infinite bore hole / nmnel is performed along the third axis, its material being instantly removed. The 
origin of the co-ordinate system is placed at the centre of the cavity. 0n the wall of the bore )Iole is acting now the 

atmospheric pressurc (or the pressure of the drilling mud), denoted by p 
O

. Consoqucntly, a new (non-bomogencous) stresa 

value is obtained and the circular shapc of the bore hole is changing too. lt follows to obtain the new stress, denoted by cr f , 
and the new shape of the bore hole in the final equilibrium stage, where 

f ➔ 
diva = O . (d3) 

lt is also assumed that the deformation is an elastic one, i.e. the stresa perturbation CJ = CJ f - CJ O Îl rclated to the strain 

tensorby 

cr = itre I + 2µe Cd4> 

The unknown component& of the displacement vector are supposed to correspond to a plaoar dcformation state, i.e. 
u1 =u1(x1,x2) , u2 =u2(x1,x2) , u3 =O. (d5) 

Because thesymmetry ofthe problem, the cylindrical co-ordinate syatem (r, 8, z) will be used, having the unit wctors 

den~•db{;,, ;; , ~) ( .. F~Dl~ 

Fig.O I. The cylindrical co-ordinate system. 

https://biblioteca-digitala.ro / https://unibuc.ro



19 

D.2) The planar sate of deformation in cylindrical co-ordinate system. 

With respect to Fig.O 1 it follows that 

➔ ➔ ➔ 

er = cos8e1 + sin8e2 , 

➔ ➔ ➔ 

e 8 =-sin8e1 +cos8e2 , 

➔ ➔ 

ez = e3 . 

Hence the matrix for pascing from the Cartesian co-ordinatcs to cylindrical co-ordinates is 

r 
cose sin e ol 

Q = -sin0 cosB O 

O O l 

(d6) 

(d7) 

It represents a rotation of angle equal to 8 in a positive (counter clockwise) sense. From (d4) and (d5) it follows that the 
stress matrix in Cartesian co-ordinates is 

0'11 0'12 o 

[a rrt = 0'12 0'22 o 

o o v(au +a2J/ 

Let the stress matrix in cylindrlcal co-ordinates be 

It follows that 

[

O' are 
O' rz] , I rr 

[a ry = a r0 crea crez . 

arz crez cr zz 

sine 

cose 

o 
Olo] O'll 

0'12 

o 

Cî12 O (cose 

·cr22 O sin~ 

0 v(cru + cr12) 

By performing the computations in (dlO), it follows 

O' = O' ll + O' 22 + O' sin 28 + cr 11 - cr 22 cos 20 
rr 2 12 2 

0'11+cr22 a -a · • ~ = --'--"-----== - ~ sin 28 - 11 22 cos28 vee 2 v12 2 • ' 

O'J 1 - cr22 · o: r0 = -
2 

sin 20 + cr 1 2 cos 20 , 

O' rz = 0'0z = O ' O' zz = v(cr1 I + 0'22) = v(cr n- + O'ee) 

- sin0 

c0s8 

o 

(d8) 

(d9) 

(dlO) 

(dl I) 

(dl2) 

(<llJ) 

(d 1-l) • 
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D.3) The circle of MOHR. 

Supposc the Cartesian co-ordinate system is sclected in order its axes to be along the first two eigen vectors of the stress 

tensor. ln that case, a 11 and a 22 are eigenvalues of the stress tensor and a 12 = O. From equations (dll)-(dl3) il 

follows that 

(dlS) 

and an identical relation obtained by replacing (]' rr with (]' 88 . Eq.(dlS) shows that (]' rr and (]' ~ are placed on a 

circle of radius equal to la 11 - a 221 / 2. Suppose now that a rr (or a 88 ) (i.e. the radial stress component, usually 

denoted by O' ) and O' ~ (i.e. the tangential slress, usually denoled by 't' ) are obtaincd at various angles 8 and lhe 

MOHR's circle represenled by eq.(dlS) is obtained. lls radius and its position ofthe centre allow one to obtain graphically the 
eigcnvalues of the stress tensor. Further discussion will be presented in relation to the empirical failure criteria of materials. 

D.4) AIRY's potential in cyli,idrical co-ordinates. The bi-harmonic equation . 
.. 

Consider the representation ofthe stress components with the AIRY's potential in Cartesian co-ordinates, i.e. 

a11=A.22 •0'22=A,11 •0'12=-A,12 • <d 16> 

where the AIRY's potenlial verifies the bi-hannonic equation 

(dl7) 

ln the beginning, the derivativcs in eq.(dl6) will be evaluated by using the polar co-ordinates 

{
x1 ~rc~s8 •{r= ✓xf +x~ 
X 2 - r Stn 8 8 = a tan( X 2 / X 1 ) 

(dl8) 

Than, a representation of the stress coipponents in cylindrical co-ordinates with the help of the AIRY'1 potential will be 
obtained from (dl l)-(dl3). 
But 

(dl9) 

li follows 

a A O A ar a A oo sin a 
A 1 =--=----+----= cosa A --A 8 ' 8x1 ar 8x1 00 8x1 ,r r • 

(d20) 

lu thc same way, 

. cosa 
A 2= stn8 A r+--A 8 , , r , (d21) 

Also, 

( ) ( 
sin8 ) A 12 = A 1 = cosa A r - -A 8 

• • ,2 . ' r • 2 
. . 

• ( sin0 ) cos8( sin8 ) =sm0 cos0A r--A 8 +-- cos8A --A 8 .· , r , r ,r r • a 
,r ' 

(d22) 

~-(~ _ A,r _ A,ee)sin28 +(A,~_ A,a)cos 28 ,rr r 2 2 r 2 r r 
ln thc samc way 
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A 11 = cos2 0 A + sin 2 e(A,r + A,00) + 2 sin 0 cose(- A,re + A2,e) , (d23J 
' ,rr r r2 r r 

2 2 ( A r A ooj ( A re A ej A =sin 0A +cos e - '-+-'- -2 sin 0cos , - --' - +-'- , (d24) 
,22 ,rr r 2 r 2 r r 

Hence 

Ar Aee 
0'11 + 0'22 = A ,22 + A,11 = A,rr + -/- + ~ (d

25
> 

• ( A r A ee) ""'° 2 • 20( A, re A ,e) CJ11 -cr22 "' A 22- A 11 = - A rr +-'-+-2'- coaz:u- sm ---+-2- , (d26J 
, , , r r r r 

From eqs.(dl l)-(dl3) 1t follows 

Ar Aee a =-'-+-'-
rr r 2 r 

A re Ae 
A ) + , , cree = ,rr , ore=--- --. 

r r2 
(d27) 

D.5) The divergence of a tensor in cylindrical co-ordinates. 

In the case of the cylindrical co-ordinates, the square of the elementar}' arc is egual to 

(d28) 

Hence the differential parameters of Lame are 

(d29) 

the orthogonal curvilinear co-ordinates are equal to 

C l = 1 , C 
2 = 0 , C l = z· (d30) 

and the unit vectors are 

(d3 l) 

It follows that 

(d32) 

Subslituting lhe above results in the fonnula (a2.77) (Ivan 1996) it foll~s the next formuh.1 for the divergence of a tensor in 
cylindrical co-ordinates 

(d33) 
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D.6) The gradient of a vector and the straiu tensor in cylindrical co-ordinates. 

Substituting the above results in the fonnula (a2.68) (Ivan 1996) it follows the next fonnula for the gradient of a vector in 
cylindrical co-ordinates 

➔ au ➔➔ au ➔➔ au ➔➔ 

gradu= ârr er ®er + r~ er ®ea+ a: er ®ez 

oua ➔ ➔ oua ➔ ➔ oua ➔ ➔ 
+& ea ® er + rOO ea ® ea + a;-ea ® ez 

fu ➔➔ fu ➔➔ fu ➔➔ ➔➔ ➔➔ 

+~e ®e +-2 e ®ea +-z e ®e - ua e ®ea +~ea ®ea or z r rOO z âz z z r r r 

• • l [ ➔ ( ➔)tj 
The components of the strain te.nsor E ~ 2 grad u + grad u are 

E = our , Ere= !(our - ua + oua) 
rr ar 2 rOO r or 

. oua Ur 1 (oue OUz) OUz 
Eaa= rOO +7 , Eez=2 &+ rOO , Ezz= âz 

➔ 
For the particular displacement field represented by (d5), the components of the vector u are 

, Ur = U.r(r,a) , ua = ua(r,a) , Uz= 0 
Hence 

It is the case of a planar state of deformation, i.e. 

E =(:: :~8 ~J 
aud all the strain elements are functions of r and 8 . 
Consequently, the stress is 

O' rr O' r0 

O' = O'r9 

o 

o 
o 

(d34) 

(d35) 

(d36) 

(d37) 

(d38) 

(d39) 

all the components ofthe stress being too functions of r and a, according to HOOKE's reversed law. It follows from (d33) 
the next equations of cquilibrimn are obtained in the absence of mass forces: • 

o a rr + o a r0 + O' rr - O' ee = o 
or rOO r 

0a r0 °aee a r0 --+--+2--=0 
or rOO r 

(d40) 

(d-U ) 
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D.7) The bi-harmonic equation in cylindrical co-ordinatl's. 

By using (a2.69) and (a2.43) (Ivan 1996), it follows the LAPLACE operator in cyli11drical co-ordinates is 

. 1 a ( Df ' 1 a2r a2r .1f=d1v(gradf)= - - r - ) +---- + --
rar ar.I r2 a32 az2 

(d42) 

The AIRY's potential is also a function of r and 0 . Hence the AlRY's po1e111ial is the solution of the bi-harmonic equa1io11 

* * 
13./:J. A =o 

where the LAPLACE operator in polar co-ordinates is 

/l.* =.!.~(r~) +-1 a2 = a2 + ~~ + -1 ~ 
rar ar r2 a3 2 ar2 rar r2 a32 

(d-1-IJ 

li should be noted tbat the singular point r = O is avoided in (d44) because r ~ R > O, where R is tl1e radius of the bore 
hole. 

It follows to solve (d43) by using (d44) in order to derive the AIRY 's potential. The s1ress components will be obtained 
from (d27), imposing the boundruy conditions on the wall of the bore hole. The components of the strain will be derivcd by 
using the HOOKE's reversed law. The displacement vector will be obtained from the definition of strain elements, allowi11g 
one to find the final shape of the deformed hore hole wall. 
Consider the FOURIER expansion of the AIR Y' s potential, havi ng the coefficients equal to functions of r 

It follows 

Hence 

and 

00 

A (r,0)= A0 (r)+ Z:[A
0

(r)cosn0+ Bn(r)sinne] 
n=l 

oA , 00
( I I ) 

&°= A 0 + L A 0 cosn0+ B0 sinn0 , 
n=l 

a2 A oo 

--= A~+ L (A~cos n0+l3~ sinn8) 
âr2 n=l 

·a2 A 

002 

00 

= - Z:n 2(A n cosn0 + Bn sin ne) 
n=l 

00 
[( " 1 , 0 2 J ( ., 1 1 

0 2 J l t:,.A =!:J.Ao+ L A +-A --A cos n0+ B +-B --B sinn0 
n=l r r2 r r2 

MA =MAo+ L. A +-A ---A_ +--A +---A cosn0 
n=l r r2 r3 r4 

(d45) 

(d46) 

(d47) 

(d48) 

(d49) 

~ [( 
1111 2 111 2n 

2 
+ 1 " 2n 

2 
+ l I n 

4 
- 4n 

2 J 
• . (d50) 

( 
"" 2 111 2n 

2 
+ 1 " 2n 

2 
+ l I n 

4 
- 4n 

2 J l + B +-B ---B + . B + 8 sinn0 
r r2 r3 • r4 

By using (d50), the bi-harmonic (d43) is verified if 

/:J./:J.Ao =0 (d5 I) 

and if the functions A , B are the solutions of the next difîcrential cq11atri.n 

"" 2 111 2n2 + 1 "211 2-1 1 I n4-- 4n2 
<l> +-<l> ----<I> +- - -<D +--- <I> =o . 

r r2 r3 r4 
(d52) 

Bccause A O is a function of r only, cq.(d5 l) is 
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~~{r~[!~(r dAoi]}=o . 
rdr dr rdr dr) 

Hence 

r~[!~(r d Ao 1] = ao , .!(r d AoJ = aorln r + bor 
dr r dr dr ) dr dr 

Bui 

r
2 

(. 1) J rln rdr = 2 ln r- 2 + const. 

Hence 

r dAo = ao r2(1nr-.!_1 + bo r2 +co 
dr 2 V 2 . 

Finally, denoting again the constants, it follo~s 

Ao(r) = aor2 ln r + bor2 + co ln r+ do 
In order to solve eq.(52), a solution of the form 

(d53) 

(d54) 

(<ţ55) 

(d56) 

(d57) 

(d58) 

is considered. Substituting (d58) in (d52), it follows that the exponent m is the solution ofthe algebraic equation 

m(m - l)(m - 2Xm - 3)+ 2m(m - IXm - 2)- (2n 2 + l)m(m -1)+(2n 2 + l)m + n 4 - 4n 2 = O,(d59) 

having the roots 

Hence the AIRY's potential is 
• . 00 

A (r,0)= aor2 ln r + bor2 + co ln r +do+ L ( a0 r0 +2 + b0 r0 + c0 r-n+2 + d 0 r-o) cos0n 

n=l 
00 ' 

+ L (a. 0 r0 +2 +P 0 r0 +y 0 r-n+ 2 +6 0 r-0 )sio0n 

n=l 

(d60) 

(d61) 

where lhe unknown coefficients aj, bj,Cj ,dj ,a. j,Pj, y j,O j, i = 0,1,2, ... , j = 1.2, ... follows tobeobtained. 

D.8) The stress elements. Conditions at infinity for the 1tre11 elements. 

By using (d61) and (d27), it follows 

cree=A rr=ao(21nr+3)+2bo-c~ 
, r 

00 

+ L (a 0 (n+2)(n+l)r 0 +b 0 n(n-l)r."-- 2 +c0 (n-2Xn-l)r-n +d 0 n(n+l)r- 0 - 2)cos0n • 
n=l 

00 

+ L (a 0 (0+2)(n+l)r0 +P 0 o(n-l)r 0
-

2 +y 0 (n-2Xn-l)r-n +6 0 o(n+l)r-0 - 2)sio01\ 
n=l 

At great uistanccs from thc cylindrical cavity, lhc elastic pcrturbation bas 10 v~nish, i.e. • 

• limaee= 0 

lt fo llm1 s 

(d62) 

(d63) 
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ao =O , 2bo +2b2 +2P2 =0 , an =Cln =0 ,n=l,2, .. . 

b0 =!ln = 0 , n=3,4, .. . 
Hence the AIRY's potential is 

00 

A (r,8)=colnr+do{!>1 +P1)r+ ~(cn cosn8+rn sinn8)r-n+2 

n= l 

From (d65), it follows that 

00 

+ l)dn cos n0 + 8 11 sin n0)r-n 
n=l 

00 

O'OO = - c~ + l:(n -2)(n - lXcn cos n0 + y O sin n0)r-n 
r n=l 

CX) 

+ Ln(n+lXd n cosn0 + 80 sinn0)r-n - 2 

n=l 

00 

+ l:(-n){dn cos n0 + 80 sinn0)r-n-l 

n=l 
CX) 00 

(d64) 

. (d65) 

(d66) 

(d67) 

A a= L n(-c 0 sin n8 + y n cosne)r-0 +2 + I:U(-d O sin n0 + 611 cosn8)r-n , (d68) 

' n=l n=l 
00 00 

A 00 = - I:02(c0 cosn8 + y O sin n0)r-n +2 - L n2(d n cosn0 + 6n sin n8)r-n (d69) 

' n=l n=i 
Hence 

A,r A 00 co b1 + P1 
00 

( 2 ) . -crrr=--+-2-=2 + • - L n +n-2 (cn cosn0+yn smn0)r n 
r r r r n=l 

(d70) 
CX) 

- L (n 2 + n)(dn oosn0+6n sinn0)r-n-2 

n=l • 
From (d70), it follows that 

(d7 l) 

Also, 
CX) 00 

A.re= Ln(n-2Xcn sinn8-yn cosn0)r-n+l + L n2(dn ~nn0 - 8n cosn0)r-n-l _ (d72) 

n=l n=J 
Hence 

A re Ae 
crre= - -·-+-·-

r r2 
CX) CX) 

= - ~)n 2 
- nXcn sin n8 - y n cos n8)r-n - L (n 2 + n)(ct 11 sin n0 -6n cosn8)r- 0 - 2 

n=l n == l 

(d73) 
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From (d73), it follows that 

lim crre = 0 • 
r➔00 

D.9) Strain and displacement vector. Conditions at infinity. 

From (d39) and HOOKE's rcversed law it follows that 

(d74) 

E =![o+v)cr -vtrcr 1 ]=
1
;v[cr -~crrr+croo)l] (d75) 

i.e. 

(d76) 

Hence 
• 00 

E Bur co 1 b1 + P1 { v J --
2 
~=--2 + • - L (n-1 n+2+--(n-2) .cn cosn8+rn sinn8)r-n 

1- v Ul 1- v r r n=2 1- v 
(d77) 

00 

- -
1
- L n(n + IXdn cosn8 + 6n sin ne)r-n-2 

1-v 
n=l 

lntegrnting (d77) it follows 
. ~ 00 

• E co l ( ) [ • V } - l --
2 

ur =----+ b1 +P1 lnr+ L n +2+--(n-2) Cn cosn0+y 0 sinn8)r-n+ 
1-v 1-vr n=2 1-v . 

• (d78) 
00 

From 

+ 
1 
~ v L n(dn cosn8 +6n sin n8}r-n-l +cp(8) 

n=l 

it follow1 that 

Hence 

Finally 

b 1 + PI = O , cp(8) = O 

00 [ } 
E co 1 v 

--ur=----+ L n+2+--(n-2) c cosn8+y sinn8)r-n+l 
1 - v2 1 - v r 1 - v n n 

n=2 
00 

+-
1

1 
Ln(dn cosn8+'5n sinn0)r-n-l 

-v 
n=l 

[ 

00 . . 
1 + V CO • 

ur =8 ---;.-+ ~:(n+2+-4vXcn cosn0+y 0 sinn0)r-n+l 
n=2 

+ En(dn cosn0+6n sinn0)r-n-l] 
n=l 

ln the same way, 

2[ 1-V V fu U Eaa = -- CJ'aa - -cr ] = ~ + _L . 
E 00 1 - v rr rOO r 

li follows 

(d79) 

(d80) 

(d81) 

(d82) 

(d83) 
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E aie E . 
----=---Ur 
1- v2 cB 1- v2 

V 
+ ia - ·--rcr 00 1- y IT 

Substituting (d82), (d66) and (d70) into (d84) and integrating with resp-:ct to 0, it follows after some computations that 

Form the condition 

l+v . . -n+l 
[ 

00 

ue = E (1- v)'l'(r) + 1::(n - 4 + 4v)(cn sm ne- y n cosn0)r . . 
. n=2 

00 l . -n-1 + ~:O{dn sin n8-8 0 cosn0)r 
n=l 

lim ue = o . 
r➔oo 

it follows the unknown function \li= 'l'(r) is subject to the condition 

lim \jJ(r) = 0 
r➔co 

But 

or 

E (aur cue) 2rcr rt) =-- - - - ue + r-----
1 + v c0 or 

(d84) 

(d85) 

(d86l 

(d87) 

(d88) 

(d89) 

Substituting {d73), (d82) and {d85) into (d89), it follows after somc co111pt,1ations that 
d\J, 
r- =w ~~ 

dr 
i.e. \j/ = Cr. From {d87) it follows that \j/(r) = O and, finally, · 

ue = 
1

; v[ f (n -4 + 4v){cn sin n0-y n cosn0)r- n+l + Î n(d n sin n0 - On cos n0)r-n-l] 
n=2 n=l _ 

D.10) Boundary conditions for the stress elements 011 the w~H of tle circular cavity. 

Using the previous results, the final expressions ofthe plane elements of the stres1 are equai to 
00 

crrr= c~ - L (n 2 +n-2)(cn cosn8 + Yn sin n0)r - n 

and 

r n=l 

00 

00 

- L ( n2 + n )(d ;.1 cos N0 + 60 sin n0)r-n-2 

n=i 

0'99=--c~ + ~)n-2)(n-l){c0 cosn0 +y 0 sinn0)r-n 
r n=l 

00 

+ L n(n + I){dn cosn0 + 60 sin n0)r-·n- 2 

n=l 

(d91) 

(d92) 

(d93) 

00 00 . 

cr rO = - 2:(n 2 - n){cn sin n0 -y n c-osn0)r-n - L ( n2 + n)(d 11 sin n8 - 8 11 cos n8}r - n- 2 (d9-l ) 

n == l n :.:l 
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➔ 

The cavity wall bas the outer normal (with ~ to the rock domain) equal to -er and radius equal to r = R . ln the 

case of a bore hole, let tip be the difference between the mud pressure and the pressure of the fluid contained by the porous 

rock (usually, because the atmospheric p~ure is negligible, it follows in the case of a tunnel that Ap = 0). It follows the 

fi~I stress O' f .satisfies the next boundary condition 

(d92) 

Hence 

{
cr I • -o o -tip rr r=R rr 

0 rt1lr=R•CJ~ 
(d93) 

With no loss of generality, it can be assumed that the stress al infinity is along its main axes, i.e. (J ?2 =O . Hence 

00 00 • 

c~ - L ( n2 + n -2)(cn cosn8 +r n sin n8)R-n - L ( n2 + n)(dn cosn8 +6n sin n8)R-n-2 

R n=2 n=l · • . 
o o o o 

(J' 11 + a 22 O' 11 - (J' 22 20 A = COS -up 
2 2 

00 00 

L ( n2 -n)(-c0 sinn8+rn cosn0}R-n + L (n 2 +n)(-dn sinn0+6 0 cosn8)R-n-2 

n=2 n=l 
o o 

O' 1 1 - O' 22 . 20 =-'-"---=sin 2 • 

(d94) 
Heuce 

(d9S) 

and 

(d96) 

. (d97) 

lt follows that 
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(n2 +n-2) cn +(n 2 +n ) Jn 
2 

=0., n= 3,4, ... 
Rn H. n+ 

(n 2 +n-2)Yn +(n 2 +n)--
6
_!!_=0, n= 2,3, ... 

Rn R ~+2 

2 Cn 2 dn (n - n)-·+(n + n)-'-'-- == O , n = 3,4, ... 
Rn R n +2 

(n2-n) Yn +(n2 +n) On =0 ' n=2,3, ... 
R n R n+2 

co= -( crr1: cr~2 + ,..+ 2 

o o 
c2=cr11-cr22R2 ' Cn=O ,n= J,4, ... 

2 

( O o)R
4 

d2=- 011-cr22 4 , dn = 0 ,n=3,4, .. . 

y n = O , 6 n = O , n = 2,3, ... 

By using ( d 11-d 13) for cr ? 2 = O , the expressions of the final stress a re equal to 

o o o o r cr11 + cr22 crn -022 20 ITfT = + COS 
V 2 • 2 

and 

r cr f 1 - cr ~2 . ( o o ) R 
2 

. J ( o o ) R 
4 

. CJ r9 = - --=-~--==sm 20 - CJ) ) - O' 22 2 stn 28 + - Q' l l - O' 22 - SID 20 
2 r 2 r4 

lu real cases, the value ofthe stress al infinity are positive ones for comprrssion. 

(d98 

(d99) 

(dlOO) 

(dl02) 

(dl03) 
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D.11) The final shape of the wall. 

Consider again the case when the direction of the horizontal iµ<es of the co-ordinate system is along the corresponding ei gen 

vectors of the initial stress (J' O . ln that case, (J' ~ 2 = O . Using the above results, it follows the displacement vector for the 

poin1s inilially placed on the wall of the circular cavity is 

[ 
o o o o ] l+v CJ' +cr CJ' -cr-, 

ur(r=R,8)=ER 11
2 

22 +&p+(3 - 4v) 11
2 

2-cos28 

(dl04) 

o o 
1 + Y (J' 11 - (J' 22 · 

ue(r=R,8)=-ER(3-4v) 
2 

sm28 

Consider an arbitrary point on the wall of . the bore hole. In the initial state, it bas the polar co-ordinates ( r = R, 8) . lts 

position vector with respect to the centre of the circle is 

➔ ( ➔ ➔] X= R cose el+ sin8e2 (dl0.5) 

Using (d6) the position vector in the final stage is 

➔ ➔ ➔ ➔ ( ➔ ➔] 
X~ X+ Ur(R,8)er + u0(R,0)ee = R cos0el + sin ee2 

[
o o o o r ➔ Î l+v CJ' +cr cr · -cr ➔ 

+--R 11 22 + L\p+(J ...., 4v) l1 22 cos20 cos0e1 + sin0e2 E 2 2 ) 
(d l06) 

1+ cr -cr ➔ • o o ( ➔ ] 
- E vR(3 - 4v) 1l 

2 
22 sin20 -sin0e1 +cos0e2 

Hence 

o o 
l + V (J' 11 - (J' 22 · . + - - R(3 - 4v)---=-=-----== sm 20 sin 0 

E 2 

1 o o o o j · 1 + V (J' 1 1 + (J' 22 O' - O' 
x 2 = R sm 0 + -- - =--=---== + ~P + (3 - 4 v) 11 22 cos 20 sin 0 

E 2 2 

(d I07) 

o o 
1 + V CJ'11 -cr22 - E R(3- 4v) . 

2 
• sin 20 cose 

Aft cr elc111cntary computations, ii follows 
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x =[• + 1 + v[cr?1 +cr~2 + ~p + (3- 4v) 0"~1 - cr~illx 
l E 2 2 ) 1 

•2 =[I+ 1; v[ cr?1: cr g2 + ăp - (J _ 4v) cr?1 ~ crg2) lx2 

(dl OS) 

Taking into account lhat xr +X~= R 2 , it follows the final shape of the cavity is an ellipse of equation 

2 2 
xl x2 
-+-=1 (dlOY) 
a2 b2 

where the semi-axes of the ellipse are equal to 

•= {+ 1; v[ crf1 :crg2 + ăp + (J- 4v)cr?1 ~ crg2)] 

b = ++ 1; v( cr?1 :crg2 + ăp ~ (J- 4v) crf 1 ~crg2)] 

S1 (9 S1 

s3 

(dl 10) 

Fig.D2. The shape ofthe borehole (tunnel) in the initial state (the circle) andin tlae final state (the ellipse), corresponding to 
a compressive strcss. 

ln real cases, the initial stress O' O is usually a compressive one, i.e. (see Fig.D2) 

o o 
0'11 = -S1 , O' 22 =.- S3 (dll 1) 

where the maximum compressive stress S 1 and the minimum compressive stress S 3 have positive values O S:: S 3 S:: S 1 . li 
follows here that the major se1ni-axis a corresponds îo the minimum str.ess ~nd a $ b . 
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E) BOUSSINESQ'S PROBLEM- the concentrated force acting on the elastic semi­
space 

E.1) The equations of BELTRAMI and MITCHELL. 

lt follows to obtain the partial derivative equations for the stress tensor (J in the particular case of an elastic, 

. ➔ ➔ 
homogeneous, isotropic media. 1n the beginning, the next syietric tensor is evaluated ] 

S = - grad (p b ) + grad t (p b ) 

Using the equilibrium equation, it follows that 

Hen~ · 

The HOOKE's reversed law gives 

so 

where 

But 

Hence 

fa-pression (el) become& 

➔ 

div <J = -p b 

}+ V V 
E =-o --0} 

E E 

1-2v 
0=trcr . S=tre =--0 

E 

div (f} ) = grad f 

d• E d' v ad0 lV(J =-.- IVE +--gr „ 
l+v l+v 

(el) 

(e2) 

(el) 

(e4) 

(e5) 

(e6) 

(e7) 

(e8) 

S =~[grad(dive )+gradt(dive >]+-v-[srad(grad0)+gradt(grad9)] (e9) 
l+v l+v • 

Because the tensor grad(grad 0 ) is a symmetric one, it follows that 

S =~[grad(dive )+gradt(dive >]+~grad(grad0) . (elO) 
l+v l+v 

The tensor in the first parentbe&is of (elO) bas the ij - component equal to 

[grad(dive )+gradt(dive >] =(dive )i J. +(dive )J·•· =e . . +c. ·= 
. ij c. ' . c. '. c.1q,qJ C.Jq;qt 

. ·,l: ~ .!•I .. ~ ;:ir;.~·;:!~ : i !-.·.l a,:.:• .j . .' ,·, ii), ' . I 

½( Ui,qqj + Uq,iqj + U j,qqi + Uq,j~J ~ 1[( U;,) + U ii) ,qq + 2( Uq,q) ,ij] = (cil) 

( A ) ( ) ( ) :t- 2v. 1,,p;, '"( ~j (I ) l-2v[ 
\.. 0 E .. + tr E .. = Â E .. + --' - · @, ij'= ~ E .. + -- grad(grad0 )] .. 

lj ,IJ IJ E . IJ E IJ 

Hence 

Using (el2) and (elO), the expression (el) becomes 
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E 1 S =-li€ +-gradgrad0 
l+v l+v 

(el3) 

Applying the 3-dimensional LAPLACE operator â in (o4), it follows 

!!,. = 1 + V .1, (J' - ~ .1.0 } 
€ E E 

(el4) 

Replacing (el4) into (el3) givcs 
V I S =Aa --li0l +-gradgrad0. 

l+v l+v 
(elS) 

i.e. 

!ia - _v_ !i01 +-
1
-grad grad0 = -[grad(p-; )+ gradt(p t)] · . (el6) 

l+v l+v 

But 

tr(Aa )=!i(tra )=.1.0, 

tr (grad grad 0) = li 0, 

tr (!i0l ) = 31!,. 0, (el?) 

tr [ grad(p "t) + grad '(p-;;'} 2~ grad (p-;;'} 2 div(p-;;') 

Applying tbe trace operator in (el6) and using eqa.(017) gives 

1 3v ➔ 
A0+-A0--li0=-2div(p b) (el8) 

l+v l+v 
It follows tbe trace of thc strcu tenlOr verifica tbe relation 

Replacing (el 9) into (el6) givcs 

V ➔ 
Aa +-div(p b )1 

• 1-v 

l+v ➔ 
li0 = - - div(p b ) 

1-v 

+ - grad grad0 = - grad(p b ) + grad t (p b ) • I [ ➔ ➔ i 
1+ V • 

(el9) 

ce20> 

Eqs.(el9)-(e20) represents tbe equatiom of BELTRAMI arul MITCHELL, having as unknowns only the elements of the 
stress tensor. Together with appropriate conditions (in tensions) on the boundary of the elastic body, they allow one to salve 
the corresponding linear static problem. • 

Particular cam. 
a) Suppose that 

➔ 

div(p b) = O , 
➔ 

i.e. a vector potential 'I' exilu having thc property that 

➔ ➔ 

p b = rot \lf , 
From (el9) it follows that the traces ofboth streas arul strQin tensors are harmonic fum:tions 

Â0= !i8= O, 
b) Suppose that 

➔ 

p b = grad q> , where !iq> = q _, 
it follows that 

➔ 

div(p b ) = licp = O , 
i.e. eq. (c23) is verified and eq.(20) gives · 

I 
I!,. a + - grad grad0 = - 2grad(gradcp) 

1 + V 

(e21) 

(e22) 

(e23) 

(e24) 

(e25) 

(e26) 
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Applying the LAPLACE operator 6 to eq.(e26), it follows that the stress tensor is the solution ofthe t,i-hannonic equatio,n 

.Mcr = O . (e27) 

In most real cases, the volume forces are neglected (or they are represented only by the weight of the body, satisfyinţ eq.(24). 
It follows the elastic linear problem involve solving hannonic and bi-harmonic equations. 

E.2) The model. 

A co-ordinate system having the tltird vertical axis positive downward is used. The senti-space x 3 ~ O is represented by an 

elastic, homogeneous, isotropic medium having the elastic coefficients A and µ (or E and v respectively). In the origin of 

the co-ordinate system is acting a vertical force having the magnitude equal to P . It follows to find the stress and the 
displacements. Spherical co-ordinates will be used (Fig.El): 

x I = r sin S cos A , x 2 = r sin & sin A , x 3 = r cos 3 (e28) 

2 

Fig:El The spherical co-ordinate system and a vertical Coree ofmagnitude equal to ţ> acting at the origin. 

Because symmetry, the displacement vector bas the components like 

ur=ur(r,S), u,. =O, us=ua(r,3) 
ll follows the components ofboth stress and strain tensors are functions of r and S only. 

E.3) Tbe equations of equilibrium and strain tensor in spherical co-ordinates. 

The LAME di.fferential parameters for spherical co-ordinates are 

h 1 = I , h 2 = ~ , _ h 3 ~ r sin 3 
The generalised curvilinear co-ordinates are 

The unit vectors of the axis are 

➔➔➔➔➔➔ 
I 2 3. n = er , n = es , n = e). 

•. 

By using, for example, (IVAN, _1996), the divergence ofa symmetric tcnsorŢ in spherical co-ordinates is 

divŢ = 

(
8T rr +! 8Trs +-• _ 8Tr). + 2T rr + Trs _ Tss +T,.).J ➔ + 
or r 83 rsinS ol r . rtaoS r er 

(e29) 

(e30) 

(e3l) 

(e32) 

(
8Trs I 8Tss 1 8Ts). 3Trs Trs Tas -T).;.J ➔ (e3J) --+- + +-- +-...=...::;.- +-~-~= e + 

8 r r o S r sin S a).. r r tao 3 r tao 3 3 

(
8Tr,., +! 8 Ts). +-1 _ 8T,.,). + 3Tr). + 2Ts,. ) ➔ 

ar r a S r sin S a).. r r tao 3 e). 

ln lhc samc way, the gradient of a vector in spherical co-ordinatcs is 
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In the particular case of eqs.(e29), it follows 

aur 1 (1 aur us aus) 
Err=a;-, Ers = 2 ;~--r-+~ , ErÂ. = 0 

1 aus Ur Ur US 
Ess =;a°s+-r-, ESÂ. =O, EÂ.Â. =-r-+ rtanS 

Hence 

O' rÂ. = O' SÂ. = O ' 
By using ( e3 3 ), the equilibrium equations in the absence of the volume forces are 

a CJ rr 1 a O' rS 3 O' rr O' rS O' rr + O' SS + O' Â.Â. 
--+---+-- +-- = 

ar r as r rtan 9 r 

a O' rS + 1 a O' SS +~O' rS + O' rS + O' SS: - O' Â.Â. = o 
ar r 8S r r ten S rtanS 

i.e. 

:r ( r
3 

sin S O' rr) + a°s ( r2 
sin S cr rs) = r

2 
sin S 0, 

:r ( r
3 

sin S O' rs) + a°s ( r 2 
sin S O' ss) = r

2 
cos.<} O' Â.Â. 

E.4) LAPLACE operator in spherical co-ordinates. LEGENDRE's polynomials. 

Using, for example, (IVAN, 1996) the gradient of a scalar function in spherical co..ordinates is 

ar ➔ 1 ar ➔ 1 ar ➔ 
gradf=-- e +--e +---e a r r r a s s r sin /l a ~ Â. 

Also, the LAPLACE operator is 

[ ( ) ( ) 2] . 1 . a 2 ar a . ar 1 a r 
/lf=d1vgradr=--- smS- r - +- smS- +-.--

r 2 sin S 8 r o r a S 8 S sm ,<} if)..., 2 
Consider the LAPLACE equation • 

(c34) 

(e35) 

(e36) 

(e37) 

(e38) 

(e39) 

(e40) 

(e4 l) 
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~f=O 

for the particular case when the unknown function bas the form f = f( r, S) . Equation (e42) becomes 

:r(r
2
!!)+ sin

1
s a°s(sins!!)=o . 

By using the method of separation ofthe variables, a solution for eq.(43) bas the form 

f(r,S)=R(r)Y(S), 
where R and Y are two unknown functions. Eq.(e43) becomes 

where k is a constant. From (e45) itfollows that 

d(2dR) dr r dr 
R 

= 

d (. 0 dY) - sma-
d& d& = k 

Ysin& 

2 d2R dR r --+2r--kR=O 
dr2 dr 

(e42) 

(e43) 

(e44) 

(e45) 

(e46) 

ln a general case, the function R can be developed in power series. Let's look for a particular solution having the fonn 

R n ( r) = r n where n is a natural number. 1t follows from (e46) that 

k = n(n + 1) (e47) 

Then the particular solution of eq. (e46) can be expressed with the aid oftwo albitrary constants as 

Rn(r)=An r 0 +Bn /rn (e48) 

Because f bas to approach finite values for r ➔ oo , it bas to take A n = O . 
The second relation (e45) gives 

2 
sin S d y

2 
+ cos & dY + n( n + l)Y sin & = O 

dS d& 
(e49) 

By performing the substitution z = cos & eq.(e49) becomes 

:z [ (1- z
2
) ::] + n(n + I)Y = O, (e50) 

The solution of (e50) is represented by the LEGENDRE polynomials denoted by Pn (z), n = 0,1,2, ... So, 

P0 (z)=l , P1(z)=z , P2(z)=(3z2 -I)/2 (e5l) 

Because the trace 0 of the stress tensor is a solution of the harmonic equation (e23), it follows that the general solution for 
that trace in the case of the BOUSSINESQ problem is 

00 

0= L ...!!Lpn(cos&) . 
rn+l 

n=O 
According to eq.(e6), a similar solution exists for the trace ofstrain tensor. 

E.5) The displacement fitld. 

We look for a displacement field having the form 
1 l 

ur=;cp(S) . us =;w(S) . ll).. =O 

• 

whcre q> and \JI are two unknown functions following tobe obtained. Substituting (e53) into (e36) it follows tbat 

Err=-cp/r
2

, Ers=(dcp/dS-2w)t(2r2), Erx=O 

Ess=(cp+dw/dS)tr2
, Es)..=0, E).,).,=(cp+\j//tg&)/~2 

h follows tha1 1he trace ofthe strain tensor is 

(e52) 

(e53) 

(e54) 

0 = tq~ = t:rr+Ess+E)..).. =(cp+d\Jl/d&+\jl/tgS)tr2 
(e55) 
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A comparison of (e55) to (e52) shows that 
q> + d\Jf I dS + \JI I tgS = a cos 9- , 

where a is a constant remaining to be obtained. Hence 

0=acosS/r2 , 0=(3A.+2µ)0=(3Â.+2µ)acosS/r 2 , 

EÂ.Â. = 0-(Err + Ess) = (a cosS - d\Jf I dS )/ r
2 

By using HOOKE's law, it follows that 

crrr=(Â.acos9--2µ<p)lr 2 , O'rs=µ(dq>/dS-2\Jf)/r 2 , 

Oss =[A.a cosS + 2µ(<p + d\Jf I dS)]t r2 , 

· 2 
CJÂ.Â. = [(Â. + 2µ) a cosS - 2µd\j/ i dS] / r 

Substituting (e58) into the first equilibrium equation (e39) and using (e56), it rollows after elementary computations tl1at 

Hence 

~(sinS d<p) =a(2+Â./ µ)sin2S. 
dS dS 

sinS dq> = -~(2 + Â. / µ)cos2S + b = b-~(2+ Â. / µ)+a(2+ Â./ µ)sin 2 9-, 
dS 2 2 

dq> b - a (2 + Â. I µ) / 2 (2 'I / ) • n -=-------+a +11, µ sm.,,. 
dS sin S • 

where b is an integration constant. Because 

dx I x I f-.-=ln tg- +C, 
smx 2 

where C is a _new integration constant, it follows that 

cp = [ b - ~ (2 + Â. / µ) }ni tg ~ I- a (2 + Â. / µ) cos S + C . 

For S ➔ 7t / 4 , the logaritlunic term into (e62) leads to infinite radial displacements. That can be avoided by taking 

a 
b- -(2 +)../µ)=O. 

Hence 

and 

2 

q> = - a (2 + Â. / µ)cos S + C d<p =a(2+Â./µ)sin-S 
dS . 

cr rr = [(n. + 4µ)a cosS - 2µC) / r2 . 
Substjtuting eq.(e64) into eq.(e56), it follows that 

• 

Hence 

d\Jf +~=a(3+)../µ)cosS+C , 
dS tgS 

_i_{\JfsinS)=~(3+).. /µ)sin2S.:.csinS , 
dS 2 

\Jf sin 9- = -~(3 + Â. Iµ) cos2S + CcosS + D 
4 

= n - ~ (3 +A/µ)+ ~(3 + Â. / µ)sin 2 9- + C cos S - 1 4 2 

(e56) 

(e57) 

(e59) 

(e60) 

(e61) 

(e62) 

(e63) 

(e64) 

(e65) 

(e66) 

D - a (3 + ).. / µ) / 4 a 
\JI = . + - (3+)../µ)sinS+CctgS . (e67) 

Stn 9 2 
Bccause the tangcntial displacemeuts has tobe finite ones for I-➔ O. ii follows that 
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cos S - l a . S a . 
\jl=C. +-(3+Â./µ)smS=-Ctg-+-(3+Â./µ)smS, 

sms 2 2 2 

d\jl =- C +~(3+Â./µ)cosS 
dS 2cos2(S / 2) 2 

(e68) 

By substituting eqs.(e64) and (e68) iuto eq.(e58) it follows that 

O'rs=µ(2ctg~ -asins)1r
2 

, • crss=µ[c(1-tg
2

~)-acoss}r
2

, 

O')..)..=µ[ c(1 + tg
2 

~)- acosS} r
2 

(e69) 

Substituting eqs.(e69) into the second equilibrium equation (e39) it can be seen that the last one is identically veri.lied. 

E.6) Boupdary conditions for stress elements. Tbe final solutions. 

Eqs.(e65) and (e69) contain·the unknown coefficients a and ·C. These constants follow tobe obtained taking ioto account 
that the force P concentrated in the origin of the co-ordinate system is acting on the elastic semi-space. It can be seen that the 
points of the horizontal plane x 3 = O have the co-latitude S = 1t I 2 . 
The unit vectors of the spherical co-ordinate system are related to the same vectors of the rectangular co-ordinate system by 

where the orthogonal matrix is 

➔ ➔ ➔ ➔ 

er e1 e1 er 

(

sin S cosÂ. 

Q = cosS cosÂ. 

- sin Â. 

➔ 

e 

sin S sin Â. cos SJ 
cosS sin Â. - sin S 

COSÂ. 0 
The outer pointing unit vector nonnal to the elastic semi-space is equal to 

➔ ➔ ➔ 

°ţ' 
-e3 = -cos& er+sin&es. 

(e70) 

(e71) 

(e72) 

The resulting exterior force acting on the elastic semi-space is vanishing for all the points of the horizontal plane S = 1t I 2, 
exccpting the origin, i.e. 

Substituting (e72) ioto (e73) for S = 1t I 2 gives 

O' && = o ' O' rS = o 
By using (e69), the first eq.(e74) becomes an identity and the second one leads to . 

• a=2C. 
So, eqs.(e65) and (e69) give 

(e73) 

(e74) 

(e75) 

cr rr = 2C[{3Â. + 4µ)cosS - µ)/ r 2 , (e76) 

cr rS = -2Cµ tg ~ cos!!.. I r 2 
, cr tU~ = Cµ cos s( tg2 ! -1) / r2 . (e77) 

Consider an elastic hemisphere having the centre at the origin of the co-ordinate system. Thc curvcd surface S of thc 

➔ 

hcmisphcre has the outer pointing normal equal to er . On that surface, the rest of the elastic body (i.e. the semi-space 

minus thc hemisphcre) is acting on the hemisphere with a total force equal to 
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«ihere dA is the surface element and the unit vectors are obtained with (e70). 1t follows that 

➔ 21t n/2 ➔ . 

JJ cr erdA = J dÂ. J cr err
2 

sin SdS 
s o o 

1t/
2

{ S 2 } ➔ ➔ 
= 41tC J [(3Â.+4µ)cosS-µ)cosSsinS+µtg2 cosSsin S d8e3=41tC(Â.+µ)e3 

o 
Because the hemisphere is into an equiUbrium state, it follows that 

Hence 

➔ ➔ ➔ H CJ er dA + p e3 = O • 
s 

C=---P __ 
41t(Â. + µ) 

Finally, the non-zero components ofthe stress tensor are equal to 

(J =-· p [(3Â.+4µ)cos8-µ)tr 2 , 
rr ·2n(Â. + µ) . 

P S 2 
(J =---µ tg-cos8 /.r 

r~ 21t(Â. + µ) 2 

P ( • 2 s) 2 CJs& =---µcosS 1-tg - Ir . 
41t(Â. + µ) 2 

The non-zero components of the displacement vector are 
' p 

ur=---[2(2+ Â. / µ)cos8-1]/ r , 
41t(Â. + µ) ' ' ' 

us = p [ts!-(3 +.Â. / µ)sins] / r 
41t(Â. + µ) 2 

Using eq.(e7l), the components ofthe stress tensor into the Cartesian base can be ot?tained as 

[

CJ11 CJ12 CJ13J t(crrr <Jrs 
CJ 22 CJ 23 = Q CJ rS CJ SS 

(J3 O O 

Also, U1e components of the displacemenl vector into the Cartesian base are 

[::)~o'[ ~o:] 
Of particular importancc in real life are the components 

3P 3 5 
CJ33=--z /r 

21t 
l + V P [ . 1 z

2
] , u-.=-- 2(1-v)-+- . 

" E 21t r 3 r 

(e78) 

(e79) 

(e80) 

(e8I) 

(e82) 

(e83) 

(e84) 

(e85) 

(e86) 

(e87) 

(e88) 

The BOUSSINESQ problem has a great importa"ce in Geomechanics, in relation to tl1e computation of a building 
fou ndation. Thc above sohition derived for a concentrated vertical force can ~ used in the case of arbitrary vertical forces 
(sprcad 011 a certain domain) by assuming tl)e principie of the supcrposition. 
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F) ELEMENTS OF THIN PLATES THEORY 

F.l) The model of a thin elastic plane plate. 

The thin plane plate is a cylindrical body having an arbitrary horizontal cross section in the initially non-deformed state. Its 
height, denoted by H = 2h, is much smaller than the other dimensions (usually, around 7-10 times). The material of the 
plate is an elastic, homogenous, isotropic one, having the constants denoted by E and v , respectively Â. and µ . The tlurd 

axis of the co-ordinate system, denoted by Oz , is a vertical one, positive downward. Let be X 1 = x , X 2 = y . In the initial, 

non-deformed state, the plate is a plane horizontal one. The upper face bas the equation z = - h and the down face bas 
z = h respectively. Tbe plane of equation z = O represents the median plane. After the plate is· defonned. it becomes a 
median sur/ace. 

F.2) Tbe planar state of a plate. Tbe bending state. 

Two particular situation for a defonned plate are considercd (Fig.FI). 

(a) --·-·--- ---- · --· - · - -- --- p.m. 

-- -(b) -·- --- ---- -----------··- p.m. -., ----
(c) --------------------------- -- -. s.m. 

-., ----
Fig.FI. (a) The non-defonncd plate; (b) Tbe plate into a planar state; (c) The plate into a bending state. Here, the median 

plane is denoted by m.p. while m.L is the median surface. 

ln the first case, the horizontal components of the displacement vector are symmetrical ones with respect to the median plane, 
being even functions with respect to the z -variable, while the vertical component of the displacement vector is an anti­
symmetrical one (odd function with respect to z ), i.e. 

From eq.(flb) it follows that 

Uk(x,y,-z)= Uk(x,y,z),k = 1,2 

U3(X, y,-z) = -u3(X, y,-z). 
(fi) 

(f2) 

i.e. the material points placed initially into the median plane have no vertical displacement as a consequence of tl1e 
deformation of the plate (thc median plane holds a horizontal plane one). This kind of deformation represents the planar 
stale of the plate. 
In the second case, the horizontal components of the displacement vector are anti-symmetrical ones (odd functions with 
respect to z ), wlule the vertical component of the displacement vector is a symmetrical one with respect to the median plane 
(even function with respect to z ), i.e. 

Uk(x, y,- z) = -Uk(x, y, z), k = 1,2 

U3(x, y,-z) = U3(x, y,-z). 
(f3) 

By deformation, the material points initially placed into the median plane are displaced on the vertical direction, having no 
horizontal movement. The median plane becomes a median swface. This state represents the bending stale of a plate. 
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F.3) Loads acting on the plate. 

For simplicity, tl1e forces acting on tlle lateral surface of the plate are neglected. On the upper surface of the plate, having 
➔ ➔ 

• ➔ ➔ s s 
theequation z=-h andtlleoutwardpointingnonnalvector n =-e3 ,itisactingtllesurfaceforce q =q (x,y) . 

➔ ➔ 

In the same way, on the down surface, having tlle equation z = h and the normal vector n = e3 , it is acting the surface 

➔ ➔ 

force q j = q j(x, y) . Heitce 

(f4) 

i.e. 

Also 
➔ ➔ 

O' e3 = q j , for z = h (to) 

i.e. 

We shell see that tlle above presented defonnation states are compatible only to certain distributions of volume; or surface 
forces applied to the plate. 

F.4) Odd and even function1 for the planar state and for the bending state. 

Let f = f(x, y, z) bea function ofthree variables, supposed tobe smooth enough. It can be seen that 

f( )
- f(x,y,z)+f(x,y,-z) f(x,y,z)-f(x,y,-z) 

x,y,z - + 
2 2 

(f8) 

Let . 

f+( )- f(x,y,z)+f(x,y,--z) x,y,z -
2 

, (f9) 

f
-( )- f(x,y,z)-f(x,y,-z) 

x,v,z -- 2 
(flO) 

It follows that 

f+(x, y,-z) =f+(x,y,z) , f-(x,y,-z)=-f-(x,y,z) (fll) 

The function f+ represents tlle even part of f (with respect to z -variable), while tlle function f- represents its odd pan. It 
follows that 

(r+)+ =f+ , (f-)- =f- , (f+)- =(r-)+ =O . cn2) 

i.e. tlle even part of the even part-is equal to the even part too. A similar relation holds for tlle odd part. The even part of an 
odd part (and the odd part of an even part) is vanishing. For k = 1,2 , x 1 = x , x 2 = y, it follows that 

(r+),k = a!k f+(x,y,z)=½[a!k f(x,y,z)+ a!k f(x,y,-z)]=[f,k(x,y,z)r (fl3) 

Hence, the partial derivative (with respect to a horizontal co-ordinate) of the even part of a certain function ls equal to the 
even part of that derivative. This property holds for the odd part. So, 

(r+) k = (r,kr , (c) k = (r,kr (fl4) 
, ' 
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Also, 

( r+) ,3 = ½{ :.rf(x, y,z)+ f(x,y,-z)J} = ½[r,3(x, y,z)-f,J(X. y,-z)) = (r,3 r (05) 

Hence the partial derivative of lhe even part wilh respect to the vertical co-ordinate is equal to lhe odd part of lhe partial 
derivative of lhe function itself wilh respect to same co-ordinate. In the same way it follows lhat 

(r--) 
3 

= _(r,3t . Cfl6> 
, 

By using the HOOKE's law and lhe definition oflhe strain, it can be resumed lhat the planar state and lhe bending state are 
characterised by the next components: 

. + + -
-for the planar state: - lhe displacement vector: U 1 , U 2 , U 3 , 

. + + - + - + n+ 
• stram tensor: E 11 • E 12 • E 13 • E 22 • E 23 • E 33 •-.:, • 

+ + - + ' - + 
- stress tensor: O' 11 , O' 12 , O' 13 , O' 22 , O' 23 , _a 3 3 • 

-for the bending state: - the displacement vector: 

. - - + - + - -
- strain tensor: E 11 • E 12 • E 13, E 22 • E 23 • E 33 • S • 

- - + - + -
• stress tensor: O' 11 • O' 12 • O' 13 • O' 22 • O' 23 • O' 33 • 

F5) Mean value of a function. Equilibrium equations for thin plates. 

Let f = f(x, y,z)an integrable function wilh respect to z-variable. The mean value of f computed on the thickness oflhe 
plate îs denoted by 

For an odd function f , its mean value vanishes, i.e. 

lt follows that 

- 1 +h 
· r(x,y)=- Jr(x,y,z)dz 

2h 
-h 

(fl7) 

(fl8) 

r = r+ + r- = r+ + r- = r+ (fl9) 

For a function C = C( x, y} depending only on the horizontal co-ordinates, eq.(fl 7) leads to 
- -
C = C , zC = O . (f20) 

Differentiating eq.(fl7) with respect to lhe horizontal co-ordinates, it follows lhat: 

• f, k = (r) k , k = 1,2 . (f2 l) 
, 

For the vertical derivative, it follows lhat 

- 1 +Jh ar 1 1 _ 
f,3 = 

2
h az dz= 

2
h(f(x,y,h)-f(x,y,-h)]=hf (x,y,z= h) (f22) 

-h 
Consider the function zf(x, y, z). It follows that 

(f23) 

11s mcan valuc îs 

Hcnce 
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- 1 +h of 1 +h[ o } 1 [ +h] 1 +b 
zf3 =- J z-=--=-dz=- f -(zf)- f . z=- (zf) h -- f fdz= 

• 2h o z 2h o z 2h - 2h h 
-h -h - (f25) 

f(x,y,h)+f(x,y,-h) -f( )-f+( -h) -f 
--------- X y - X y Z- -2 ' , , 

Neglecting tbe volume forccs (thc weipt ofthe piaţo itself, for example), the equilibrium equations for the planar state are 

• (crtJ +(at2) +(cr13) = 0 
,1 ,2 ,3 

r ( (f t2) + ( a ;J . + ( (J 23) = o. (f26) 
,1 ,2 . . ,3 

( (J 13) + (O';) + ( (J 1\) = o 
,1 ,2 ,3 

Let the mean val\lCS of the stresa componcnts be denoted by 

- 1 +h 
Iu,::: CJij = 2h J a i/x, y, z)dz i, j = 1,2,3 

-h 
Applying the mean value operator to eqs. (tl6) gives 

Using eqs.(1'5) and (f7) it foUows 

Let 

(I1 J +(I12) +-
1 

[a13 (x,y,h)-cr13(x,y,-h)]= o 
,1 ,2 2h 

(I12),1 +(I22),2-+ 
2
1
h [cr23(x, y,h)- CJ23(x, y,-h)] = 0 

(I11),1 +(I12),2 + 2~{q!<x,y)+q;(x,y)]=o 

(I12),1 +(!22),2 + 2
1
h[q~(x,y)+q;(x,y)]=o 

(f27) 

(f28) 

(f29) 

-- 1 +h . . 
Mij=zaij= 2h f ZCJij(x,y,z)dz l,j=l,2,3 (f30) 

-h 
Multiplying eqs.(f26) by z and using again the mean value operator, it follows 

( ) ( ) 
. 0'33(x,y,h)+CJ33(x,y,-h) -

M13 1 + M23 2 +. . 2 - L33-o . <01> , , 
Hence, 11Sing again •. (f'S) aod (f7), 

j j 

( ) ( ) 
q/x,y)-q/x,y) . 

M13 ,t + M23 ,2 + 2 -I33=o, <02> 

So, thc equilibrium of a thin plate ioto the pk,nar &late leads to eqs.(f29) and (02), 
C9flSider tbe weight of the plate, the c,quatioil of equilibrium for the plate ioto !he bendlng state are 

(a1J +(cr12) +(at3) : 0 
,1 ,2 ,3 

( cr12) + ( cr2J +( 0!3) = 0 cnJ> 
,1 ,2 ,3 

(at3) +(cr;3) +(cri3) +pg=O 
,1 ,2 ,3 

Here, the density of thc plate is p and the acccleration of gravity îs g . . 
Procccding în a similar manner to nbove. it follows the cquations of equilibrium for the thin plate into a bendi11g state are 
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(L13),l + {L23},2 .+ 2~ [ q~(x,y)+q;(x,y)] + pg = O, 

(M11),1 +(M12),2 +½[q~(x,y) - q:(x,y)]-L13=<> (04) 

{M12),1 +{M22},2 +½[ q{(x,y)-q;(x,y)] - t23 = 0 

Eq.(f14b) is differentiated with respect to x and eq.(04c) is differentiated with respect to y. The results are substituted in 
eq.(f14a). Hence 

(M11),11 + 2(M12),12 + (M22),22 + 2~[ q~(x,y)+q~(x,y)]+ pg 

+½[ qi(x,y)-q:(x, y)] +½[ q{(x, y)-q~(x, y)] = O 
,1 . ,2 

( 

F.6) Tbin plane plate in tbe bending state. 

(05) 

The component U 1 of the displacement vector is developed in power series with respect to z -variable. 1t follows 

8 u1 Ut (x, y, z) = u 1(x, y,O) + zaz""(x, y,O)+... (06) 

For the bending state, the firat tenn in eq.(f36) vanishes. Because the thickness of the plate ls a small one, only the second 
term is kept. So the horizontal components of the <lisplacement vector are 

8 u1 8 u2 u 1(x,y,z)=za;-(x,y,O) , q 2(x,y,z)=~a;-(x,y,O) (07) 

The vertical displacement of the points placecl into the median plane is denoled by 
w=w(x,y)=u3(x,y,O) , 

i.e. the mean surface bas the equation z = w(x, y). Here, w represents the arrow ofthe pklte. 

F7) BERNOULLl's bypotbesil. 

(08) 

According to BE~ULLI, it is auumed that an arbitniry material segment of the plate, initially perpendicular on the 
median plane in the non-deformed state, rests perpendicular on the mean surfa0o in the deformed state. Let A(x, y, z) a 

certain point of the plate (not placed in tbe mean plane) and Ao(x, y,O) its projection on the median plane. So, the 

➔ 

segment A o A is perpendiCQ)ar on the median plane. After dcfonnation, the material point A is moving at the point 

having the co-ordinatesM(x + Ut (x, y, z), y + u2(x, y,z), z + U3(X, y, z)), wbile the point Ao ia moving at the 

point Mo(x + u 1(x, y,O), y + u 2(x, y,O), w(x, y)} . Tbe borizontal displaccmenti ofthepointsplaced in the median 

plane are vanishing. So, writing the vector along the line, it follows that 
➔ 

MoM = (u-1 (x, y,z), u2(x, y,z), z + U3(X, y,z)- w(x, y)) (f39) 

Expanding in power serlcs the even f\motioo U 3 with respect to z -variable, it fbUowa 

u 3 (x, y, z) = w(x, y) + z2J3(x, y)+.. . (f40) 

Using eqs.(07) and (f40), it (ollows that 
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➔ ( 0 u1 °u2 3 ) MoM:::: z-(x, y,O), z-(x, y,O), z + z P(x, y)+ .. . 
OZ OZ 

{
0u1 °u2 2 ) = -(x, y,O), -(x, y,O), 1 + z J3(x, y)+ ... 
OZ az . 

(f41) 

Hence the direction is 

(f42) 
➔ 

IIMoMII 

The normal vector on the median surface is 

➔ r aw aw î/ (aw)2 (aw) 2 

n = l- ax .- ay .1J ax + ay + i • (f43) 

Comparing eq.(f42) to eq.(f43), the supplemental hypothesis ofBERNOULLI is satisfied if 

8u1 ow 0u2 aw -
0
-(x,y,0)=--;-, -

0
-(x,y,0)=--;-, u3(x,y,z)=w(x,y) (f44) 

z vX z vy .. . . . 
i.e., by using eq.(07), the displacemcnt vector bas the horizontal components equal to 

âw • 0W 
u1(x,y,z)=-z

0
x , u2(x,y,z)=-zay , u3(x,y,z)=w(x,y) (f45) 

From eq. (f45), the components ofthe strain tensor are 

o2w 
Eu=-z--

ax2 

The LAPLACE operator in horizontal componenta is denoted by 

Hence the trace of the strain tensor is 

F8) HOOKE's law for a thln plate. 

By using eqs.(f46) and (f48) iţ follows that 

But 

Hence 

ln thc sume way, 

2 1 +h 2 h2 
z =- Jz dz=-

. 2h 3 
-h 

(f46) 

(f47) 

(f48) 

(f49) 

(f50) 

( 
(f51) 
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-- h2 fJ2w H2 a2w 
M12- zcr12- 2µ 3 axay = µ 6 axay crs2

> 

-- h
2 

( • a2w) H
2 

( • a
2w) M22=zcr22=-- ÂÂ w+2µ--2 =-- M w+2µ-2- (f53) 

3 oy . 12 ay 

Substituting eqs.(f51)-(fS3) into eq.(f3S) it follows the equation of Sophie GERMAIN: 

where 
• 3 3 

D=(Â + 2 .)2h = E(l-v). H • 
• µ 3 (1 + v)(l'" 2v) 12 

(f55) 

represents ihe tlexural rlgidlty ofthe plate. 

So, obtaining thc median surfa0C aaks someone to solve a bi-harmonic eq.~ witb certain bouDdaJy conditions on the 
upper/ Jower faces ofthe plaţe. Tbe equation (fSS) will be solved in Slllţe cases ofpartlcular importance in real cases. 

EXERCISE. Firul the expressions of L 13 and L 23 for a thin plate into a bending state. 

F.9) Tbe infinite, 1-dimemional (1-D) plate. Tbe ftexu.re of the lltb0Jphe11e. 

Consider an inftnite ·extended plate along y-co-onfuiate. Tbe component u2 ofthe displacement vector is equal to zero, 

arad the rest of the components does not depend on y -<XH>rdinate. 1n this case, tbe plate is asşumed to be in a cylindrical 

bending state. Neglecting the horizontal loads, eq.(f55) becomes 

d4w j s 
D4 =pgH+q/x)+q/x) (f56) 

dx 
For the case prescnted in Pig.F2, on the upper faoe of the plate is aciing the load P due to the relief and the lithostatic 
pressure, i.e. 

(f.57) 

where Pr is the density of the ftlling sediments (assumed to be homogeneous oncs) place<l between tbe reference plane of 

elevation equal to zero and the upper surface of the plate. 0n the down face of tbe plate, it is acting the pressure of tbe liquid 
of density equal to p m ,i.e. • 

where .Po is an unknown constant. Eq.(f59) becomes 

d4w 
D-4 = P - (Pm - pr)g w(x) + p 

O 
- Prgh - Pmsh + pgH (fS9) 

dx · 

li is assumed that in the absence of the relief (i.e. P=0), the non-defonned plate (i.e. w( x) !I! O) îs in an equilibrium state 

urider the action of its own weight and of the pressure of the liquid, i.e. 

Po -Prsh-Pmsh +pgH = O (f6Q.) 
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~ .uru 
~ 

~ 
fig.F2. The flexure of the lithospherc under the action of the relief (P), of the lithostatic pressure r L and of the pressure of 

• the liquid r M . 

lt results thejlexure .equalion ofthe 1-D plate : 

(f6l) 

Let 

(f6;2) 

where a. is the flexura! parameter ofthe plate. Eq.(f61) becomes 

4 
d w(x) = ,!_ _ _!.w(x) 

dx4 D a.4 
(f63) 

F.10) Exterior rorce, on tbe lateral sqrface of the plate. Buckling. 
. 

To derive Sophie GERMAIN equation (fS6) for the bending state, exterior forces acting on the lateral surface of the plate 
have been ignore4, eapecially those placed into the median plane. Consider a very thin· plate simply leaning like in Fig.F3. 
The load P îs ab&ent llJld thc plate is infinite developed in a direction perpendicular on the plane of the figure. An element of 
the plate having the length eqQal to unit along that direction is consi4ered too. Let h be the thickness of the plate. The furces 

➔ 

per unit length along the above diniction &Je denoted by ± N , being derived froqi tbe stresa ac ( positiv~ for compression ) 
by 

(f64) 

(a) +N „I : : ~-~ 
a --t c~ 

+-----..--------------1,.......... X 
(b) 

1 , .. , \ . 

y 

Fig.F3. A plate si_ ~ply_ 'ean!ng, s~j~ţ t~ •~~. l.lCtiol_! of f9rces Qlace,c:fl~io ~ median plane. 
l'-'t l • 11d '', .. ,' •:,~'{i)~-•~c&.1""1e\v~·o,1~~ew1froinatxwe~ +' t • 

➔ ~) 

lfJ.\1, .forc;y, ± N ~ &ffi!lll o~ea . ~ -•.plilt,; 3:'!ill1bc)deformed·,aCCC)tdins to a:,p1ane,11ate;'-attempiing 'a ifinal :ttirifi~mtfori 
➔ 1 ~ ;_.i,:!;:}H ~11 H H) :,-, "!' r:t~·••;-;. ;: ·:l:• -·1 1 i,~: 1

• • • : •t. ·,,,i ·, i .. !-. 

similar to Fig. I b. lf the forces ± N are above a certain criticai value, the plato loses 1uddenly itl equllibrium state, attending 
a defonnation state like Fig.F4a, (or in the contrary sense, l.e. 5½l}Unetrically wlth respect to the line of its supports. The 
clisplacement field in this case is similar to the cylindrical bending'.-That phenome.QOn repres,,nts the buckling of the plate. It 
characterises very thin plates or bars. • • 
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(b) 

(c) 

Q=-P 
➔ 

Fig.F4. (a) The equilibrium of a buckled plate acted l>y the forces ± N arul by the n:actio.ns ofthe supports. 
(b) The equilibrium of a buckled plate acted by a vertical load p arul by the reactions of the suppons. 

➔ 

(c)The equilibriwn of a buckled plate acted by the forces ± N arul by a load q having the same magnitude but a 

contrary sense with respect to the load presented in Fig.F4 (b). 
In order to usc the previous results, it is necessary to find when the mechanical state of streşs / strain corresponding to the 
presence of the lateral forces is identica! to the mechanical state of stress / strain corresponding to an unknown vertical load 
p = p(x) (Fig.F4b). The equilibrium condition for the case shown in Fig.4a is 

➔ ➔ ➔ 
L N + L R (I) = o (f6.5) 

and the equilib~um condition for the case shown in Fig.F4b is 

➔ ➔ ➔ 
!: P + !: R C2> = 0 (f66) 

•➔ ➔ 

where L R (I) and L R ( 2) are the reactions of the supports in the above cases. Because the mechanical state of stress 

is identical in both cases, particularly in the neighbourhood of the supports, the reactions will be the same, i.e. 

➔ ➔ 

!: Ro>=!: R C2> . (fti7) 

It follows that 

(fti8) 

Hence for the corresponding state of stress / strain, the plate is in an equilibrium state if it is acted by the lateral forces arul by 
➔ ➔ 

a vertical load q = - p , in th~ absence of the supports (Fig.F4c). Consider a plate element having the horizontal length 

equal to dx and the ends denoted by A and B (Fig.F.5). 

rdx--! X 

Fig.F5. The equilibrium of a plate element due Io the load q and to the internai tensions. 
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Because the plate is a thin one, the tangential efforts arc ncglccted. At the point A, it is acting a force (per unit length) 

➔ ➔ 
denoted by t , representing a normal effort, tangent to the plate. The angle between t arul the horizontal axis is denoted by 

➔ 

q,. At the point B, it is acting the effort t + dt , making an angle equal to <p+dq, with the horizontal axis. The equilibrium 
conditions are 

For small angles <p, it follows that 

The first equation in (f69) gives 

Hţnce t has no variation along x-axis, i.e. 

The second equation in (f69) gives 

By using (f74) arul (f70c) it follows that 

t cos cp - ( t + dt) cos( cp + dcp) = O 

t sin cp - ( t + dt) sin( cp + dcp) - qdx = O 

coscp = cos(cp + dcp) = 1 

sin cp = cp , sin{ cp + dcp) = c_p + dcp 

dw 
cp = tgcp = --

dx 

t=N 

tcp - t( cp + dcp) - qdx = O 

dcp d2w 
q=-N-=N-. -

dx dx2 
Hence the forces on the lateral faces of the plate are mcchanical equivalent to a vertical load equal to 

d2w 
p=p(x)=-N-

dx2 
It follows that eq. (f63) has the next general fonn 

F.11) The buckling of a simply leaning Olin plate. 

(f69) 

(f70) 

(f7l) 

(f72) 

(t73) 

(f74) 

(f75) 

(f76) 

Consider the plate in Fig.F3. For simplicity, it is assumed that c = O (i.e. the plate is leaning just at its ends). The buoyancy 
force and the vertical loads are neglected. Equation (f76) becomes 

d4w N d2w 
--+--- = 0 (f77) 
qx4 D dx2 

together with the next conditions: 

-al the end point having x=O: 

-at the end point having•x=a: 

w = O,d2w/dx2 =0 

• w =.O, d2w / dx2 = O 

(f78) 

(f79) 

* The equations (f77)-(f79) bas the trivial solution w = O. It follows to find a criticai buckling value N = N in order the 
system (f77)-(f79) to have further non-trivial solutions. Successively, equation (fl7) can be written as 

~(d2w + N w) = O (IBO) 
d x2 d x2 D , • 

I 

d2w N 
--2 + -w = C1x +C2 
dx D 

(IB I) 
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whcre Ci , C2 are two integration constants, vanishing according to (f78)-(f79). Hence (IBl) is 

d2w N 
--+-w=O 
dx2 D 

having the solution 

w(x) = C3 sin( JN I Dx) + C4 cos( JN I Dx) 

From (f78) it follows that C4 = O, while from (f79) ·it follows the criticai values 

The lowest criticai value is obtained for k = 1 . 
EXERCISES. 

* 2 N k = D( k1t / a) , k = 1,2, ... 

( I )Perfonn a study for the buckling of a 1-D plate having an embedded end point, the other being free. 

(f82) 

(IB3) 

(f84) 

(2)Perfonn a study for the buckling of a 1-D plate having both end points free. The plate is simply leaning at 1/3 from its 
length with respect to its lefi end. 
(3)Perform a study ofthe simply leaning 1-D plate in the presence ofthe buoyancy force. 
( 4 )Modify the equation of Sophie GERMAIN for the 2-D plate in the presence of lateral forces. 
(5)Perform a study for the buckling a 2-D rectangular plate, simply leaning at alt its sides. 

F.12) The infinite extended 1-D plate. 

By integrating botl1 sides of eq.(f76) it follows 

+oo d 4 +oo d 2 +oo +oo 

D J ; dx + N J ; dx +(Pm -p)g J w(x)dx = J P(x)dx , 
_

00 
dx _ 00 dx _ 00 -oo 

(f85) 

Because w and its derivatives of any order are vanishing at infinite, the flrst two integrals in (f85) are vanishiqg 100. lt 
follows that the area bounded by tlle median curve (tlle flexure) and the horizontal x-axis is proportional to tlle load due to 
the relief, irrespective the presence of tlle lateral forces: 

+oo • +oo . 

J w(x)dx = 1 J P(x)dx . 
(Pm -p)g 

-oo -oo 

(f86) 

Let an approximation of tl1e reliefbe a set of m steps, each one of height equal to h j and density equal to p j, i.e. 

~ PJ·(x)--{Pjsh_._ j,pentruxe(aj,bj] P(x) = L...J Pj(x) , 
j=l O, m rest 

(f87) 

Equation (f86) becomes 

+oo 1 m 

J w( x )dx = --"'p • h • (b • - a·) (f88) 
p -pLJ J J J J 

-oo m j=l 
Hence the area bounded by the flexura! curve and tl1e horizontal axis is a linear combination of the areas approximating the 

relief. In real cases, the flexural curve can be outlined ajong a finite interval denoted by [-L , L] , hence an upper bouqd for 

the difference of the densities can be obtained as 

Equation (f76) will be solved by using FOURIER transforms. 

F.13) FOURIER traosforms. Properties. 

The direct FOURIER transform ( 1.F.d. ) of a function f( x) is the new function <!> ofvariable u, dcflned a1 

+oo 

(f89) 

<l>[f](u)= J f(x)exp(-iux)dx, i = ,r-:î (f'JO) 

-00 
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The inverse FOURIER transform ( t.F.I. ) of a function <I>( u) is the function f ( x) defined as 

+oo 
f(x) = <l>-l [<I>[f](u)](x) = -

1 
J <l>(u)exp( +iux)du 

21t 
-:-00 

(f'Jl) 

df . 
Dtfferentiating both sides of eq. (f'J l) with respect to x, it follows that the t. F. d. of the first derivative dx can be obtained by 

f( ) · d
4

w · ed b 1 • I •• h multiplying the the t.F.d. of x by tu . Hence the t.F.d. of the derivative -
4
- can be obtam Y mu Up ymg t e 

dx 

t.F.d. of w(x) by (iu)4 = u 4 . Considertwofunctions f and g ofonevariable. Theirconvolutionproductis 

+oo 
(f*g)(x)= Jf(y)g(x-y)dy . (f'J2) 

-00 

Permuting the integrals, it follows that the direct FOURIER transfonn of the convolution product is the product pf the 
transforms ofboth factors ofthe product, i.e. 

~f • g]( u) = I[ E(y)g(x - y )dy ]exp(-iux)tlx 

. (f'J3) 
+oo +oo 

= J f(y)exp(-iuy)dy Js(z)exp(-iuz)dz=<l>[f] c.t>[g] 

-00 -oo 

F.14) Solution of the tlexure equatio11 by using FOURIER transforma. 

The solution of eq.(f76) is the suro of two tenns, a term corresponding to the homogeneous equation and a tenn 
corresponding to a particular solution, i.e. 

w(x) = wh (x) + wP (x) (t94) 

A particular solution wP = wP (x)wiH be obtained applying the direct FOURIER transfonn to eq.(f76) and by using the 

above presented properties of the FOURIER transfonn 

4 p N2 p 4 p I u <l>[w ](u)--u <I>[w ](u)+-
4 

<l>[w ](u)=-c.t>[P](u) , (f'J5) 
D a D 

i.e. 

<I>[ w p ]( u) = _!_ __ <l>----'[=-P=--=-]( u-'-) __ 
D u 4 - Ku 2 + 4 / a 4 

(f'J6) 

li is assumed that the value of the positive constant K = N / D is small enough. Consider the particular case when the load 
due to lhe reliefis a load concentrated at the origin ofthe axes, having the magnitude equal to unit. The direct FOURIER 
transform of this load is equal to unit too. The corresponding solution, denoted by w G, represents the elastostatic GREEN 

fu net ion. It allows one to obtain the solution corresponding to an arbitrary load of magnitude equal to P . Hence 

I I 
<l>[wo ](u) = 2 

D (u2 -K12) +4/a4 -(K/2)2 

lt is assumed that the next condition is satisfted 

Let 

Bui 

IKI <4/a2 

A = ✓lla2 +K/4 , B= ✓l/a2 '--K/4 

(f'J7) 

(f98) 

(f\)9) 
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The next resuit is valid (Rîjic arul Gradstein 1955) 
CX) 

f zsgn Re(z) cos xdx = 1t exp(-z) • , • z :ţ:. O (fl0I) 
z2 + x2 2 o . 

By using (fl0I), the next inverse FOURIER transfi[orms are obtainedl . 

cl>-l 
1
2 2 

Kx) = -
1 

exp{-BI~ =f iAx) (f102) 
• ( u ± A) + B J 28 

cl>-l[ 
1
2 2 + 

1
2 2 }x)=..!..exp{-Bjxl)co~Ajxl) (f103) 

(u+A) +B (u-A) +B B 
By using the property of the derivative, it follows 

cl>{-
1 

~[exp(-Blxl- iAx))}(u) = iu 
2B dx . (u+A)2 +B2 

(f104) 

In the same way 

<l>{-
1 

~(exp(-Blxl + iAx))}(u) = i~ 
2 

(fl05) 
2B dx ( u - A) + B 

Subtracting eq.(f104) from eq.(105), it follows that 

<t>{..!..~[e~p(-Blxl)sin(Ax))}<u) = u
2 2 

- u
2 2 

. (f106) 
B dx (u-A) +B (u+A) +B 

Hence 

cl>-1[ u • u ] 
(u-A)2 +B2 (u+A)2 +B2 

(f107) 

= ~ :x ( exp(-BlxO sin( Ax)) = exp(-BlxD[ ~ cos( AlxD - sin( AlxD] 

Using tbe above results, it follows after some elementary computations that 

(f108) 

(fl09) 

It can be observed that w G ➔ oo for B ➔ O , corresponding to the buckling of the infinite plate in the presence of a 
lateral compressive stress. From (f96) and (f97) it follows that 

el>[ w p] = <l>[P]<l>[ w G] . (fi JO) 

Hi:nce the solution for an arbitrary load is the convolution of tbe load due to the relief and the function given by (fl09), 
reprcscn1ing u general property ofthe GREEN function: 

+oo 
w0 (x)=(P*wo)(x)= f P(y)wo(x - y)dy. (flll) 

• -oo 
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For the approximation of the relief represented by eq.(f87), it follows that 

1 m • )] 
wP(x)= ---LPjh j[I{b j - x)-: 1(aj -x 

4(Pm - p) j=l 
(fi 12) 

where 

I(z)=sgn(zjexp(-Bj~J-2cos(Aj~)+ K sin(Aj~)]+2} (fll3) 'l 1 ✓(pm-p)g/0-K2/4 
The solution of the homogeneous equation can be immediately derived as 

wh (x) = [Ci cos(Ax) + C2 sin(Ax)]exp(-Bx) + [C3 cos(Ax)+ C4 sin(Ax)]exp(Bx) (fl I-l) 

Hence the general solution is 

w(x)= 
1 

_ f Pjhj[I{bj -x}-1(aj -x}] 
4(Pm p)j=l (fll5) 

+ [C1 cos(Ax} + C2 sin(Ax)]exp(-Bx) + [C3 cos(Ax) + C4 sin(Ax)]exp(Bx) 

It follows to find the unknown coefficients CI, C 2, C3 and C 4 in some particular cases. For the infinite plate, the flexure 

W is subject to the next conditions: 
lim W(x)=O 

x➔±oo 

(fi 16) 

Hence the coefficients Ct, C2, C3and C4 are vanishlng and the general solution isjust the particular solution represented 

by eq.(l 16). In the case of the semi-infinite plate the flexure W is subject, for example, to the next conditions: 
lim W(x)=O (fll7) 

x➔oo 

W(O+O)=Wo (fi 18) 

d2W li 

-
2
-(o+o)=Wo =-M0 1D 

dx 
(fi 19) 

li 

where • W o , Wo and M O (positive when acting into a clockwise sense) are the values of the flexure, that of the second 

derivative of the flexure and that of the bending moment respectively at the lefi end of the plate where the origin of the x-axis 
is selected. It follows • 

and 

- m 
C 1 = W o - L P j gh j [ ~ b j }- 1( a j}] , 

j=l 

C2 =-
1
-[-

1-f Pjgh j[exp{-Ba j}sin{Aaj}- exp{-Bb j}sin(Ab j}] - !c:1 - w~] 
2AB 4ABD . I , 2 

J= 

(fl20) 

(fl2 l) 
A finite plate of variable thlckness can be approximated in real cases by a surn of n elements having constant thlckness and 
homogeneous elastic properties. To obtain the values of the unknown coefficients CI, C 2, C 3 and C 4 for each element, 

proper conditions have to be verified at the ends of each element. A finite element algorithm based on the continuity of the 
values of the flexure, of its first derivative, of the bending moment and of the share force bas been derived by Ivan ( 1997), 
EXERCISE. Derive the expression of w(x) for a load due to a reliefhaving the equation 

P=P(x)=pgh(x)={pgh~sin(21tx/Â.},pentru xe[-Â./2,+Â./2], (fl
22

) 

O ,m rest . . 

where h O is the amplitudc of the relief and Â. is its wave-length. 
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F.15) Finite plates. 

In the case of the finite plates, the boundary conditions on the contour of the plate are e~ntial ones in order to obtain the 
values of the integration constants. Some particular, most common cases will analysed in detail. As a consequence, a previous 

examinationofthemeanvalues E ij and Mij , i,j=l,2,3. itisnecessary. 

F.15 a) Significance of Lij and Mijfor the bending state. 

According to the definition of the stress tensor elements, (J' ij is the projection along j -axis of the surface force acting on 

➔ 

the surface having the outer pointing nonnal equal to n i . Because the elements (J' 13 , O' 23 are even functions, the 

mean values Lt3 , L23 are representing share forces, acting li.ke in Fig.F3. 

(a) 0-f 3 

~ 

•• •••• ' 

, o-t3 

• ' 
~13 

o ><(1) 

ri2~ (b) 

I:23 

Fig.F3. The mean values I:13 (a) and I:23 (b). Both ofthem are share forces. 

Similar considerations allow one to conclude that the mean values M l l and M 22 are bending moments, while 

M 
12 

, M 21 are torsion moments (Fig.F4 ). 

B ~x(l) 

y(2) z(J) (b) 

Fig.F4. The bending moments M11 (a) and M22 (b). The torsion moment M12 acting on the side having the outer pointing 
normal l is presented in Fig.4c. A similar torsion moment is acting on the side having the nonnal 2, but it is not presented in 

the figure. 

. 
F.15 b) The rectangular plate. Boundary conditions. LEVY 's solution. 

Let consider a rectangular plate having the sides equal to 2a and 2b respectively (Fig.F5). Consider, for example, the side 
AB, having the equation x = a , y e (- b , b) ). Among most commonly used boundary conditions are 

i.c.: 

-the embedded side: the flexure of the plate and the derivative of the flexure are both equal to ze,ro 
w(x, y) = o ,aw/ax =o; 

-1he rolating side: the flexure of the plate and the bending moment are both equal to zero: 

w(x, y)=O, M 11 = O , 

(fl23) 

(fl24) 
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• a2w w( X, y) = 0 , Â. ,1 W + 2µ -
2
-'"' Q · 

âx 
-thc frec alde: the share force, the bonding moment 11nd the torsion moment are oii equaJ to :icro. 

C(·a.-b) B(a,-b) 

D~><(lJ . 

(-a,bJ/IA(a,b) 

y(2) z(3) 

Fig.F5. The rectangular plate. 

Similar conditions can be derivcd for plates of arbitrary shape. 

(fi 25) 

As an example, consider the rectangular plate with two opposite articulated sides. Neglecting tbe lateral forces and the 
gravity, it follows to solve the simplified equation ofthe flexure 

.1.1w=q(x,y)/D , (fl26) 

with the boundary conditions (fl25) written for x = ±a and a 2.-D LAPLACE operator. Consider a particular solution 
having the form 

it follows !hat 

Hence 

00 

w(x, y)= Lfk(y)sin(knx / a) , 
k=l 

w(±a,y)= O, 

82 2 oo 

; =--¾- Lk
2
fksin(k1tx/a) 

ax a k=l 

(fi 27) 

(fi 28) 

(f129) 

It follows the conditions (fl25) are fulfilled for the two opposite articulated sides. Substituting (fl27) into (fl26), it follows 
that 

00 
[ "" (k1t)2 " (k1t)

4 
] k1tx L fk (y)-2 - fk(Y)+ - fk(Y) sin-= q(x,y)/ D . 

k=l a a a 
(fl30) 

The function q ( x, y) is expanded in FOURIER series and the coefficients are identified. Both sides of eq.(fl 30) are 

multiplied by sin j1tx ,j = 1,2, ... The resuit is integrated on the interval [-a,a], talcing into account that 
a 

+fa . k1t x . j1t x d {O , pentru j .e k sm--sm-- x= 
a a a , pentru j = k • 

-a 
(fl3 l) 

Hence 

ln the beginning, the next homogeneous equation is solved, i.e. 

"" (k1t)2 " (k1t)4 Fk(y)-2-;- Fk(y)+-;- Fk(y)=O,k=l,2, ... . (fl33) 

Thc characteristic equation is 

4 ( k1t) 
2 

2 ( k1t) 
4 

r - 2 -;- r + -;- = O , deci '1 = rz = -k1t I a , f) = r4 ::.: krr / a . (flH) 
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hcncc 1he ti0lu1io11 or 1hc homogcncous cqua1lon 1s 
k1t y . k1t y ( k1t y . k1t y) 

Fk(y) = Ak cosh--+ Bk sinh--+ y Ck cosh-- + Dk smh- , (fl35) 
a a a a 

whcre A k, B k, C k, D k, k = 1,2, .. . are some consta1111 followlng 10 be obtalncd from the boundary condilions 011 the 
o1hcr 1wo (non-artlculalcd) sldes of the plate. The general solution of equatlon (fl32) ls the sum of (fl35) and II partlculur 
solution. The last one can be obtalncd by the usual technlques (e.g. CAUCHY method). The above approach 1s duc to 

LEVY. 

F.16) Vibrati9n1 of a plate laying on a vl1cou11ub1tratum. 

111 this chapter, the flcxure ls considered as a function ofboth spatial co-ordinatcs and timc. The corresponding differential 
equation is derived, being solvcd in thc case of the 2-dimenslonal plate. 

a) The ditTerential equation. 

As usually, ş co-ordinate system is UICd having the horizontal axes x and y. Thc z-axis is positive downward, having the 

➔ 

unit vector denotcd by e z . By applying thc mean-valuc operator, the equations of motion for the bending state are 

(fl36) 

(fl37) 

and 

(fl38) 

It will be asswned that Bemoulli's hypothesis is valid for all time. Hence thc displacemcnt vector has the elements 
0W âw 

Ux(x, y,z, t)= -z- Uy(x, y,z, t)= -z- , U (x, y,z, t)= w(x, y, t) . ax ay . z . 
(fl39) 

Substituting (fl39) into (fl36)-(fl38) lt follows after elementary computationa that 

•• •• P 3••• I u • 
.DA A w=pgH-pHw+-H A w+q (x,y,t)+q (x,y,t) 

12 z z 

+ ~ {{ q~(x,y, t)-q:(x,y, t)]/ax +{ q~(x,y, t)-q;(x,y,t)]/ay} 

, (fl40) 

As usually, the horizontal loads for the upper face ofthe plate arc ne,iected, thc surface fon:es being assumed tobe 

u ·u u F •• 
q X = 0 , q y = 0 , qz = p gw + P(l - w / g) (fl41) 

wherc pF is the density oftbe ftlling llediments andP is thc load. The last termin (fl41) ia an inertial one. Por the material 
below the plate, the next constitutive equation is assumed 

• 
cr = [po -pMg(H + w)]l + ÂMtri 1 + 2µM E + 211M E (fl42) 

where p o is a reference pressure and pM is the density of the material below the plate. The LAME elastic cocfflcients are 

Â M , µ M and TJM is the viscosity. Hence the loads on the lower face of the plate are 
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• • 
I Mâw M8W 

qx = µ a;+ri ax 
I Mâw M8W 

qy=µ a;+ri a; 
(fl43) 

Again, a correction due to the compressive horizontal stresses O' i , O' y acting along the x- and y-axes respcctively at the 

ends of tl1e plate follows to be considered further. The reference pressure p o is selected in order the flexure w to vanish in 

the absence of the load P . Finally, a generali~tion of the Sophie GERMAIN equation for a time dependent flexure is 
obtained as 

(fl44) 

M H * • •• ••• = P+ri -~ w-(pH+P/g)w+_E_H3â w 
2 12 

b) The rectangular plate with 3 embedded sides. 

For usual materials ÂM = µM, hence the second tenn on the left side of (fl44) Vlllµshes. Because the load is mainly 

represented by the relief, having the elevations much smaller then the thickness of the plate, the inertial tenn is usually 

negligible on the right side of ( 15). Let w e = w e ( x, y) be the equation of the flexure corresponding to the state of 

equilibrium in the presence of the load, i.e. 

Consider the difference 

o= o(x, y, t) = w(x, y, t)- we(x, y) (fl46) 

(fl47) 

where a denotes the velocity of P-waves through the plate. 

Consider the lengths ofthe sides are Li , Ly respectively. Suppose the plate is embedded according to 

o(x,O, t) = O, with o$ X$ Lx 

o(O, y,t)=O, with 0:5:y:5:Ly (fl48) 

o(Lx,Y,t)=O, with 0:5:y:5:Ly 
at any time. A particular solution satisfying (fl48) is 

O mn (x, y, t) = sin{m7tX / Lx )sin[(n - O.S)7ty / Ly] t O (t) , m, n = 1,2, ... (fl49) 

Substituting (fl49) in (f147) it follows the modes are damped harmonic, i.e. 

•• • 4 2 . 7t 
• + '.U;mn t+-

2
-t = O 

Tmn 
(fl50) 

For m,n = 1,2, ... thepcriodsare 
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\ 

arul the decay constants are 
M 

r - 3î1 Amn 
">mn -

pH2 Amn + 12 

where 
• M F Hx = H / Lx , Hy =HI Ly. , p = (p ~ p ) / p 

and 

Amn =x2[m 2H~ +(n-0.5)2 Hţ] 
According to (fl39), the modes are both toroidal and spheroidal. 
For eâch mode, a criticai viscosity can be found from 

i.e . . 
2 cr 21tpH Amn + 12 

îlmn = 
3Tmn Amn 

(fl52) 

(fl53) 

(fl54) 

(fl55) 

(fl56) 

For values of viscosity less than the criticai value (fl56), the motion of the plate is represented by a sum of damped 
oscillations. The decay constants are obtained from (fl52) and the periods are 

* ( Cf )
2 

Tmn =Tmn I 1- Cmn /Cmn (fl57) 

For values of viscosity greater than the criticai value, the motion of the plate is aperiodic arul the characteristic roots of (21) 

are -( Cmn + .Jc:n; -4x2 I Tii.n }aru1 -( Cmn - ✓C:On - 4x
2 I Tii,n) . lt follows that for large scale oftimes, 

the solution of (fl50) behaves like exp(-Ct) . where the decay constant is 

/ 2 2 2 C=C11 -vC11 -41t /T11 (fl58) 

alt the other terms being faster attenuated. In many real applications, an approximate value of (fl59) is 

(fl59) 

With regard to (fl49), the decay constant (fl58) or (fl59) can be obtained as the ratio between the amplitude of the velocity 
86 / ot and the amplitude of 6 . By using eq.(fl52), that ratio can be used to estimate the mean viscosity of the material 
below the plate 

M pH2 21t2 Amo + 12 
îl = 3C T2 Amn 

11 

(fl60) 

A numerical application with respect to the Moesian Platform is presented by (Ivan 1997a,b). 
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G) THE SPHERICAL SHELL 

G.l) The model. BERNOULLI's hypothesis. Displacement vector and strain tensor. 

A spherical elastic, homogeneous shell having the elastic moduli equal to Â., µ is considered and the usual spherical co­

ordinate system ( r, 8, <p) is used. However, some of the derived results are also valid in the case of a more general, non­

elastic spherical shell. In the initial state, the homogeneous density is denoted by PO arul the median spherical surface of the 

shell bas the equation 
r=R, (gl) 

where R is the radius of the sphere. At a certain time during the deformation, the median swface will be 

r = R- w(8,<p, t) (g2) 

where w = w(8, <p, t) is the flexure ofthe shell, positive downward. Hence the unit vector nonnal to the median surface at 

a certain point of co-ordinates ( r = R - w, 8, <p) is 

1+- - +-- -1 [(ow) 2 
1 (&w)

2
] 

r2 OO sin 2 8 â<p 
(g3) 

Neglecting the quantities ofthe second order, it follows that 

➔ ➔ âw ➔ 1 âw ➔ 
n =e +-ea+-- 0 (g4) r ROO Rsin8 â<p • cp 

Consider the initial, non-defonned state of the shell and two points of co-ordinates A o (R, 8, cp) and B o (R + h, 8, <p) , 

➔ -. ➔ 
where H""2h is the thiclmcss ofthe shell. It follows that the segment AoBo bas the unit vector equal to er. At an arbitrary 

time, in the deformed state of the shell, the point A o is displaced to a point A having the position vector equal to 

➔ ➔ ➔ 
rA = R er + u (R,8,q,, t) , (g5) 

while the point Bo is displaced to the point B having the position vector cqual to 

➔ ➔ ➔ 
fB =(R+h)er+ u(R+h,8,cp,t) (g6) 

Here, u is the displacement vector at a point of certain spherical co-ordinates. Assuming the shell is thin, quantities of the 

2 ➔ 
order h are neglected and the segment AB has .the unit vector equal to 

(➔ ➔) ➔ ➔ ( fu ) ➔ fu ➔ fucp ➔ 
J'B-fA / IB-fA = l+ ârr er+ ore ea+Ţeip (g7) 

The partial derivatives in (g7) are computed at the point (R,8, cp). It ls assumed that Bcrnoulli's hypothesis is valid for all 

time. It follows that a segment inside the shell, which ii initially nonnal to the median spherical surface, will be always 
normal to the median surface during the deformation. From (g4) and (g7), it is 8UppOICd that the dis,lacement vector bas the 
elements 

u r(r,0, cp, t) = -w(8,cp, t) 

r-Râw ua (r, 8, cp, t) = --- + x(8, cp, t) 
R 00 

r-R 1 âw 
Ucp(r,0,cp,t)=---. --+y(8,cp,t) 

R sm0 â<p 

(g8) 
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where x and y are two unknown functions representing the horizontal displacements of the points initially placed on the 

median sphere. A further hypothesis on x and y will be later considered. It follows ţJie elements of the strain tensor are 

âu 
E rr = a/ = o , (g9) 

c- = .!(.!. l\Jr _ U0 + âu9) F -~ , (glO) 
~ r0 2 r 00 r . or 2r 

1 ( 1 fu~ Uq, âuq,) y 
Erq> - 2 rsin0 âq> r + or = 2r ' (gll) 

• l(rue ) r-R a2
w 1(ax ) 

Eee =; 00 + u r = ~ 00 2 +; 00 - w , (gl2) 

1( 1 au0 uq> ruq>) r-R a( 1 ow) • 1( I ax fy y) 
Eeq> ~ 2r sin0 âq> tan0 + 00 = rR 00 sin0 âq> + 2r sin0 âq> + 00 tan0 (gl3) 

and 

1 ( 1 ruq> ue ) r - R ( 1 a2
w 1 ow] 1 ( 1 &y x ) 

Eq>q>=; sin0 âq> +ur + tan0 =~ sin20 âq>2 + tan0 00 +; sinf) âq> -w+ tan0 (gl
4

) 

Hence the trace of the strain tensor is 

R(r - R) * 1 [ • â ( • ) fy] tre =err+E99+Ern,n=----'-----'-ll w+-.- -2wsm0+- xsm0 +-
't''t' r rsm0 00 âq> 

, (gl5) 

where the two-dimensional LAPLACE operator is 

ti* w = 1 [.E_(sin0 ow) +-1 a2w] 
R 2 sin0 00 00 sin0 âq>2 

(gl6) 

G.2) Qu~si-mean values. Equations of motion. 

Consider the stress tensor in spherical co-ordinates. For each element of the tensor, the corresponding quasi-mean value is 
defined, for example, by 

In the same way, the corresponding quasi-moment is defined by 

1 R+h r 
Mrr=H f R(r-R)crrrdr (gl8) 

R-h 
The equations of motion in spherical co-ordinates are 

â O' rr + 2 O' rr + â O' r0 + O' r0 + _1 _ a O' f<j) _ O' 00 + O' (j)(j) _ pg = p a2 
u r 

or r rOO rtan 0 rsin 0 âq> r at2 

0a re a re 0aee 1 8creq> crea - a q>q, a2u0 ~ + 3--+--+ -----'- + ----= p-- (gl9) 
Ul r rOO rsin 0 âq> rtan 0 at2 

a a rq> cr rq, a a eq> 2cr 0q> 1 a a q>q, a2 u (j) 
--+3--+---'-+--.;._+-----=p--

or • r rOO rtan0 rsin0 âq> at2 
111 thc abovc cquations, p denotes the density of the shell in the deformed state. Assumed to be a negligible second order 

clTcct, that dcusity will be replaccd by the initial dcnrity PO at the right side of (gl9). 
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The first equation in (gl9) will be multiplied by r2 and the quasi-mean operator defined by (gl7) will be applied. The next 
two equations in (g19) will be multiplied by r and the quasi-moment operator defined by (gl8) will be applied. In order to do 
that, some intennediary results are necessary. 

G.3) Integrala of tbe stresa elements. Quasi-moments. 

Let the stress values on the uppcr/lower faces of the shell be denoted as ,, u 
CJ ; a (R + h,8,q>, t) (g20) 

and,. respectively, by 
L 

a =a (R-h,8, q>,t) cg21) 

Elementary computations show that 

½ tt(,2 0
~" + 2rcr ,}= :[(1+ ~)2 cr ~ -(1-~

2 
cr:;] (g22) 

R-h . 
ln the case ofthe elas&ic shell, the HOOKE's law leads to 

are=2µere=-µx/r , :Ere;-µx/R . <g23) 

lntegrating by parts, it follows tbat 

1 R+h 2 oa 1 { R+h R+h } 
- J .!:._(r - R)~r = - (r2 (r - R)a re] + µx J (3r - 2R)dr 
H R or HR . R-h 
· R-h • R-h • 

. (g24) 

= :[(1+ :)2 (J~ +(1-;)2 (J~ ]-Riril 

Also, 

(g25) 

Similar relations are derived for CJ r<p . 

Also, 

( 
• 2µ a2

w) 1 RJ+h 2 • h
2

·( • 2µ a2w) Mea= Â.â w+--- - (r-R) dr=- Â.â w+--,.,-
R 2 002 H 3 R 2 oo~ 

R-h 
(g26) 

In the same way, it follows that 

(g27) 

and 

M =- (Â.+2µ)A w---h
2 

[ • 2µ a"2w] 
(j)(j) 3 R 2 00 2 

(g28) 

G.4) Integrala of the displacement vector. 

Using (g8), ii follows 

I R+hr
2 a2

u [ I(h)
2
]a

2
w - f -po--r dr=-poR 1+- - - -

H R 81:2 3 R ~2 
R-h u 1 

(g29) 

Also, 
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1RJ+hr
2
(r-R) a

2
ue 20

2
[(h

2 
h

4
Jow 2x(h)

2
j-- ---po---dr=poR - --+-- --+- -

H R a2 a2 3R 2_ 5R 4 00 3 R 
R-h 

(g30) 

.!.RJ+hr2(r-R)PO a2uq> dr=poR2 a2 [(JC_+~J-_I_âw +2y(~)2] · (g31) 
H R at2 at2 JR2 5R4 sm0 8q> 3 R 

R-h 

G.5) Equations of motion in quasi-mean values. 

Let the first equation in (gl9[) be multiplied by r\ ~ appllying the quasi-mean operator;~;ed by (gl7), it follows 

1 8 "-'rq> I 2 
-.- -(sin0Lre)+-- -(Lee+Lq>q>)-RH Jpr g(r)dr 
sm0 ro . _ oq> R-h 

R [ 2 U 2 L] [ 1 ( h Î 
2

] a2
w + H (1 + h / R) a IT -(1- h / R) a IT = -poR 1 + 3 Îl) a2 

(g32) 

The next two equations in (gl 9) are multiplied by r and the quasi-moment operator defined by (gl8) is applied. Hence 

__!_((7Mee + 1 BMecp Î _ ~ + Mea - Mcpcp + .!..[(1 + h; R)2 u + (1 - h; R)2 L] 
R 00 sin 0 8q> ) "-' re R tan 0 2 a re a re 

=PoR ~ {[Hi +¼(!t}: + 2;(!)2} 
(g33) 

and 

(
aM BM J 2M __!_ Sep+ 1 cpq> - L + Sep+ .!..[(1 + h / R)2 U + (1 - h / R)2 L ] 

R ro sin 0 8q> rcp R tan 0 2 a rcp a r<p 

= PoR~{[!(~)2 +!(~)4]-.1 âw + 2y(~)2} 
a2 3 R 5 R Stn 0 8q> 3 R 

(g34) 

G.6) Quasi-mean value of the shell deo1ity. The ditTerential equation. 

According to (gl 7), the quasi-mcan of a constant is equal to that constant. Applying the quasi-mean operator to tbe mass 
balance equation in the linear approximation gives 

(g35) 

li will be furthcr assumed that the quasi-mean of the density is constant and equal to its initial value. From (g35) it follows 
that 

tre = o . (g36) 

i.e., using (gl5), 

~(xs:n0)+ cy = 2wsin8 
00 O(j) 

(g37) 

For the elastic shell, 
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(g38} 

By using (g9}, it follows 

crea+ a cpcp = 2(,., + µ)tq~ · (g39) 

or, using (g36}, 

Lee+ Lcpcp = 0 • (g40} 

The tenn (h / R)4 will be neglected. Using (g40} and substituting Lre and Lrcp between (g32}-(g34} it follows 

_1 [a2(sin8Mee) +-2 a2(sin8Mecp) +-1 a2Mcpcp -~(cos8M )] 
/ R 2 002 sin8 008cp sin8 aq,2 00 cpcp 

+ si;e [(1 + h / R)
2 

O'~ -(1- h / R)
2 a;]+ 2~ ! {sine[(l + h / R)

2 
(j ~ +(1- h / R)2 O'~]} 

• a [ • ] 1 R + h (g4 I} 

+ 2~ 8cp (1 + h / R)
2 

O'~+ (1- h / R)
2 

cr}'q> - HR R!~r
2

gdr 

=pomneb
2 

a•(:;) -(i-(:)2):;} 
A correction due to the compressive horizontal stresses O' NS, O' WE acting at the ends of the shell, approximately along 

the 8 - and cp - axes respectively, follows tobe further considered. 

G. 7) The buc)ding of a spherical shell. 

Consider the element ABCD of the mean surface of the defonned shell from Fig. G l. It is centred at the point M, where the 

➔ ➔ ➔ 

local unit vectors are e r , ea , ecp . The centres of the lateral sides are denoted by M k , k = 1,2,3, 4 . On the meridian 

cross section M 4 MM 2 is acting a normal compressive stress O' WE , having the approximate direction from West to 

East, and a tangential stress Ţ NS , having the approximate direction from North to South. On the parallel cross section 

M 1 MM 3 is acting a normal compressive stress O' NS , having the approximate direction from North to South, and a 

tangenlial stress Ţ WE , having the approximate direction from West to East. Let <l> be the angle between the normal 

➔ 

vector to the meridian section M 4 MM 2 and the unit vector e cp . Also, lei 0 be the angle between the normal vector 10 

➔ 

the parallel section M 1 MM 3 and the unit vector ea . The concentrated force acting al the point M 1 is 

j!1 ={[ cr WE~ acr;;E d:J[co{ $-: d;)¾ +sin($-: d;);] 

+[ TNS _ o~S d:J[co{ 0-: d:) ~ +sin( 0-: d;); ]} x( R-w +:; d; )ttd8 (g'2J 
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Fig.Gl. A rectangular element ofthe mean surface ofthe deformed shell 

In the same way, the concentrated force acting at the point M 3 is equal to 

i =-{( cr WE+ 
8
cr; d;J[cos( <P+: d;)~ +sin( <P+: d;)~] 

{ ŢNS+ 8f8 

d;J[ co{@+: d;)~ +sin(@+: d;)~ ]H R-w-:; d;)Hd8 <g•JJ 

The concentrated forces acting at the points M 2 and M 4 are respectively equal to 

(g44) 

x ( R- w ·=F: d:) sin(8 ± d8)Hdq> 

But 

Cos ,,,,.::::: 1 cos'"'::::: 1 s1·n"" --- "" --- 1 ow , S1°n 9 _:::::'"' _::::: _!_ ow . ...,_ , o_ , 'V 'V o o 
Rsin8 8cp R a) 

(g45) 

Let p = p(8, (j)) a surface density of forces normal to tht: element of the shell, having the same mechanical effect as tl1e 

presence of the compressive stress. The force due to that density is equal to 

-> ➔ 

L P = p(8, q> )(R - w)2 sin 8d8dq> e r (g46) 

li follows tl1e deformed element of the shell is into an equilibrium state due to the action of the lateral stress and to the 

➔ 

opposite force - L P . i.e. 

➔➔➔➔➔➔ 

r 1 + r 2 + L 3 + r 4 - LP = o 
Hence 1he 11ex1 thrcc cquations of equilibrium are obtained: 

(g47) 
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( 
sine aw)( NS aw 't WE awJ 2cose----- a -+-.--

R 00 00 sme ap 
, (g48) 

. a ( NS aw 't WE awJ a (a WE aw NS ow) R(R- w) . + sme- a -+-.-- +- -.--+Ţ - = - p(0,q>)--- sme 
00 00 sm e ap ap sm e ap 00 H 

NS( sin0 fJw) . aaNS a'tNS a 2cose-T 
00 

+ sme 
00 

+~=o , (g49) 

and 

~ WE ( • e ::1. •• ) ~ WE ucr WE sm uw . uŢ 
--''---- + 't 2 cose - ---- + sm 0--- = O 

ap R 00 00 
(g50) 

For the particular case when O' WE is a constant and 't NS = 't WE = O, eqs.(g48)-(g50) show that the prerence of the 

lateral compressive stress is equivalent to a supplemental load placed on the upper face of the shell, having the value 

H ( Ns8
2

w WE 1 riwJ p(0,cp)=-2 a -2 +a -.-2---2 , 
R 00 sm 0 ap 

(g5 l) 

a result similar to the case of the plane plate (Timoshenko and Woinowsky-Krieger 1959; Nowacki 1961 ). Quantities of the 

second order, like (aw I 00)2 
have been neglected again. 

G.8) Load on the upper face. Stress on the lower surf ace of the shell. 

Consider now the differential equation (g4 l). Usually, the horizontal loads for the upper face of the shell are neglected, and 
it is assumed that 

U F { 1 a
2

wJ U U Q' IT = -p gw - 1- - -2- , O' n} = 0 , O' rcp = 0 , 
8at . 

(g52) 

where pF is the density of the filling sedimcnts, P is the load and an inertial term is considered. For the material below the 

shell, the next constitutive equation is assumed 

aM=[po-pMg(R-h-w)]l +Â.MtreMl +2µMEM+211M a~M (g53) 

where p o is a reference pressure, p M is the density of that material and 1 is the unit tensor. The elastic coefficients are 

Â. M , µ M and the viscosity is denoted by 11 M . The strain tensor. inside the material is E M and the str-clin rate here is 

aE M I at . 

The first boundary condition assumed on the lower face of the shell, having the equation r = R - h , is the continuity of 
the displacement vector. Hence the elements of the displacement vector insidc the material placed imtne<Uately below the 
lower face of the shell are assumed to be equal to the same ele1nents at lhe points of the shell placed on the lower face. By 
using eqs. (g8), it follows 

ur(r,e, (j), t) = -w(0, (j), t) 

-h fJw 
ue (r, e, cp, t) = --+ x(0, <p, t) 

R 00 
-h I aw 

uq>(r,e,cp, t) =--. ---+ y(8,q>, t) 
R sm 0 ap 

Hcncc the nex1 values for lhe slrain tensor immcdiately below the shell are obtalned 

(g54) 
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CM= O M 1 âw x M I 1 âw y 
"rr ' E r0 = - 2R 00 - 2(R - h) ' E rq, = - 2R sin 0 â<p - 2(R - h) 

(g55) 

➔ .... 
The nonnal vector at the lower face of the shell is e r . From Newton' s third low, it follows a relation between the stress 

a S inside the shell and the stress (r M inside the material below the shell, i.e. 

crs(-;,J=-crM( ;,) . W"J 

on the lower surface of the shell. Here, the next elements of the stress are obtained after some elementary computations 

and 

G.9) The differential equation of time dependent flexure. 

The reference pressure p o in (g53) is selected in order the flexure of the shell to vanish in the absence of the load. 

Substituting the loads on the upper/lower faces of the shell in eq.(s41) and taking into account the presence of the lateral 
gstress, a generalisation of the Sophie GERMAIN plain plate static equation iil the case of a time dependent Oexure of a 
spherical elastic shell is obtained as 

. (g60) 

lf quantities of the order (h / R )2 are neglected with respect to unit, it follows finally that 

(g61) 

whae 
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D = (Â. + 2µ)H3 = a2 H3 
12 p 12 

(g62) 

is the flexural rigidity and a is the velocity of the P-wave through the shell. Also, 

• ( M F µMJ H • µ H
2 

p = p +p + gR R 'O' =6R2 (g63) 

·G.10) Spherical effect1 with reapect to the plane plate. 

For thc usual materiala, Â. M = µ M . 1n tbat case, the corresponding equati~n for the plane plate (Ivan 1997) is. • • 1 câ
2

w câ
2

w] ( M F) DA A w+ O'x-2 +ay-2 + p -p gw 
âx O'j . . . 

(g64) 

H M â ( • ) ( P) o2
w p 3 a2 

• =P+-11 - A w - pH+- --+-H -(A w) 
2 ât g ât2 12 ât2 

With respect to (g64), a cbange of the density difference pM - p F according to (g63a) and a substitution of the real lateral 

NS WE . . NS • WE • . . 
stresses O' , O' by thetr apparent values O' + O' , (J' + O' can be observed m eq.(sol). A supplemental 

load is present according to (g63c). For usual values (e.g. Ivan 1997a) like H /Roc 1/100 , 

µ, µ M oe 1011 Pa ,PM ,PF oe 3000kgs / m3 ,O'NS ,(J WE oe 30MPa, all these effects are usually negligible and 

difficult tobe observed in real life. T~ compare 2w / R 2 to A• w in the left side of (g61), the case of a rectangular plate 
having the sides equal to Lx, Ly is considered. Here, the flexure is proportional to a product of sins (cosines) functions, ie. 

w oe sin( mmc / Lx) sin( nny / Ly) . It follows the LAPLACE operator of the flexure is proportional 

to A* w oe n 2(m 2 / Li + n2 / L~) sin(mmc I Lx)sin(nny / Ly) . For the fundamental mode ( m = n = l) it 

follows tbat 

I --,---=-------- (g65) 

That ratio is negligible too in the usual cases. 
• It can be concluded that in the usual cases, the sphericity of the crusta! plates can be ignored and the equation derived for 

the flat plate can be used. 
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H) ELEMENTSOFRHEOLOGY 

H.l) Introduction. 

Especially for geological processes at a large time scale and great values of the stress, the internal friction of the material 
cannot be ignored. Consequently, the HOOKE's law has tobe replaced by assuming different constitutive equations (models). 
Their expressions are mainly depending on the time scale of the geophysical process to be modelled. In relation to seismic or 
seismological applications, for example, short periods and short stresses are required (usually, seconds up to minutes, witb a 
maximum value around one bour for the fundamental mode of the free oscillations of the Earth). Here, the non-elasticity is 
related to the very short period irreversible changes in the crystal defect structures of tbe meqium (e.g. opening/closing of 
pre-existing cracks) and/or to the energy lost by friction at tbe two sides of a crack or on the non-elastic boundary coupling 
grain particles to the adjacent material (Aki and Richards, 1980; Ranalli, 1987; Wahr, 1996). 

With respect to the matbematical relation between stress and strain, tbere are two kinds of constitutive equations (models). 

H.2) Linear models. 

Simplified models involves a linear relation between stress (and its derivatives of various orders witb respect to time) and 
straiu (together with its time derivatives). 

In the beginning, only tbe 1-D case will be discussed. More general examples follow tobe presented in relation with the 
dynamic aspects of tbe flexure of a plate (shell) and to the accretion prism. For each constitutive equation, a mechanical 
analogue can be considered. The elastic part will be represented by a spring, while the inelastic (viscous) behaviour is 

associated to a dashpot. Both parts are supposed to be linear ones, i.e. a linear relation (J' = 2µ E is valid for the spring 

• 
and a similar linear relation holds for the dashpot (J' = 211€ . 

I 

t 

Fig.HI . (a) KELVIN-VOIGT model; (b) MAXWELL model; (c) BURGERS model 

ll) KEL VJN-VOIGT (stro11g viscous) model. 
The mechanical analoguc of tl1e first model to be considered is represented.in Fig.Hla. Ţhe total stress is the sum between 

1hc stn.:ss in thc spring and thc stress in the dashpot, while tbe total deformation is equal to botb tbe defonnation ofthe spring 
and thc deformation ofthe dashpot. It follows that KELVIN-VOIGT model has;tl,le next constitutiye equation 

• 
(hi) 

wht:: n.: thc doi shows thc (total , material) derivative with respect to time. Hcrc, the sccond tenn is the inelastic one, 11K bcing 

1hc visc·osity . Supposc now a constant stress cqual to (J' O îs applicd. Elemcntary computations show that the diffcrcntial 

rq11a1i o11 
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has the solution 
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df: 
ero=2µK E +2riK dt 

E (t=to)=O 

E = ero [1 - exp(- µ K ( t - to )Îl 
2µK 1'\K ) 

for t ~ to . Hence, for very great values of time, the strain approaches a limiting value equal to 

ero 
Eoo= 2µK • 

The "flowage function", denoted by 

J(t) =-
1
-[1- exp(- µK (t- to)î] 

. 2µK 1'\K ) 
shows that for a constant stress (equal to unit here), there is a temporal variation ofthe strain. 

(h2) 

(h3) 

(h4) 

(h5) 

(h6) 

Suppose now at a certain moment t = t 1 , the constant stress er O is removed, the correspondina strain at that moment 

being equal to E 1 . It follows now the corrcsponding solution decreases towards zero as 

E = e 1 exp(- µK (t- t1)Î . . (h7) 
1'\K ') 

b) MAXWELL (viscous-ela.stic) model. 
Consider the mechanical analogue represented in Fig.Hlb. The total stress is equal to both the stress of the spring and to 

thc stress of the duhpot, whilc thc total deformation is the sum between the defonnation of the spring and the defonnation of 
thc dashpot. lt follows that MAXWELL model has the next constitutive equation 

• 
(h8) 

with the lnitial condition repre11:nted by (h3). 

Suppoec again a constant stress equal to (J' 0 is applied. The spring is instantly defom1ed to a value equal corresponding to 

the flrst term in the right hand of (h8), i.e. 

ero 
Eo= 2µM 

and the solution of (h8) (for a constant stress er O) with the initial condition (h9) is the ştraight line 

(h9) 

(hlO) 

having the slope related to the stress (J' O and to the vlsoosity of the dashpot. Suppose now at a certain moment t = t 1 , the 

constant stress (J' 0 i1 removed, the corresponding strain at that moment being equal to E 1 . It follows from (h8) that the 

strain remains conSlant. 

c) BURGERS (general Unear) model. 
The third model tobe considered has the mechanical analogue represented in Flg.Hlc. 

EXERCISE. Show that the corresponding differential equation is 

2n1 ; + 2µ 1 ; = 2lL ~ + (2!.L + ~ + 1) ~ + µ 1 er 
µ2 1'\2 µ2 1'\2 

(hi 1) 

Consider now the same initlal condition (hl) and suppose again a constant stress equal to (J
O 

is applied. In a similar 

manner to MAXWELL model, the system is instantly deformed to a value equal to 
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•l 
(hl2) 

and the solution of(hl I) (for a constant stress a o> with the initial condition (hl2) is 

C = O'o + O'o (t - to)+C[l-exp(-~(t - to)î] , (hl3) 
<., 2µ 2 2TJ2 ll} ) •• ,· 

where C is an unknown coefficienl (because (h l l) is a second order differential equation, two initial conditions are required 
to obtain the complete solution). However, differentiating (hl3) it follows ' 

• O' O µI ( µI ~ E =--+ C-exp - -(t- to) . (hl4) 
2ri2 î'Jl î'Jl 

Hence, for great values of time, lhe solution (hl3) approaches asymptotically to a straighl line having the slope equal to 

a O I 2112 . Suppose now al a certain moment t = t 1 , , the constant stress a O is removed, the corresponding straiu at that 

moment being equal to E 1. It follows from (hl3) !hat lhe strain decreases exponentially towards zero, i.e 

E = Ei exp(- ~: (t - t1 )) . (hl5) 

EXERCISE. Show that two (or more) springs / dashpots connected in series (or parallel) sequence are equivalent to a single 
spring / dashpot. Justify that lhe BURGERS model is lhe general linear model. 

d) Remarks on the linear models. 
In the most g~neral case, the linear relation between stress and strain can be written as 

P(D)cr = Q(D)E , (hl6) 

where 

(hl7) 

and 

(hl8) 

d 
are formal polynomials of lhe variable D = dt represepting lhe derivative wilh respect to time, applied to stress and strain 

respectively. Here, A O, A 1, ... , An , B O, B 1, .. . , B m are fourth rank tensors. For example, wilh respect to lhe 

MAXWELL body having the constitutive equation (h8), it follows that 
1 1 . 

P(D)=--+--D , Q(D)=D (hl9) 
211M 2µM 

A common way to solve (hl6) is by using the LAPLACE transfonn (e.g. Sokolnikoff and Redheffer, 1958). Consider a 
certain function of one real variable f(t), providing that 

l. f(t)=O , for t<O; 
2. f(t) is piecewise continuous on every finite interval; 

3. there are two constants O< M , a~ O in orderto have lf(t~ ~ M exp(at), for an arbitrary t. 
Under the above conditions, the LAPLACE transform of f(t) is a new funclion oflhe variable p, defined by 

EXERCISE. Show lhat : 

00 

L(f~p) = J f(t)exp(- pt)dt 

o 

(a) Thc LAPLACE transform of the first derivative is 

L[ ::}p) = pL(f]- f(O + O) 

(b) L(exp(- at)](p)=-
1
- , O~a 

p+a 

(h20) 

(h2 l) 

(h22) 
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(c) Thc convolutlon theorem. Consider the functions f, g vanishing for negative values of their argument and a new 

funclion (also vani1hing for negative values of the argument defined) by the convolution product 

+oo t 
h(t)=(f•g)(t)= Jf(t)g(t-t)dt= jf(t)g(t-t)dt (h23) 

-00 o 
Showtbat 

(h24) 

As an example, consider again the MAXWELL model by applying the LAPLACE transform to both sides of (h8). lt follows 
tbat 

Pr{E ]-e0
= 2µ

1
M(Pr{cr ]-cr

0
)+ 2;Mr{cr] <112s> 

where a O= a (O+ O), E O= E (O+ O) are the initial stress and strain respectively. 

EXERCISE. By using the above properties of.the LAPLACE transform, show that 

CJ (t)=2µME (t)-
2
µt J E (t)exp[-µM (t-t)}t+(cr0 -2µMEO)exp(-µM t) (h26) 
TlM O 11M 11M 

Ifthe initial conditions are elastically coupled, i.e. 

cro=2µM Eo (h27) 

it follows an integral representation ofthe stress which is independent on the,initial conditions 

CJ (t) = 2µM E (t)-
2
µt f E (t)exp[- µM (t - t)}t 
TlM O TIM 

(h28) 

Hence, the actual value of the stress is related both to the actual value of the deformation and to the previous values of the 

strain (i.e. the stress depends on the "history" of the deformation). If a constant strain E ( t) = E O , for t <!: O is applied to 

the MAXWELL body, it follows from (h28) that the stress decreases as 

cr (t)=2µM e0
exp(-~~ t) , (h29) 

representing a "relaxation phenomenon" (stress decreases in time if a constant deformation is present). Here, tbe function 

G(t) = 2µM exp(-t hM) • (h30) 

is the ''relaxation" kernel and the parameter t M = 11 M / µ M is the relaxation time. 

A very similar approach (e.g. Wahr 1996) is based on the usc of FOURIER transform (see Chapter F.13). Formally, the 
results derived by using FOURIER transform are derived from the same results obtained with LAPLACE transform by 
performing the substitution p = iu. 
The above 1-D models can be generalised for the 3-D case. For example, consider again the MAXWELL body. There is a 

sti'ong experimental evidence that the MAXWELL Rheology applies only to the dissipation ofthe shear energy, i.e. the stress 
and strain tensors in (h8) are the deviatoric tensors 

I I 
CJ ~ CJ - 3 tr CJ 1 , E ~ E - 3 tr E } (h3 l) 

lt will be further assumed that there is no dissipation ofthe compressional energy, i.e. a proportionality like 

(h32) 

is vali(j. By dilTerentiating with respect to time 

• • 
(h33) 

Substituting (h3 l) and (h33) in (h8) it follows 

• I • 1 ( • • 3A. M + 2µ M • ) 1 ( 3A. M + 2~l M ) e--tre}=-- cr-----tret +-- cr----- tre] 
3 2µM 3 2rtM 3 

(h34) 

Hc11cc 
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• µM • • µM 3Â.M +2µM 
cr+-cr =2µM E +. Â.Mtff~l +----"""----trEl 

T\M T\M 3 
(h35) 

8y opplying the FOURIER trandonn to both sidos of (hJ;:]'~~ tr CI>[ E]} + 

2 

~, E] 
(h36) 

i.e. a relation similar to HOOKE's law is valid between the FOURIER (or LAPLACE) transforms of stress and strain. Here, 
the coefficients similar to LAME parameters are 

iu + _µ_M_ (1 + 3_ _µ_M_) 
T\M 3 ÂM 

Â. = Â.M ------
iu + µM 

T\M 
At shor:t periods T correspond high values of the pulsation u = 27t / T . From (ll37) it follows 

Â.=Â.M , µ=µM 
and tbe behaviour of the MAXWELL body is an elastic one. 
At long periods T correspond low values of the pulsation and 

i = 3Â. M + 2µ M =KM , µ = O 
3 

and the MAXWELL body is a fluid having the compressional coefficient denoted by KM . 

H.3) Non-linear models. 

(h37) 

(h38) 

(h39) 

For tectonic applications, large stresses and periods of thousands to millions of years are appropriate. Here, the non-elastic 
behaviour is probably related to the diffusion or dislocation creep of the rnolecules, a major factor being the high 
temperatures . . 

There are great difficulties to consider constitutive equations with non-linear relations between stress and strain, but some 
attempts have been roade. A very comrnon ,non-linear model is the work-hardening plasticity (e.g. Ranalli, 1994) 

Eij=½( ~:rl :~ , (h40) 

* * 3 * "' where (j ij is the component of the deviatoric stress, (j E = 2 (j ij (j ij is related to the second invariant of the 

deviatoric stress, and (j O, n are material parameters. 

H.4) Brittle. Creep. Empirical criteria. 

The usual materials are reacting in an elastic manner only for small values of the (deviatoric) stress, i.e. for stress values 

smallcr than a limiting value representing the yield strength (or the yield stress), denoted by O'y . The yield stress is a 

function of the nature of the material, of the temperature, pressure, the chemical composition of the adjacent rocks and, 
linally, of the history of the deformation (i.e. the intennediate steps followed to attend the yield value). When the yield stress 
is allended, there are two possibilities ofbehaviour of the material : 
• a rupture deformation of lhe rock, when the continuity of the deformation is )ost, usually along a fault surface; tl1is is the 

,;ase of thc b.-ittlc materialH. The process is illustrated in Fig.H2a and b. 
• a plastic, irrcvcrsibly flow of the material (cree1,), when, apparcnlly, the continuity holds. The phenomenon is quile 

similar 10 thc usual viscous flow, bui ii can bc observed only when the yield stress is attended. This is the case of the 
1luc1ilc matcrials. The process îs illuslrated în Fig.H2c. An usual non-linear constitutive equation is the BYERLEE 
poll'cr-law crccp 

• n E = Aer exp(- H/ RT) (h~ I) 
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where A, nare material parameters, H is the activation enthalpy, R is the gas constant aud T is the absolute 
temperature. It should be noted that the same material can act as a brittle or a ductile one according to the externai 
conditions. 

-~tz= -:tz: -:~ 
• t o E o E 

(c) 

Fig.H2. (a) Faulting of a briltle material; (b) Increa<Jing of the yield stress due to the history of defonnation; 
(c) Creep of a ductile material. 

H.5) Empirical criteria for shear-faulting. TRESCA criterion. COULOMB-NA VIER criterion. 

A first criterion also (valid for plasticity) is due to TRESCA. It assumes that faulting (for brittle material&) or creep (for 
ductile ones) is attended at that points of the material where the maximum value of the shear (tangential) stress is equal to a 

yicld value denoted by CJy. Consider now a homogencous (constant) stress field inside the material. Such a case can be 

obtained either by considering an infinitcsimal volume of material or by taking into account a prismatic body with very large 

(infinite) sides. Consider the eigen-values a 1, (J 2, (J 3 of the stress tensor. lt will be assurned that they are denoted in 

'order to have (J 3 < (J 2 < a 1, with the remark that ,in real life, stress is assurned to be positive for compression. Hence, 

with respect to Fig.ID, Jet CJ} I= -cr1, . a 22 = -cr3and a 12 = O ineqs. (dll) and (dl3). It follows that 

= -a = O't + 0'3 - 0'1 - 0'3 cos2\j/ 
O' rr 2 2 

(h42) 
a -cr 

't =-are= 12 3sin2\j/ 

where (J , t are so-called • "normal stress" and "tangential (shear) stress" respectively, acting on a plane inside the 

1t 
material. The plane is at an angle \j/ = 8 - - with the directior, of the maximum compressive stress. The outer-pointing 

2 
normal at that plane makes an angle 8 with the direction of the maximum compressive stress. With respect to a 

a - t reference system, eqs.(h42) are the parametric equations ofthe MOHR circle (see Section D4), plotted in Fig. HJ. 

ln the most general case, stress field is varying from point to point inside the material. Hence both the eigen-vectors of the 
stress tensor (i.e. the local directions of the maximum I minimum compressive stress) and the eigen-values of tliat tensor (i.e. 
the magnitudes of the maximum / minimum compressive stress) are also changing from point to point. For a fixed point 
inside the material, both normal stress and shear (tangential) stress are varying with the angle between the plane (with 
respect to normal and tangential stresses are defined) and the direction of the local maxiniwn compressive slress. Consider a 
certain point inside the material and imagine various planes passing through that point. Hence, according to TRESCA 
empirica! criterion, failure of the material is produced bere if 

maxit l=crv <MJ> 

'V 
Using eq.(h42b), ii follows . 

cr1-cr3. cr1-cr3 . max 2 
stn 2\Jl = 

2 
maxlstn 2~1l=cry 

'V 'V 

(hH) 
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Consider now a homogeneous stressed material subject to progressive increasing values of the difference cr 1 - cr 3 . The 

material is charactcrised by a yicld value denoted by O"y . Eq.(h44) shows that: 

• if ( O" l - O" 3) / 2 < O" y , there is no failurc inside thc material; 

• whcn the cquality 
(h45) 

7t 
is attended, a failure is produced along thc plancs at angles \j/ = ± 4 with the direction of the maximum compressive strcss. 

'C 

E.d. 
F.d. 'C•-CJ'y 

Fig.H3.(a) The MOHR circle; 
(b) A plane inside the material, at an angle 'I' with the direction ofthe maximum compressive stress; 
(c) TRESCA criterion. E.d and F.D. denote the elastic domain and the failure domain respectively; 

(d) COULOMB - NA VIER criterion. 

Eq.(h45) represents the TRESCA criterion in terms of the.eigenvalues of the stress tensor. ln the case of a material subject to 
a non-homogeneous stress ficld, eq.(h45) is a local condition. Here, the eigen-values are obtained (sec Section A). For a 

compressive stress, that values &re expected to be negative ones. They have to be denoted by - O' 1 , - O' 2 , - O' 3 , where 

0'3 <cr2 <cr1 • 
A second criterion is due to COULOMB and NA VIER. It can be used to describe only the shear fracture. According to it, a 

• material is characterised by the cohesive strength denoted by S and by the coefficient of friction, denoted by µ = tan ci> . 

Here, ci> is the angle of internai friction ( ci> = 30 ° in most rocks). According to COULOMB - NA VIER empirica! criterion, 

shear failure of the material is produced al ils poinls where 

m:x-(1 , f-µ' cr] =S (h46) 

Usmg cqs.(1142). ii follows 
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m:x[ crl ~ cr3 I~• 2'1'1- tao {<îl: cr3 - <îl~ cr3 
cos2'1')] ~ S (h47J 

If \jl is a solution of (h47), 1t - \jl (or just -\jl) is a solution too. Hence, without loss of generality, the values of the angle 

\jl will be limited to the first quadrant, where eq.(h47) is 

(h48) 

Eq.(h48) shows that: 

• • if (J 1 - (J 3 - tan cp (J l + O' J < S , there is no failure of the material; 
2 cosei> 2 

• when the equality 

cr1-cr3 1 -tancl>cr1+cr3=S 
2 cos4> 2 

(h49) 

is attended, a share fracture is produced along the planes at angles \j.l = ±(: -ţ) with the direction of the maximum 

compressive stress. Eq.(h49) represents the COULOMB - NA VIER criterion in terms of the eigenvalues of the stress tensor. 

* Taking into account that µ = tao ci>, eq.(h49) can be written as 

(h50) 

outlining that COULOMB - NA VIER criterion is a generalisation ofTRESCA criterion for a non-zero internai frictiou. 

H.6) Von MISES-HENCKY criterion for ductile flow (plasticity). 

Because the ductile (plastic) flow is independent of the co-ordinate system used, it depends only on the invariauts of the 
stress tensor (Scction A, eq.(a22)). Hence an equation like 

(h5l) 

will be valid. There are strong experimental evidence that the plastic flow does not depend on the hydrostatic pressure, being 
also similar foi: compressive and tensile states of stress. It follows the function f in (h5l) depends only oit the second 
invariant of the stress deviator (see eq.(a23)). Hence, ductile flow occurs only at those points of material where the second 
invariant of the deviator stress reaches a certain value, depending on the riature of the material. Using eq.(a24), the criterion 
of Von MISES - HENCK Y assumes that ductile tlow occurs at those points of the material where 

ln terms of the principal stresses, eq.(h52) is 

(cr1-cr 2)2 +(cr 2 -cr3)
2 

+(cr3-cr1)
2 

=6k2 
(h53) 

Hence the criterion of Von MISES - HENCKY can be regarded too as a generalisation ofTRESCA criterion, by taking into 
account thc presence ofthe intermediate stress. 
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H. 7) Rheological models. 

a) SAINT-VENANT body (elastic-plastic material). 

The behaviour of that material is characterised by linear elasticity for stress values below the yield strength; When the yield 
stress is attended, the body exhibits a pure plasticity. lts constitutive equation (using deviator tensors) has the symbolic form 

!CJ * = 2µs E * , CJ < CJy 
(h54) 

* * 
f(I2,I3)=crv , cr=crv 

The above material has the mechanical analogue presented in Fig. (h4a), being referred as a SAINT-VENANT body. 

b) BINGHAM body (visco-plastic material). 

Similar to the SAINT-VENANT body, that material exhibits linear elasticity for stress values lower than the yield strength., 
but flows linearly above that value. The strain rate is proportional to the difference between the deviatoric stress and the yield 
strength. Its constitutive equation is • 

, cr <cry 

* (h55) 

* de 
CJ = CJy + 2'11B dt ' CJ ~ CJy 

The above material has the mechanical analogue presented in Fig. (h4b), being referred as a BINGHAM body. 

iu_ 

o O'y (J' 

Fig.H4. (a) The SAINT-VENANT body; (b) The BINGHAM body. 
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I) THE ACCRETION WEDGE. 

11) The model. 
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Consider a 2-D prismatic body having a triangular vertical section (Fig.11), in the presence of gravity. The wedge rests on a 
rigid basement having the slope equal to 0 o . Both the compressional force acting on the lefi side of the wedge and the 

friction to the basement cause thickening of the incompressible material and the development of a topographical stope equal 
to a . It is assumed that the material is into a state of plastic yielding according to the VON MISES-HENCKY criterion. li 
follows to obtain a condition relating the slopes of the topography and that of the basement to the geometry of the wedge, its 
yield strength and the friction coefficient to the basement. 

-- o ---T---- B 

Fig.ll. The 2-D accretion wedge. 

Il) Equations of equilibrium. Yield condition. Stress field. 

Taking into account that the 2-D case is discussed, the stress in polar co.:Ordinates is 

(j IT 

cr = crre 
o 

cr re 
crea 

o 
o 

0 ~cr rr+ a~e) 
Because the material is 81Sutned to be incompressible, the POISSON coefficient is v = 1 / 2 . 
Using polar co-ordinates, the equilibrium equation (d40)-(d4 l) in the presence of gravity are 

8cr 8cr re a -cree ___IT.+--+ rr · +pgsin0=0 
or rOO r 

8cr re 8cree cr re --+--+ 2-- + pg cose= O or rOO r 
Using (il), the yield condition (r54) is 

Taking into account again that th~ compressive{stress is assumed to have positive slgn, eqs.(dl l)-(dl3) give 

a IT= -f(r,8)- kcos2'1' 

a ea= -~(r, 8) + k cos 2'1' 

a re= ksm 2'1' 
. ' ' , ; 

(il) 

(i2) 

(i3) 

(i4) 

(iS) 

where tfle ţrace of ~e stress J1as t,ee~ 4enole4 l>y f (r, ~) = ¾ ţf (q) IJn<J \j/ = W( f, 8) js t'1e '1Jg}e J>e.tween the radiua and 

!.he local direction of the maximum compressive stress (variable inside the wedge). However, it will be assumed that 
\jl = '1/(8) only. After some manipulations, substituting (15) into (i2)-(i3) gives • 

{

of 2k d'I' 2k . 
-= -cos2\j/-- -cos2\j/ + pgsm8 or r d8 r 

(i6) 

of= -2k sin 2\j/ d\11 + 2ksin 2\11 + pgrcos8 
00 d8 
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Eqs.(i6a) and (i6b) are differentiated with respect to 0, r respectively, the results of the differentiation being equal each 

other. After some elementary manipulations, it follows that 

_!(cos 2\jl d\jl - cos 2\jl) = O , (i7) 
d0 d0 

i.e. 
d\11 C -= }+-,---
d0 COS2\jl 

where C îs a constant of integration. Substituting (i8) into (i6a) gives 
of 2Ck . 
-=--+pgsm0 
âr r 

i.e. 
f = 2Ck ln r + pgr sin 0 + g(0) 

To find the unknown function g = g(0), eq.(il0) îs substituted into (i6b) to obtain 
d ¼ 

~ = -2Ck tan 2\11 
d0 

Using (i8), it follows that 

~ = _2Ck sin 2\jl 
d\jl COS2\j/ + C 

i.e . . 
g = Ck ln(C + cos2\j/)+ A 

where A îs another constant of integration. Hence the final stress inside the wedge îs 

l
e; rr = -2Ck ln r - Ck ln(C + co2\jl)- pgrsin0- A- kcos2\jl 

crea= -2Ck ln r- Ck ln(C + co2\jl)- pgrsin0- A+ kcos2\j/ 

cr r0 = ksin2\jl 

13) Boundary conditions. Final results. 

(i8) 

(i9) 

(ilO) 

(ill) 

(il2) 

(il3) 

(il4) 

Consider the segme!}t AC placed on the side OA of the wedge, having 0 = 0 and OC ~ r ~OA, where the point C îs 

➔ ➔ 

very closed to the point A. The outward pointing normal vector is n = - ee . Here, is acting the lithostatic pressure due to 

the topography. Hence 

i.e. 

{

crre(0=0)=o 

cr00 (e =o)= -pgrtana 

Because the angle 0 o bas very small values, it will be assumed for al~ angles 0 that 

or 

cr 00 = -pgr tan a 

acrea= -pgtana 
âr 

(il5) 

(il6) 

(il7) 

(il8) 

Howevcr. all .the .ncxt derivations are supposed tobe valid al the rear of the wedge, where the topography is generated duc to 
the horizontal compressioil, i.e. the radius r is a mean value of the lcngths OA and OC, the point C being closed to A. By 
diffcrcntiating (il4b), cq (il8) leads to 

2Ck 
- - = pgtana 

r 
(i I 9) 
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(i20) 

➔ ➔ 

Consider now the side OB of the wedge, having a = a o and the oulward pointing normal vector n = ea . Here, is ac1ing 

tl1e friction force due to the basement, assumed lo have the magnilude equal to Ak , where A is a friction coefficient. Hence 

➔ ➔ 

crea= Â.ker (i2 I) 

i.e. 

(i22) 

The next partial derivative follows tobe evaluated in two ways. In the first approach, eqs:(i22), (i 16a) and (i20) are used 10 

give 

oa re I cr re(a = eo)-cr re(e = o) Ak 
--~------------=-

rOO r 80 - o ho 
(i23) 

The dominant stress is into tlle wedge is tlle horizontal ccmpression. Hence \j/ = 0 , botll angles having small values. ll 

follows cos 2\j/ = 1 . Eqs.(i5c), (i8), (ii 9) and (i20) give 

0a r0 2k d\jl 2k 2Ck 2k 2k0o 
--=-cos2\jl- =-(C + cos2\jl)~ --+- = pgtana +-- (i24) 

rOO r d0 r r r ho 
From (i23) and (i24) it follows 

pgho tana + 2k0o = )..k (i25) 

showing that tlle friction force (resistance to sliding of tlle wedge onto tbe basement) is balanced by tqo forces. The first 01ie 
is due to tlle topograpby and tlle second force is related to tlle compressive stress and to tlle slope of tlle basement. Further 
details related to tlle application of eq.(i25) in real cases are presented by Ranalli ( 1987). 
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