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In memoriam

Professor Marin DOROBANTU

INTRODUCTION -

That book presents some theoretical problems related to the Mechanics of a Continuum Solid Body, of particular importance
to Applied Geomechanics, Geological Engineering and Structural Geology. In most cases, only static aspects are discussed,
but some dynamic cases are also presented.

Asamle,thcmdemtemoﬂalappmachuused The linear elasticity and the homogeneity of the continuum solid body are
alnwstmomughlyamumedmbevalﬁhummelemenuofkheobgymahopmwd

In most cases, the semi-inverse method is used to solve the problems. According to it, the solution is supposed to be of a
particular form, as a consequence of the simplified hypothesis previously assumed. It is verified that solution checks both the
corresponding equations and the boundary conditions. Based on the Uniqueness Theorem of the Linear Elasticity, it follows
the assumed particular solution is just the general solution of the problem. In all the cases discussed here, the assumed
simplified hypotheses allow one to obtain simple, analytical solutions. At a first glance, the importance of such solutions is
minor with respect to the real cases, where mainly the non-homogeneity of the medium plays a great role. However, the
analytical solutions are the basis for deriving finite element algorithms, allowing one to model satisfactory the complex real
cases. Such examples are also presented. '

The lessons are mainly designed to be used as a part of the course of Mechanics followed by the students in Geophysics at
the Geology and Geophysics Faculty, University of Bucharest.

The author is gratefully to his colleagues and to the referees.

https://biblioteca-digitala.ro / https://unibuc.ro



https://biblioteca-digitala.ro / https://unibuc.ro



CONTENTS

INTRODUCTION
' page

Chapter A: BASIC ELEMENTS. .....ccoccoeeniiecnicnnennseranes seesessessresetsssrtossesiesstrssresttesirsettasttsetssstssstessrnens e 4

A.1) The displacement vector. Lagrangean (material) and Eulerian (spaual)co-ordinates
A.2) Invariants of a tensor. Tensor deviator. . 4

A.3) Strain tensor. Stress tensor. Equatnon of mouon/eqmllbnmn

A.4) HOOKE's law. . S5 4 AR e SRR 3

Qe s

Chapter B: DEFORMATION OF A CYLINDRICAL BODY IN THE PRESENCE OF GRAVITY ssassinsonvesissisvisll
B.1) The model.. s
B.2) Equauonsofethbnum Boundaryoondmons Snmphfymghypothws SR UUURRRSRRR . |
B.3) The final shape of the body. .. . TR T

Chapter C: Lf.VY’l PROBLEM - the triangular dam............iccceeceeneeccncssscacsscsssssssssscssscsssssssessssssssessesssse 13

C.1) The SAINT-VENANT's equations. . B TP P RS SRR, .
C.2) The model. Simplifying hypothesis. Theplanardefonnauon state S PRI S, & |
C.3) Equations of equilibrium. AIRY’s potential. .. 14

Chapter D: KIRSCH’s PROBLEM - the circular bore hole / tunnel.........ccccciercininncencseccnccarensincnccsccsecsensaeess 18

D.1) The model. . - T Y TR R R, |
D.2) The planar state ofdefoxmauon mcylmdncal co-ordmate system T R — |
D.3) The circle of MOHR. . 20
D.4) AIRY’s potential mcylmdncal oo-ordmates ’l‘hebx-harmonic equauon S SRR PPPPRT SRR ) |
D.5) The divergence of a tensor in cylindrical co-ordinates. . 43 N HRESE TSR SR F RS Gmams dmmremacrewane swnre Dl
D.6) The gradient of a vector and the strain tcnsormcyhndncal oo-ordmates. T &
D7) The bi-harmonic equation cylindrical co-ordinates. . 23
D.8) The stress elements. Conditions at infinity forthestmsselements ORI 7
D.9) Strain and displacement vector. Conditions at infinity. .. B U PPPRTUTRTOTRRRIRRRY | 3
D.10) Boundary conditions for the stress elements on thewall ofthe clrcularcavnty e T T e, &
D.11) The final shape of the wall. . ,30

Chapter E: BOUSSINESQ’s PROBLEM - concentrated load acting on an elastic semi-space.......cccvveeieecccsssrsnsnnnid2

E.1) The equations of BELTRAMI and MITCHELL ST T 5 SRR TR RS AL Vb ndirsmeenanse sende cossmaimnnes coo O
E.2) The model. . e S SENRORES T SRR NSRS i SsaR s e s e
E.3) The squ.mons ofcqluhbnum .md strum lcnsor in sphencal co-ordmates TR T—. -
E.4) LAPLACE operator in spherical co-ordinates. LEGENDRE's polynomlals PPN -
E.5) The displacement field. . RO ’ 36
E.6) Boundary conditions for lhc slussclcmcms Tllc ﬁnal soluuon v PR AT SR SR B R ey v OB

https://biblioteca-digitala.ro / https://unibuc.ro



3=

Chapter F: ELEMENTS OF THIN PLATE THEORY............... Usuesrnssnnseressesssessassrrasseseanressessassresrosnnasivaress 40
F.1) The model of a thin elastic plane PIAte. .. ... ... .. ..o e e 40
F.2) The planar state of a plate. The bending State. .. .............coiii i 40
F.3) Loads acting on the plate... ) 41
F.4.) Odd and even functions for ll\e plandr slale and for lhe bendmg sldte o4l
F.5) Mean value of a function. Equilibrium equations for thin plates. . R SR GRS RIS Eeres i R
F.6) Thin plate in the bending state. 44
F.7) BERNOULLI’s hypothesis. .. o
F.8) HOOKE's law for a thin plate . S
F.9) The infinite, 1-dimensional (l-D) plate The ﬂexure of the hlhosphere .. 46
F.10) Exterior forces on the lateral surface of the plate. Buckling. . 47
F.11) The buckling of a simply leaning thinplate' B PSPPI PUUPR T SUPRPRTPPPIE. 1.
F.12) The infinite extended 1-D plate. . ....50
F.13) FOURIER transforms. Properues ———_)
F.14) Solution of the flexure equation by usmg FOURIER lransfonns ....51
F.15) Finite plates. . .54
a) Significance of le and MU for the bendmg state. .54
b) The rectangular plate. Boundary conditions. LEVY’S SOItON. ..............ccocoviiliieiiinie e cerinee e 594
F.16) Vibrations of a plate layingonaviscoussubstralum. cirinns ey R s Sasenerman 2F et Son 6 SRR i DD
a) The differential equation. . ...56
b) The rectangular plate w1th3 embcdded sndes .57
Chapter G: THE SPHERICAL SHELL.......ccceectictterenctscroctssarcacssctessssrnsassestsassasssoseasassasssesssesssssssssesasses 59
G.1) The model. BERNOULLI’s hypothesis. Displacement vector and strain tensor. ...............ccveevveieeneevererinennn.n.. 89
G.2) Quasi-mean values. Equation of MOtION. ...........ccooiiitiiiiin ittt e e i cee e s eeecen e see sresne e eeeneen .00
G.3) Integrals of the stress elements. Quasi-MOMENtS. ................oveerene. .. T S —— 61
G.4) Integrals of displacement vector. . e e 61
G.5) Equation of motion in quasi-mean values . 02
G.6) Quasi-mean value of the shell density. The dlﬂ"erenUal equatlon .62
G.7) The buckling of a spherical shell. . L)
G.8) Load on the upper face. Stress on the lower surface of the shell O+
G.9) The differential equation of time dependent flexure. .. 66
G.10) Spherical effects with respect to the plane plate. 67
Chapter H: ELEMENTS OF RHEOLOGY.............. b i mpeSge st mmpree pevnvesesyosspine rerereeeeennreeeerirenens 68
H.1) Introduction. . vr...68
H.2) Linear models .. ..r...68
a) KELVIN-VOIGT(s(rongvnscous)model U OPTRPRIPIPRNY .1 . |
b) MAXWELL (viscous-elastic) model. 69
c) BURGERS (general linear) MOEL. .............co.cooiiuitiiiii et ee i ee cee e ceeebe saraeseesieeeee seeneeeee 69
d) Remarks on the linear MOdels. ............ oottt i e e e e e e e e b aee e es e 1O
H.3) Non-linear models. . 12
H.4) Brittle. Creep. Emplncnl cntena ; i T8
H.5) Empirical criteria for shear- faultmg TRESCA cntenon COULOMB-NAVIER cmenon o X
H.6) Von MISES-HENCKY criterion forducmeﬂow(plastlcnty) 75
H.7) Rheological models. . . E ... 16
a) SAINT VENANT body (elasuc-plasuc matenal) s 0
b) BINGHAM body (visco-plastic material). . .76
Chapter I: THE ACCRETION WEDGE.......coooiiiiiiiiiiiimiiiiiiiininsssnne RS AR EAT NSRS 77
1.1) The model. . SR 4 ST S, FR At mienmens smmsbasmsns Svminiad A U AGHREER 85 s B
1.2) Equations of cqunllbmun Yneld condmon Slress ﬁcld ............................................................................. 77
1.3) Boundary conditions. Final results. ...................ocoo .18
RETEIENCES . couiiiiiiiiiiiiiiii i st rreraeeeate s ses e sansasssanssnsssassessssnssrnsmeeennnes 80

https://biblioteca-digitala.ro / https://unibuc.ro



A) BASIC ELEMENTS.
A.1) The displacement vector. Lagrangean (material) and Eulerian (spatial) co-ordinates.

Considei an arbitrary material point inside a continuum body, subject to a deformation process. At the initial time t(), that
- :
point has the position vector denoted by X, with respect to the origin of a oo-ordinate system (Fig.Al). At a lime t2tg.

— -> -
the new position vector is to be X . The difference x — Xrepresemsthedlsplacenentvector Taldngmtoaccoumﬂm

_.)
the components (xl xz,x3)ofthe vector X are all ﬁmcnons of the oomponems (X],X2,X3)of X the displacement
vector can be written as

- -
U= U(X],Xz,X;;;t) ; (al)
This represents a Lagrangean (material) description of the deformation process. Here, (Xl » X2, X3) are representing the

_)
Lagrangean (material) co-ordinates. Alternately, the components (XI,X2,X3)of X can be seen as functions of the

- _ .
components (x 1,X2,X3 )of the vector X . Consequently, the displacement vector can be written as
- -
u = u(x),x2,x3,1) . (a2)
This represents a Eulerian (spatial) description of the deformation process, where (xl X2,X 3) are the Eulerian (spatial)

co-ordinates. A basic supposition assumed thoroughly in that notes is that the deformation process is a continuous one, i.e. all
-»> -
the components of u or U are continuous functions together their derivatives with respect to both their spatial co-ordinates
or to time. Further conditions are discussed, for example, in ( Ivan 1996).
The Lagrangean co-ordinates are usual in the Solid Mechanics, while the Eulerian co-ordinates are commonly used in
Fluid Mechanics. However, in the Linear Elasticity, the distinction between these two kinds of co-ordinates is not important,
as it will be seen in the next chapters. More details on such aspects can be found in (Aki and Richards 1980; Ranalli 1987).

Fig.A.1. The continuum deformed body and the displacement vector.
A.2) Invariants of a tensor. Tensor deviator.
A second order tensor represents mainly a 3x3 matrix. The elements of the tensor are changing according to a certain rule

with respect to a change of the co-ordinate system. Such a change with respect to a rotation will be discussed later. For
simplicity. only symmetric tensors will be considered. A symmetric tensor is equal to its transpose

T=T @3)

(or Tij = Tji ). The superscript “t” shows the transposed tensor (matrix).

Lei the components of the tensor be real numbers
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5

Tip Tz T3

T={T2 T2 T23| . (a4)
T3 Tz3 T33

_)
The scalar A and the vector U are representing the eigen-value and the eigen-vector respectively of that tensor if
- - - -
Tu=Au , v=z0 . (a5)
It’s easy to see that the eigen-values are not changing with respect to a rotation of the co-ordinates system.

_)
Suppose now that the eigen-value 2 and the components of the eigen-vector U are complex numbers. By taking the
complex conjugate (denoted by an asterisk) into (a5), it follows

- >
R "

Tu =2Au (a6)

Taking into account the symmetry of the temsor, Lhc next inner produci is evaluated into two different ways

5 —: = —>* |2
<Tu,u >=<Au,u >= u , a7)
and
T e Sy ot S e

<Tu,u >=<u,T'u >=<u,Tu >=<u,A u >=A|u (a8)

From (a7) and (a8) it follows that the eigen-values (and the components of the eigen-vectors) of a symmetric tensor are real
numbers,
Eq.(a5) can be writien as

- - -
u

T-Al{u=0 |,

>
#0 i (a9)

where 1 denotes the unit tensor. From (a9) it follows that the next determinant vanishes
Tii-2 T2 T3
T Top—-A T3 |=0 (al0)
T3 T3 T33-A
Hence the eigen-values are the roots of the third degree equation
—_X3 +11X2 -IaA+13=0 , (all)

where

=T+ Ty +T3= tr(T) ;

2 _ - 2
I3 =TTy + Tp2T33 + T33Ty - T, - 1223 = 11‘3 . . (al2)

I3 = Tj1T22 Ty + Ti2Taa Tyg+...= det(T)

With respect to a rotation of the co-ordinates system, the elements of the tensor are generaily changing. Because the
quantities defined by (al2) can also be expressed as functions of the roots of (all), it foliows their values are not changing
with respect to a rotation. They represent the main invariants of the tensor. The first irsvariant is the trace of the tensor,
while the third one represent just its determinant.

The tensor defined by

’1‘* = PF - ’;'ll'(T) I . (all)

https://biblioteca-digitala.ro / https://unibuc.ro



6
represents the tensor deviator, having its trace equal to zero. Elementary computations show its second invariant is

1 ‘ 2 2 2 2 2 2
I _~g|:(T“ —T22) +(T22 —T33) +(T33 —T11) +6(T12 +T23 +T13)] (ald)
That invariant is especially important to define constitutive equation for plasticity.

A.3) Strain tensor. Stress tensor. Equation of motion / equilibrium.

By using the spatial co-ordinates, the strain tensor is defined as (e.g. Beju, Soos and Teodorescu 1977)
1 - t b
€ =3 grad u+grad” u| . (als)

where “grad” denotes the gradient. In Cartesian co-ordinates, that symmetric tensor has the elements

P T 1(u, +uji) - (al6)
ij 6)(_' ox; ) ) | L

According to the CAUCHY’s hypotheses there are two kinds of forces acting at an arbitrary point placed inside a body or on
its boundary. The first ones are represented by the mass forces, characterised by a mass dcnsit); _b’ For the problems
discussed in that book, such mass forces are ignored: Or, they are represented by the gravity, when T)) is just the gravitational
acceleration —g Suppose now a mechanical state of tension (stress) is present inside the deformed body, eg. ‘as a result of

_.)
the action of a pair forces = T . An arbitrary cross section is considered through a certain point of the body, dividing it into
a part denoted by D at left and a pert D at the right respectively (Fig.A.2). A surface element dS is considered on the
9
boundary of D, having the outer pointing normal vector denoted by n . The material points of the boundary of D are
_)

acting on dS by an elementary force df . It follows (e.g. Beju, Soos and Teodorescu 1977; Aki and Richards 1980; Ranalll
1987; Ivan 1996) that the next relation is valid

— .
df -
s =gn . a.17)

where the tensor ¢y represents the CAUCHY stress tensor, spatial co-ordinates being used. According to the Principle of

the Kinetic Momentum Balance, stress is a symmetric tensor. It can be shown too that the Principle of Impulse Balance leads
to the next vectorial équation of motion /equilibrium -

_)
- 2
s u
divg +pb=p > (al8)
dt
27
That equation is valid at an arbitrary point inside the body , where p is the density and iTu- represents the acceleration.
dt

By projecting eq.(al8) on the co-ordinates systcm axes, three scalar equations are obtained.

3 5= '
0 2 A T
1 7
Fig.A.2. An imaginary cross scction through the deformed body.

https://biblioteca-digitala.ro / https://unibuc.ro



A.4) HOOKE'’s law.

Neglecting the initial stress (in most cases), it is further assumed a linear relation between the stress and strain tensors, i.e.

G :H 8 : (al9)
or

o= Hijuew - (a20)

where H is a fourth-order tensor. Eq.(al9) represents HOOKE’s law. In the usual cases discussed here, an elastic,

homogeneous, isotropic medium is considered. Then eq.(al9) takes the particular form

o =Mrg ] +2ug . : (a21)

Here, tr denotes the trace of the tensor, | is the unit tensor(matrix) and A, )L are the elastic coefficients of LAME. Hence
0'11="(811+822+833)+2“811’
02=Me1* €20t Esy)t WEDn.

s (a.22)
03" 7‘(811"822*833)* 2ugq3
01270217 21€12: O137031=2H€13: T3=032=2HEy
Alternately, HOOKE's law ( a21) can be reversed to give
I+v \Y% - 1 ' @23)
=— —— , a
where the modulus of YOUNG is
3A+2u
=g— (a24)
A
and the transverse contraction coefficient of POISSON is
A
Ve —m——— ¢ 25
200+ 1) (2
By reversing (a24) and (a25), it follows
A=—— _E L E (a26)
= p , R ——— ) a
A+vi-2v) "7+ :
The parameter defined by
_3A+2u E -
3 31-2v) @27

represents the incompressibility or bulk modulus. For (theoretical) incompressible rocks, that modulus approaches infinity.
Other constitutive equations will be discussed in relation to the rheological bodies.
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B) DEFORMATION OF A CYLINDRICAL BODY IN THE PRESENCE OF
GRAVITY

B.1) The model.

An elastic homogeneous isotropic body is considered (Fig.B1). Its initial shape is a right, vertical, very thin cylinder of
radius equal to r and height equal to H. The base of the body is placed on the horizontal, absolutely rigid, planex)Ox 2.

The deformation of the body due to its own weight follows to be studied and the final shape of the body into the final
equilibrium state will be found. The approximations of the linear theory are assumed and the variation of the density is
ignored. The problem is solved by following the next steps:

i) - the equations of equilibrium are used, the unknowns hembeingthceompomusofdwmtcm @  these equations
are processed according to the simplifying hypothesis of the problem;
ii) - by using the reversed HOOKE's law, the equations of equilibrium are processed in order to have only the components of
the strain tensor ¢  as unknowns;
‘ —
iii) - by using the definition of the strain tensor, the components of the displacement vector U are obtained and the final
shape of the body is found.

Fig.B.1. (a) A vertical cylinder lying on a rigid planei' (b) The final shape of a vertical cross section (solid line) with respect
to the initial shape (dashed line). [NO SCALE]

B.2) The equations of equilibrium. Boundary conditions. Simplifying hypothesis.

1
A simplified approach can be derived by using cylindrical co-ordinates. However, the problem here is an introductory one.
So these co-ordinates will be used later, in relation to other problems. The equations of equilibrium in Cartesian co-ordinates
arc

- 011,17012,2%0133=0
G121t0222%G233=0 ®1)
0131102321 0333-P8=0

Here, § is the density and g is the gravitational acceleration. The forces acting upon the body are the reaction force of the

horizontal plane and the gravity of the cylinder. The boundary conditions are:
-on the lateral surface of the cylinder:

sy o . v
g n=0 . for x3€[0,H]), xp,x2 €l (b2)
-on the upper base of the cylinder
X - - :
g n=0 ,for x3=H, x1,x2 €A , (b3)

Here, A is the disc of radius equal to 1, having the centre at the origin of the co-ordinate system and the boundary denoted
by I". The outer pointing norimal at the lateral surface of lhe body is a linear combination with variable cocfficients of the
horizontal unit vectors, i.e.
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9

— - S
n =C1(x1,x2)e] +C2(x],X2)ez {(b4)
For x3 €[0,H], x1,x2 €I eq.(b2) becomes
- - - — - -
Cl(xlxx2)[0'llel +o‘1262 +0‘13€3]+C2(X1,X2)[01261 +(§'22€2 4‘()'2363]= 0 (b3)
-

The outer pointing normal at the upper base of the bedy is the unit vector 63 For x3 =H, x1,x2 €A, eq. (b3) gives
- - N
013€1t023€2+033€3=0 L

Eq. (b5) is satisfied if the stress tensor has the form

(b7)

on the lateral surface of the body.

Because the cylinder is a very thin one, the stress at its inner points is approximately the same one to the stress on the
lateral surface. So, it is assumed that eq.(b7) holds inside the whoie volume of tiie body. It follows egs.(bla)-(blb) are
identical verified. From eq. (blc) it follows that .

'66
7333=Pg, O033(x1,%x2,x3=H)=0 (b8)

The problem represented by eq.(b8) has the next immediate solusen

O33(x1,%x2,x3)=pg(x3 - H) (b9)
The reversed HOOKE’s law is

1
811=E[(1+")011‘ V(011+°22+G33)]
SH_EW+WGn—%GU+Uﬂ+G%h'

1 .
833=E[(I+V)033‘V(Gn“ﬁzz“f?‘"ﬁ}J o

_l+y _l+v Cl+v
€127 O12°837 5 C23 8137 O3

Because
L _1fowy 2wy
e e BRI |
8!—' 2 &%  oxg ' (®b11)
egs. (b10) lead to : )
u 0 15,
1_VPg Uz _vpg Y3 _pg
=LYy x3) =PEH.xy) , —3-PBs H
" E g ST ®12)
Sup, %uy g Suz  %u3.. 4 Yu3 dyy
=0 , —3= ... Sk (B
0xy  0x] 0x3  Oxp x| 0x3
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10
By integrating eq.(b12) it follows that

' V
ul=—g§(H-—X3)x]+f1(x2,X3) 2

uZ=!%g-(H—X3)X2 +f2(xl’x3) ’
2 : “ ®13)
uz= E(——Hx3)+f3()c1 X2)

o L o ofy o3 _vpg of3 off _vpg
ot 8 =0 , —+——--—x2 , + =
Ox2 ax, ox3 oOx3 E oxy ox3 E

X1

Hence the displacement field is found if the unknown functions f} ,f7 ,f3 are finally obtained. Dilfcrenuanng(bne)wim
respect to xland(bliit)w:thmqmtto xzandaddmgtheresults,ufollows

2
2 220, 0 (),

®14)
Ox10x9 Ox3\0xy 0xl
So, using eq.(b13d) it follows
: 2
0°f3 - 1%
Ox10x2
From eq.(b15) it follows that : : C.
f3(x1,x2)=hy(x))+ha(x2) ., _ @16)
where h,h2 are two unknown functions, following to be found. Egs.(b13c) and (b13f) give
dy(x1.x3)_veg, ' dha(xp) - Hi(x2.x3) _ves, _dhi(xy) -

Ox3 E dxg ox3 " E dx;

The left side ofeq.(l_al7a) is represented by a function depending on X),X3 only, while the right side is a function of X7 .
Hence both sides are equal to a constant, i.e.

-——-—afz('xl"x3)=-—a2 gﬁzﬂ

s X2 +a (b18)
ox3 dxa E 234
It follows that
f)(x1,X3) = -a2x3 +g2(x]) hz(xz)——-—x% +83x3 + by ®19)
lﬁ a similar manner, eq.(b17b) gives
_veg 2
fi(x2,x3)=-a1x3 +81(x2) M(x1)=—x{ +ax) +b) (20
From eq. (b13d) it follows that
dgi(x2) _ _dga(x1) _p ®21)
dxa dxy
where K is a constant. Then
g81(x2)=Kx2 +Cp , g2(x1)=-Kx) +C3 (v22)

For simplicity, material co-ordinates are uscd to obtain the final expression of the displacement field
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3 =5 [85] v(H - X3)X) -a1X3 - KX Cso
u(X)=|u, =9:— v(H - X3)X> +~a9X3+KXq |+ €1 (b23)
U3 X% ) a1X] +azXsp by +bop
(5 HX3+o Y%t x2 2) :

The first term in eq.(b23) is the true displacement, the last one is a translation while the second term is the rigid rotation
ay) _, |
-ap [ x X (b24)
K
B.3) The final shape of the body.

a) The final shape of the upper base

Consider an arbitrary point of co-ordinates equal to (X, X7, X3 = H). In the initial stage, it is placed on the upper base
of the cylinder. Finally, the co-ordinates of the point are

X1 X1 0
x2 | =| X2 +‘;Eg 0. (b25)
X3 H 2 2
Xy +X5)-—
Hence
=X ‘
x2 =X2 (b26)

X3 VPS(XZ Xz)—ng2+H
From eq.(b26) it follows that
x12+x%=X12+X%:r2 . ®27)
Hence the circle representing the contour of the upper base remains a circle of the same radius. The plane of the circle is

moving downward by a quantity equal to pg(H2 N )/ (2E). The susface of the disc representing the upper base of the
body is no longer a plane one. It becomes a rotational parabolic surface having the equation

YPB (2 2)--2‘3%1{2 +H (b28)

X3=—2€ 1+X2

b) The final shape of the lower: base - . -

Consider now an arbitrary point initially placed on the lower base of the body. The point has:the’ co-ordinates equal to
(X1,X2,X3 = 0). The final co-ordinate of the point are

X1 X1 7 HX, ] -
x5 |=| X5 +—f5 HX (b29)
X3s \O (X2 +x%)/2J

Hence
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=(1+ vpgH/ E)X}
x2 =(1+vpgH/E)X» (b30)
VPS8 2 2
X3 =—— X +X
| 3= ( 2)
From eq.(b30) it follows that

x2 +x2 =(1+ vpgH/EY* (X} +X3)=Q+vpgH/EY** | @y

i.e. the circle representing the contour of the lower base remains a circle. The new radius is increased by a quantity equal to

vpgH/ E . The initial horizontal plane of the circle is uplified by a quantity equal to vpgr2 / (2E). The surface of the
disc representing the lower base becomes a rotational paraboloid having the equation

y .
X3 = b (x12 +X%) (®32)

2E(1 + vpgH / E)?

¢) The final shape of the lateral surface

Consider now a point initially placed on a generatrix line of the cylinder. Because of the cylindrical symmetry of the
problem, the point having the initial co-ordinates equal to (X} =0, X9 =r, X3) is considered. Finally, that point has the
position characterised by the co-ordinates

(

x1=0

<x2=r+y-§-8-(H4X3)r (®33)
x32 v

X3 = x3+‘§ 23 ~HX3 +—2%8-r2

From (b33), it follows that the generatrix remains into the initial vertical plane. ils shape is changed from a straight line
segment to a convex parabolic segment, having the equation

X3 = (x2/r l) ————(x2/r )+H- ggﬂz + P8 2 (b34)

OBSERVATION. On the lower base of the cylinder it is acting the reaction force of the rigid plane, equal to the weight of the
body. When the surface of the base is decreasing, approaching the paraboloid of eq.(b32), the normal unit effort (equal to the
weight divided by the contact area) is increasing. At a certain moment, its magnitude will exceed a yielding value of the
material. Then, HOOKE'’s law, valid in the elastic domain, will be no longer appropriate here.
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C) LEVY’s PROBLEM - THE TRIANGULAR DAM

C.1) The SAINT-VENANT ‘s equations.

Differentiating a certain element of the strain tensor

Sijz(ui,j+uj,i) /2
it follows, for example, that ’

€11,22 +822,11=(111,1) 99 +(u2,2) ULzt U221

=|: " = + ) =2
(111,2)’12 (u2,1)712 (u],Z uzi/y, €12,12
Hence

€1122T€221152€1212

€22331€3322=2€23 23

€3311+€11332€3131
In a similar way, it follows that

(812,3+823,1 - 831,2) , T€2231

(823,1+831,2‘ 812,3) ;- €3312

(831,2+ €123~ 823,1) | TE11,22
The above equations (c3)-(c8) represent the SAINT-VENANT's equations of compatibility.

C.2) The model . Simplifying hypothesis. The planar deformation state.

ch

(c2)

(€3)

(c4)

(c3)

(c6)-(c8)

A horizontal dam of infinite length is considered. The cross-section i& represented by a rectangular triangle OAB (Fig.Cl).
The length of the base is AB=1 and the height is CA=h. On OA catheter is acting the hydrostatic pressure of a liquid (water)
having the specific weight equal to y. As a result, the dam is deforged. The dam is represented by an elastic homogeneous,

isotropic material. Its specific weight is equal to I and its elastic constants are E and v.

N.EIS. ? 2
n
P
——
— h
— |&

F—
f—
2 N

A B

¢ 1 +
1‘?

Fig.C1. A vertical cross section through the dam. N.Hs. is the free surface of the water, acting on OA side by a pressure

linearly increasing with depth.

Because the shape of the dam, the displacement vector has the components like
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u=u;x1.x2)
uz=uz(xnx2) (©9)
U3=°
It follows the strain tensor components are like
€11=Uy,1=€11(X1,X2)
l .
812=3(ul 2t U2 1)‘812(-"1"‘2)

€135 (1113*1131) 0

(cl0)
822“’.12,2“822("1,7‘2)
1
, 823=5(u2,3+u3,2)=
€33=U33=0
Hence the strain matrix is :
€n €2 © |
e o Jovea-fon o o|
- 0 0
It corresponds o a planar state of the strain (the plane here being 1-2).
The components of the stress tensor are
011“(811*822)”“811
C12=24€12
C13=21g)3=0 :
' (c12)
022"'(311’“822)*2“822

G23=24gy3=0

: A
033="(811+822)+2?‘833=*(811+822)=——2(x+u)(011+022)=‘(011*022)
Hence the stress matrix is
011 O12 -
[c ]-’-[0 ](X1,xz)= o1z 622 ©° ©13)
o 0o Mouton |

Because the component 33 of the stress has a non-zero value, eq.(c13) shows that the stress state corresponding to a planar
aateoflhestmmsnotgcnerallyaplammtoo

C.3) Equations of equilibrium. AIRY’s potentlal.
The anly body force acting on the dam is its weight. The equations of equilibrium are
{011,1+612,2+F=°

012,1t0222=0

Because the presence of I, eqs.(c14) represent a non-homogeneous system. In the beginning, the homogencous system is
solved, i.e.

(c14)
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211t 2i22=0

(cl5)
21217 2222=0
Using an unknown function @, the first equation of (c15) is verified for
_ 0o _ Oy
‘ L™ 5, * 2127 5 (c16)
In the same way, the second equation of (c15) is verified for
oy oy
=— = ©17)
L1275, * 2127 :
It follows that
Qo v, (c18)
Ox] 0x2
i.¢. the unknown functions are
' oA oA
=— , y=——— c19)
’ 0xp ¥ 0x1

The unknown function A = A (x1,Xx72) represents the AIRY’s potential. It allows one to obtain the next expressions

for the components of the stress tensor when the body force are absent:

In=Axn - Zip="Ap - Z,=Aj (20)
From (c13), the trace of the stress tensor can be written using LAPLACE’s operator in 1-2 co-ordinates
*
try, =(1+v)(211+222)=(1+v)A A (c2
The components of the strain tensor are obtained using the reversed HOOKE’s law
1+v * 1+v * 1+v
811=T(A,22" vA' A ) ’822=T(A,11‘VA A) €127 5 Az
Using (c22) and (¢3) it follows
* *
A2 “(A A ) 0 TALINT "(A A ) a2 A o @
ie.
* %
(I-vJAA A =0 (c24)
Because v < 0.5, it follows that AIRY’s potential is a solution of the bi-harmonic equation
A*A* A =0 (c25)

Because the trace of a tensor is an invariant, eq.(c25) holds too in the general case of the orthogonal curvilinear co-ordinates.
However, eq.(c20) has to be modified.

C.4) Boundary conditions. The final shape of the dam.

On the side OA of the dam is acting the hydrostatic pressure, It follows that

- —
o (-ex)=7i¢, (c26)
On the side OB of the dam is acting the negligible atmospheric pressure. It follows that
' - -
o n=9 €27)
where the outer pointing normal at the dam is
- - -
n =-sina et cosa e, (c28)

On the side OA, for x| €[0,h],x2 =0, it follows that
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{0'12=°'

022~ "YX1

On the side OB it follows for x] €[0, h],x2 = x) tan a. that
{0'12‘0'11“““:0’
G2~ Cpptana=0

(c29)

(c30)

Eqs.(c29)-(c30) represent 4 boundary conditions, suggesting a solution of the bi-harmonic equation (c25) which depends on 4

unknown coefficients denoted by a,b,c,d, i.e.

a3 b c d
ll\(xl_,x2)=-6-xl +Ex12x2 +5x1x% +-6-xg
Using (c20), the solution of the homogeneous system is
El 1 = cx1 + dx2
212 = —(bXI + cx2)
222 = ax1 + bx2
A parucular solution of the non-homogeneous system (c14) is
G110 22=0
C12="Tx2
It follows the general solution of (c14) is
' 011X +dx2
012 =~(bx) +ex2)-Tx2

G 22 = 8] +bx2
Replacing (c34) ipto (c29)-(c30) it follows that
—(bx] +cx2)-Tx2 =0, forx) €[0,h] ,x2=0
ax] +bxa =-yx1, forxj €[0,h] ,x2 =0
—(cx) +dx3)tana — (bx] +cx2)-Tx3 =0, for x) €[0,h] ,x2 =x) tana
(bx] +cx2 +I'xg)tana +ax) +bxg =0, for xg €[0,h] ,x2 =xjtana

It follows that
-
b=0
1 2
c=-T'+y/tan“a
‘d=l"/tana-2'y/t,an3a
and
0-“=Axl+Bx2
1012=-Cx2
(022 = ~TX1
where
A=1h?2/12-T | B=Th/1-2903/13 , C=-yh2/12
Hence ' : T

u“=g”=C1x1 +Cax2,

where
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Ci=U+VA-WA-PI/E , Cp=(0-v>)B/E (c40)
It follows that )
u1:C1x12/2+C2x1x2+f1(x2) (c41)
where the unknown function f 1 follows to be found. In the same manner,
u,=C3xix2 +C4x% 12+ f2(x1) (c42)
But , ' '
' R | 1 ' ' 1+v 1+ v
812=5(u1,2+uz,1)=§(C2X1 +f1(x2)+C3xp + fZ(Xl)=TO'12= ——é—sz (c43)
Hence

+f' =K
Caxq +12(x1) ’ (c44)

C3xp +fi(x2)=-K
where K is an arbitrary constant. It follows
fi(x2)=-C3x3/2-Kxg +Kj , fa(x;)=-Cox} /2+Kx] +K2 (c45)
Hence, the displacement ficld is
up=Cix3 12+ Caxyxp =[C3 +2(1+ v)C/Ek3 / 2- Kx3 +K)
(c46)
us= —C2x12 /2+C3x1x2 + C4x§ /2+Kx; +K2
The last terms into (c46) represent a rigid roto-translation. _
It should be outlined that the above boundary conditions on stress values on the sides OA and OB are not complete ones. As a
result, the unknown constants C3, C 4 are present in (c46). Boundary conditions on stress values (or displacements) on the
side AB are required in order to obtain an unique solution of the problem
For example, consider the case when the points A and B are fixed ones. It follows

u1=C1(x12 —hz)/2+C2(x1 - h)xz -[C3 +2(1+ v)C/Exg(1 - x2)/2

(c47)
U= cz(h2 - xf) /2+C3xa(x1 ~x2h/ 1)+ {Coh—[C3 +2(1+ Vv)C/ EJi/ 2}(x - h)
An arbitrary point placed initially on the side AB has the initial co-ordinates (X'l =h; Xz). Its final position is
x1=X1+ (X1, X2)=h+[C3 +2(1+ v)C/EX2(1-X2)/2
48
x2= X2 +11,(X1,X2)= X3 + C3hXp (- X2) /1 0
Elementary computations show that ,
2
2(1 1 ‘
| C3+ (EV)C:— -;:v yAd-v)-vI-(2- v)'y%z— (c49)
If
C3 +£(lg—v)C<0 , (c50)

the final shape of the side AB is a concave parabolic segment. Because the possibility of the water to flow below the dam, that
situation is not recommended in real cases. Therefore, it is asked to

y(1-v)- V[ -(2-vg(h /D2 <0 | (1)

ie.

h/12 [y(-v)-v[]/2-v)/y (c52)

For example, assuming thaty = 1000Kgs / m3 ,['=2400Kgs/ m? ,v =025 it follows that h >029].
EXERCISE. Obtain the final shape of the dam in the above hypothesis.
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D) KIRSCH’s PROBLEM - THE CIRCULAR BORE HOLE / TUNNEL

D.1) The model.

1t is assumed that the whole 3-dimensional space is represented by an elastic, homogeneous, isotropic medium, having the
elastic constants denoted by E and v, respectively A and |. A co-ordinate system having the third axis positive upward

will be used. The initial state of stress is represented by the homogeneous tensor 0_0’ corresponding to a planar state of
deformation, i.e.

0 0 0
On O
0 0 0
O =|0C12 O 0 @y

0. 0
o 0 "(0‘11’“022)

where the components o'g have constant values. The mass forces are ignored, hence the equilibrium equation

0 -
divg =0 (d2)

is identically satisfied. :
Suppose that a circular, infinite bore hole / tunnel is performed along the third axis, its material being instantly removed. The
origin of the co-ordinate system is placed at the centre of the cavity. On the wall of the bore hole is acting now the

atmospheric pressure (or the pressure of the drilling mud), denoted by p 0 Conisequcnily‘, a new (non-homogeneous) stress

value is obtained and the circular shape of the bore hole is changing too. It follows to obtain the new stress, denoted by (0] f ,

and the new shape of the bore hole in the final equilibrium stage, where
. f_
divg =0 . (d3)
It is also assumed that the deformation is an elastic one, i.e. the stress perturbation G = o'f - 9 is related to the strain
tensor by

o =Mrg | +2ug . (d4)
The unknown components of the displacement vector are supposed to correspond to a planar deformation state, i.c.
- up =up(x1,x2) , uz=uz(x1,x2) , u3z=0. @s)
Because the symmetry of the problem, the cylindrical co-ordinate system (r, 0, z) will be used, having the unit vectors

> o> >
denoted by| € r ee ,€ » (see Fig.D1).

Fig.D1. The cylindrical co-ordinate system,
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D.2) The planar sate of deformation in cylindrical co-ordinate system.

With respect to Fig.D1 it follows that

- - -
(3r =cos9(:1 +sineez,v
- - —

{Ce =—sinee] +c05662 , (d6)
- = '
CZ =e3

Hence the matrix for pascing from the Cartesian co-ordinates to cylindrical ce-ordinates is

cos@ sin@ 0
Q=|-sin® cos®6 0| o @”n
0 0 i

It represents a rotation of angle equal to O in a positive (counter clockwise) sense. From (d4) and (d5) it follows that the
stress matrix in Cartesian co-ordinates is

C11 O12 0
crt

| e 4 V(Gn*()‘zz),
Let the stress matrix in cylindrical co-ordinates be

i[O o O | |
[0] /0w Ogo Oozl - (@9)
Oz Opz Oz

1t follows that
&l it cos@ sin® 0) G111 012 0 cos® —sinb 0
[o'] =Q[0‘] Q'=|-sin® cos6 0 C12 O» 0 sin6 cos® 0
1 0 0 1
0 (0] V(O‘”+(512)
(d10)
By pcrforming the computations in (d10), it follows :
_O0nt*toap : C11-02
o-n_———z———-—+0-12sm29+-—2———c0526 ; | (dln)
o;1to . - '
096=—l—]——2—22—6125m29~g“—29—2—%c0s26 , (d12)
0117022 .
o-rez——llz_zzsm29+(5]2cos29 , (d13)
Gr=06:=0 + G5,=V011+02)=Mon+Gee) (e -
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D.3) The circle of MOHR.

Suppose the Cartesian co-ordinate system is selected in order its axes to be along the first two eigen vectors of the stress
tensor. In that case, O} land Gy are eigenvalues of the stress tensor and o112 = 0. From equations (d11)-(d13) it
follows that

2 2
0117022 2 _|0117022
(Gu‘—“—z O\ T 5 | (d15)

and an identical relation obtained by replacing ¢y o with 00" Eq.(d15) shows that (o 8 and (y o are placed on a
circle of radius equal to lo-l 1~ 0-22|/ 2. Suppose now that (o (or 099) (i.e. the radial stress component, usually
denoted by ¢ ) and (¢ (i.e. the tangential stress, usually denoted by ) are obtained at various angles 0 and the

MOHR’s circle represented by eq.(d15) is obtained. Its radius and its position of the centre allow one to obtain graphically the
eigenvalues of the stress tensor. Further discussion will be presented in relation to the empirical failure criteria of matgrials.

D.4) AIRY’s potential in cylindrical co-ordinates. The bi-harmonic equation.

Consider the representation of the stress components with the AIRY s potential in Cartesian co-ordinates, i.e.
on=A2 62"An op=-A) - @16)
where the AIRY’s potential verifies the bi-harmonic equation

* ¥k .
AA A =0 . d17)
In the beginning, the derivatives in eq.(d16) will be evaluated by using the polar co-ordinates

X1 =rcos6 _-.J 2 2
{ 1 r xX] +x2 d18)

X2 =r8in@ O =atan(xy / x])

Than, a representation of the stress components in cylindrical co-ordinates with the help of the AIRY's potential will be
obtained from (d11)-(d13). 25

But
o x o xo » X2 sin®@ 80 x] cosO
— =—t=z=cosf ,—="42=gin@ ,—=——-L=-—m0 -1l T"7 d19
oxy r O0xp r 1 r2 ¥ 0x2 1'2 r =
It follows
0A %A & A »
sin©
- = = c0s0 -
A,l o o a B o cos A,r - A,G (d20)
In the same way,
A p=sin®A  + cosOA 0 (@21)
Also, o -
sin@
A,12=(A 1)2 =(°°seA T A 9)
v ) ’ r ’ ’2
. in0® cos® sin0
- e( oA -2 ) —( - )
sin6| cos® A | - Ag 'r+ - cosB A | - Ap o (d22)
(A A A sin20 (Am_Ap -
T 2 2 r 2
In the same way
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A, Ao , Awp Ap
A’“=cos2eA’rr+sin26( ’r+——’29— +2sinBcosb| -——+—= , (d23)

r

—sin2 2. A Apo o (_A,re Ap
A,22—sm OA’n_+cos 9[ - o ZsmE)cos(}k ; + ) , (d24)
Hence

onton=AntAncAgt—* % (d25)

A A
cos20 — 2sin 26| — .19 + ,6 . (d26)
T r2

A
011‘022:A,22‘A,11=[’A,rr+ t—

From eqs.(d11)-(d13) it follows

On=";"*"3 - CGee~Anmw > O™, " @

D.5) The divergence of a tensor in cylindrical co-ordinates.

In the case of the cylindrical co-ordinates, the square of the elementary arc is equal to
ds2 =dx12 +dx§ +dx§' =dr? + 12402 + dz? (d28)

Hence the differential parameters of Lamé are

h1=1 , h2=r " h3=1 , (d29)

the orthogonal curvilinear co-ordinates are equal to

c=1, ¢c“=6 , ¢°=2z , (d30)
and the unit vectors are
- - - - -
n'=€ . n2=€ . n*=¢€, - @)
It follows that
ﬁzsqzsm . (d32)
6cB

Substituting the above results in the formula (a2.77) (Ivan 1996) it follows the next formuia for the divergence of a tensor in
cylindrical co-ordinates

-—-’
divT=(m“'r L LI A Tee) e
or oo 0z r r
(d33)

ol  0Tgy . ITp, Tﬂa) N (ﬂn OMge . 0Ty, Trz) 7
+ + + 2 —
( or rod Oz * r Co + or ¥ o0 * oz * r 2
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D.6) The gradient of a vector and the strain tensor in cylindrical co-ordinates.

Substituting the above results in the formula (a2.68) (Ivan 1996) it follows the next formula for the gradient of a vector in
cylindrical co-ordinates

> - - au," - A - -
==L ®Cy+—€_ ®
grad u o €, ®€C + 666 € Fe C C,
- o - - - >
ug ug 0 .
+ja-r—’ee®e +’£ee®ee+—57e9®ez . (d34)
> - -> - > - - - > -
6u Oug Ou, ug ur
+€, 86+ 1€, ®Cy+ =€, 8€,-—-€,®Cy +—C4 ®€y

. . ] N - t
The components of the strain tensor & = ry grad u +| grad u are

_dp _1@_& zu_e_) _l(ﬁ _r‘zu_z_)
€™ 0 T T a) T\ % T

' : (d35)
_Qug vy (&*e &'z) _dug
399raer’8ezzaz ) EzT g
i -
For the particular displacement field represented by (d5), the components of the vector u are
ur=ur(r,0) , ug=ug(,06) , uy=0 ) (d36)
Hence
erz=892=822=0 : (d37)
It is the case of a planar state of deformation, i.e.
€r €p O
€ =|€p €gp 9| - (d38)
0 0 0).

and all the strain elements are functions of r and 0 .
Consequently, the stress is

O =|0p Ogo 0 , (d39)
4 0 V(Grr+099)

all the components of the stress being too functions of r and 0 , according to HOOKE's reversed law. It follows from (d33)
the next equations of equilibrium are obtained in the absence of mass forces:

6, 909 OO
B e 18 S0 200 40
or oo r e
°c 0
o O 00 09
+ +2 =0 d41
o | o8 T (b
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D.7) The bi-harmonic equation in cylindrical co-ordinates.

By using (a2.69) and (a2.43) (Ivan 1996), it follows the LAPLACE operator in cylindrical co-ordinates is
of l ﬁzt‘ 02
4o

10(
Af = dw(gradf)-——L : —3+ —_— . (d42)
a\ o/ r2 23] (%
The AIRY’s potential is also a function of r and 6 . Hence the AIRY s poteniial is the solution of the bi-harmonic equation
* %
AA A =0 . (d43)
where the LAPLACE operator in polar co-ordinates is
tlaala~ ? 10 1 8
A = +— =T o T (d-+h)
r al' al‘ % or ror r< o0

It should be noted that the singular point r=0 is avonded in (d44) because T2 R > 0, where R is the radius of the bore
hole.

It follows to solve (d43) by using (d44) in order to derive the AIRY’s potential. The siress components will be obtained
from (d27), imposing the boundary conditions on the walli of the bore hole. The components of the strain will be derived by
using the HOOKE's reversed law. The displacement vector will be obtained from the definition of strain elements, allowing
one to find the final shape of the deformed bore hole wall.

Consider the FOURIER expansion of the AIRY’s potential, having the coefficients equal to functions of r

a0
A (r,G):AO(r)+ Z[An(r)cosn€)+Bn(r)sinn9] (d45)
n=1
It follows
oA ' o0
TzAO > (A cosn6+B qmne) : (d46)
n=1
* A w .
ar _AO Z ( cosnG+Bn sin ne)_ , (d47)
62A L
662 Z (Ancosne + 3, sin 99) . (d48)
Hence - ) '
o " 1 ' Il2 " 1 [ l’l2
AA =AA0+ Z A +; ——-—2—A cosnb +| 3 +;-' ———2—B sin n6 (d49)
n=1 r r
and
0 " " 1 % 2 4 ' 4 —_ 2
AA A =AAAO+Z [A —A 2" HA» -{AmBHA +£——44n—AJcosne
=1 r r r
" . (d50)

2 2 2
" m 2 +1 no 2 1 ' -4
*{B += B B+ TR+ — B]sinne

l' : r r

By using (d50), the bi-harmonic (d43) is verified if

AMAAG=0 (ds1)
and if the functions A , B are the solutions of the next differential equatign
2 4 2
w2 "m n +l " 4 | ' n' —4n
+—r—Q) (I) (D +——4———(I) =0 . (d52)
r r‘ I

Because A o isafunction of ronly, eq.(d51) is
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1d| d[1d[ dAp :
i =0.. ds3
rdr {rdr[r dr(r dr JJ} ' e

Hence
dAo d d Ao)
ag , —|r =agrinr+bgr . (d54)
dr[r dr( dr J] 0 dr dr " ’
But . - .
r2 1
Ir Inrdr = —(ln £ —) + const. (ds5)
2 2
Hence .
d b .
AO 20 2(lnr ;J+—Qr2 +cq (ds6)
dr 2 2
Finally, denoting again the constants, it follows
Ao®=a0r? Inr+bor? +eglnr+ do . d57)
In order to solve eq.(52), a solution of the form
o =" (d58)

is considered. Substituting (d58) in (d52), it follows that the exponent m is the solution of the algebraic equation
m(m - 1)(m = 2)(m - 3)+ 2m(m - 1)(m ~ 2)— 202 + )m(m - 1)+ (202 + )m + n? - 4n2 = 0,459

having the roots
mp=-n , ma=-n+2 , m3=n , mMmg=n+2 . (d60)
Hence the AIRY’s potential is

Q0
A 1,0)= a0r21nr+b0r2 +c01nr+do +y (a M2 b 4o t2 +d,,r"“) cosfn

>

n=1
[e.0]
+ 3 (anr“+2 +Bgr™ +yqrt2 +6nr_“) sinfn
n=1
(dé1)

where the unknown coefficients ai,bi,ci,di,aj,ﬁj,yj,iij, i=0,1,2,...‘, j=12,... follows to be obtained.

D.8) The stress elements. Conditions at infinity for the stress elements.
By using (d61) and (d27), it follows

Cog=A rr=a0(2|nr+3)+2b0-3%
’ r

(e 0]
+ Z(an(n+2)(n+l)r +bnn(n--1)rn 2+cn(n 2Xn-1)r M +dpn(n+1)r- n- 2)cos6n
n=|

MS

(an(n+2)(n+l)r +Bpn(n -1~ 2+yn(n 2)(n-1)r" +8nn(n+l)r_"—2)sin9n
| _

I

n
. (d62)

At great distances from the cylindrical cavity, the elastic perturbation has to vanish, i.e.
limogg=9 ; (d63)

r—»o
It follows
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. (d64)
bn :Bn:O ,n=3147
Hence the AIRY’s potential is
e8]
A (8)=colnr+dg(by +B1)r+ 3 (cq cosnd +7 sinn@)r " +2
n=] - | (d65)
(e o]
+ Z(dn cos nd + 8, sinnd)r "
n=1
and
cn @
Cog= ——g+ Z(n —2)n -1)(cy cosnb + 7y sin lle)r-—n
r on=l (d66)
Q0o
+ Y n(n+1)(dy cosnd + 8, sin ne)r'nﬂz
n=1
From (d65), it follows that
Q0
A l_=£:2+b1 +B1+ Y (-n+2)cp cosnd +v, sin nG)r—nH
’ r !
n=l ' , , (d67)
00}
+ Y (-n)(dp cosnb +5 sin ne)r"n-1
n=1
a0 aw
A g= 2 n(-cnsinnd+vp cosne)r—“+2 + y n(-dpsinn®+8, cosnB)r™™ | (d68)
g n=l1 n=]
oo w
Ago=- an(cn cosnd + v sin n())r_n+2 - Zn‘?(cln cosnd + 8y sinn@)r™ ™ . (d69)
’ n=1 n=l
Hence
A A by + -
O'rrz_r’r +———’2ee =E%+——-1 - Pi_ > (n?‘ +n- ZJ(Cn cosnb +yp sinn@)r "
r r —
| el (@70)
- (nz + n)(dn cosnB + 8 sin nG)r_n—2
, n=1 ;
From (d70), it follows that
limo,=9 . @n
r—o
Also,
Q0 0
A = Y n(n-2)cp sinnd -y cosn®)r " +1 .. an(dn nnd -8y, cosnf)r 1 ()
n=1 n=1
Hence
_ A Ap
0]{) r r2

(d73)

e o
o Z(nz ~n)en sinn® -y, cosn@)r " - 3 (“2 * “)(dn sinn® -8, cosn(?v)r"“'2
n=l n=|
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From (d73), it follows that

limo =9
r—o
D.9) Strain and displacement vector. Conditions at infinity.
From (d39) and HOOKE's reversed law it follows that
1 l+v
€ —-F:[(HV)O' -wrg 1]—'}3_[0' “"(O',T““O'ee)]]
ie.
_l—v2 v o
En™ E cn_l_voee
Hence
E Ou co 1 by1+p -
- arr=l—v:i-+ - - Y (n-1 n+2+-l-—(n 2) (cp cosnB +vyq sinnB)r "
n=2
1 5 : -n—-2
— Y n(n+1)dy, cosnb +3, sin nd)r
n=]
Integrating (d77) it follows
. B )
, v2u,=—] -+(b1+ﬂl)lnr+2[n+2+——(n 2) ((cq cosnd +v p sin n@)r M1
- =2
+1— Zn(dncosne+8nsmn9)r n-1 4 o(0)
n=1
From
limur=0 ,
r—o
it follows that
b1 +B1=0 , ¢@®)=0
Hence
E c 1, -
5 ur == 0 Z[n+2+-———(n 2)}cncosn9+ynsmn9 el
1-v I-vr n=2
1 [« o]
1—-—2 n(dp cosnd + 8, sin nd)r 1
Finally -
l+v| ¢ & ' o
ur =—E—-[——f—+ D (n+2+-4v)cy cosnd + vy, sin nO)r"'”'l
n=2
Q0
+ Y n(dy, cosnd +8, sin nQ)r "1
n=1
In the same way,
_l—vz[ v _ug L u
E 066 1_,O0n|" rod

It follows
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E oug E B +Eey v ‘G
= - rT e
1-v2 ® 1-v? B Jey Om

(d84)

Substituting (d82), (d66) and (d70) into (d84) and integrating with resp=ct (o 0 , it follows after some computations that

o)
ug = (1—v)w(r)+ > (n-4+4v)(cysinnb-yy cosnb)r ~n+l
- n=2 '
o 1 :
+ Y. n(dp sinnd -5, cosnB)r "7
n=1
Form the condition
| limue =0 .
r—»w
it follows the unknown function = () is subject to the condition
lim w()=0
. Ir—ao
But A
1+_v 1{our _up | @Q.J
€9~ G~ 2k ® r o)’
or
E (ou cug
2r ———(——rw~up +r———)
Cro 1+v\ 6 or
Substituting (d73), (d82) and (d85) into (d89), it follows after some compualations that
d\;/ )
dr
i.e. W= Cr. From (d87) it follows that \u(r) 0 and, finally,
1+v . —-n+1 :E\ / ‘ -
ug == D (n-4+4v)(cy sinnd -y cosnd)r + > n{d, sinnb -8 cosnd)r
n=2 fi=]

D.10) Boundary conditions for the stress elements on the wz!l of t8e circular cavity.

Using the previous results, the final expressions of the plane elements of the stres: are equai to

(e o}
c —
Grr="3~ X (02 +n-2)(en cosn+ 1, sino0)

2
I n=l
a0
V.
-3 \n 2 n)(d , cosmO + 8 sin nG)r_"—z
n=j
[o o]
o-ee-—-—+ Z n-2)n-1)cpy cosnd + 7, sinnf)r "

+ Z n(n +1)(dp, cosnd + 8y, sinnf)r 2

n=1
and

Q0
C,o=" 3 ?- n)cp sinnb -y, cosnb)r ™" - Z (02 4n) \d n sinn® -8y, cosn®)r "
n=] ‘
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(d92)

(d93)
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v -
The cavity wall has the outer normal (with respect to the rock domain) equal to — € and radius equal to = R. In the

case of a bore hole, let Apbe the difference between the mud pressure and the pressure of the fluid contained by the porous
rock (usually, because the atmospheric pressure is negligible, it follows in the case of a tunnel that Ap = 0). It follows the

final stress ¢y f.satisﬁes the next boundary condition
A -5 .
of -€.|=4p€, , for r=R (d92)

Hence

0
Onl._2=C—4p
"L‘R T (93)

0
G;e|r=R"O';e
With no loss of generality, it can be assumed that the stress at infinity is along its main axes, i.e. 0'?2=0.Henoe
c [e o] Q0
_%_ 3 (n2 +n-2)(cn cosnd +yp sinng)R™" - " (n2 +n)(dn cosnd +8, sin n())R_"—2
R™ n=2 n=1 : <
| 0. 0 0 _ 0
_ 0117022 011022

= c0s20 — A
) 2 2 P

Q0
> (nz - n)(—cn sinnb +7yp cosn@)R ™™ +
n=2

T M8

(nz + n)(—-dn sinnd +8p, cosn)R 02
1 .

0__0
=——-—-—-———0-11 G22 sin 20
2 .
(d9%4)
Hence
0 0
S0 __O1*0% _,,
R2 2 , (d95)
d;=6;=0
and
w
> {[(nz +n—2)&‘—+(n2 +n) »dnz]cosn6+[(n2 +n-2)y—“+(n2 +n) %p :'sinne
o’ RO g0+ _ RM R0+2
o)-69
112 2,Zcos29
(d96)
[ve]
> <= (nz—n)~—l‘—+(n2+n) D lsinnd + (nz-—n)l—“—+(n2+n) N __lcosnd
R 2 n 2
n=2 N R R R (d97)
0
= Gn 22sin 20

It follows that
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Co __Dl1 Y22
rR2 2 a
0
1552 ,Ad; 011 OG22 . (dv8
.0
,2 42 0117022
R?2 R 2
and )
2 0250 s 2 4000 =34
(n“ +n 2)Rn +(n +n)Kn+2 ., n=34,.
6 PR
(n2+n—2)1i‘—+(n2+n)-~-r—'_:720 , R=23..
J R" RETZ d99)
(2 n)— ‘n +(n +n)—;4—7-—-0 , n=34,.
R R
t(,,2 n) T+ (n2 +n)— w-—O , n=23.
Hence
(0) 0'0
co = 11 22 AplRZ?
0
) _0'1120'22R2 ey =0 ,n=34,. : (d100)
4
0 0)R _33
d2— (Gll GzZ)T > dn=0 ’n'—3)4:
Yn=0 ,85=0 ,n=§:§i~.
By using (d11-d13) for ¢y ?2 =0, the expressions of the final stress aic cqual to
. % +6% 6% -2
O'f= 11 22,911 22 .1526
T 2
0 2 9 4 (d101)
011+022 R 0 R 3r 0 _0)R
- ——=2+Ap —2——2 11~ 0-22) 3 -C0820 + — 50117022 400526
2 r
Gl1*G9 G- O o) \Rz R
ge= 11 22 2L 222 5529 + ou’ ]—?~—~ (0-” ng)cos%—z—
2 2 ) r
(d102)
and
ol-Go R? 3 R
Gfle=__lL2_223inze—(00 622) sin 20 + = (6?1—0-(2)2)—91126 (d103)

iF

In real cases, the value of the stress at infinity are positive ones for compression.
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D.11) The final shape of the wall.

Consider again the case when the direction of the horizontal axes of the co-ordinate system is along the corresponding ¢igen
vectors of the initial stress 0-0. In that case, 0-?2 = 0. Using the above results, it follows the displacement vector for the

points initially placed on the wall of the circular cavity is

1 o) +od G-

up(r=R,0)= ;"R “2 22 Ap+(3 4v)——“2—2—2c0s29

< . (d104)
1+ 0'0 "0‘0

vo(r= Re)-——E‘iR(s 4v)—1L 222,99

Consider an arbitrary point on the wall of the bore hole. In the initial state, it has the polar co-ordinates (r = R,G) s
position vector with respect to the centre of the circle is

- - o
X =R| cosb €+ sinf)e2 (d105)

Using (d6) the position vector in the final stage is

- - g - -
X =X+ur(R,E))er +u9(R,9)ee =R coseel +sin6c':2
0 0 0 0 i - _,)
1 + -
+ EVR Cu 2622 +Ap+(3—4v)g—l—]—2—c—- cosOe1 + si11962

22 cos 20

(d106)
N
1+v

011-0% g )
—TR(B 4y )——-E——smze —smee1 +cos9€2

Hence

0

0‘0 +(50 0'0 -0
11 22+Ap+(3—-'tv)——l—l—z———z—zcosw cos®

x1=Rcos9+1+vR
E

0
1+v

+—RG-4v)

x2=Rsine+l+V

0
0117022

0
——2—02—2— sin 20sin O

0 00
+Ap+(3-4v) 1

2

1+v O
-——R(B-4
B ( )

Afler elementary computations, it follows

11-022
2

0
sin 20 cos O
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2

0
c0s20 [sin©

(d107)



0 0 0
+0O 0110
x] = 1+1+V 011 22+Ap+(3—4\.’) 11 22 X]
E 2 2
) ‘ . (d108)
0 (8) (6) 0'0
xp =|1 1+v| 011 22+Ap—(3 4v) 11 22 X
E 2 2
\

Taking into account that X12 + X% = R2, it follows the final shape of the cavity is an ellipse of equation

2 2
X X
—l—+—£:1 , , (d109)
a2 b2
where the semi-axes of the ellipse are equal to
( - 1 (0'0*'0'0 0‘0 '0'0\-
a=R[1+Y| 211022 Ap; 3-4y)=1L 222
E 2 v 2
- ) & (d110)
3 = =
(0_0 +0_0 0_0 _0_0\
b=R1+1;v 11222 | pp-(3-4v)21L_222
(L \ J |
S3
Py S
SS

Fig.D2. The shape of the borehole (tunnel) in the initial state (the circle) and in the final state (the ellipse), corresponding to
: a compressive stress.

In real cases, the initial stress ¢y 0 is usually a compressive one, i.e. (see Fig.D2)

0 0
011751 » 027-53 (i)
where the maximum compressive stress S and the minimum compressive stress S3 have positive values 0 < S3 < Sy. It
follows here that the major semi-axis a corresponds o the minimum stress and a < b.
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E) BOUSSINESQ’S PROBLEM - the concentrated force actmg on the elastic semi-
space

E.1) The equations of BELTRAMI and MITCHELL.

It follows to obtain the partial derivative equations for the stress tensor ¢y in the particular case of an elastic,

homogeneous, isotropic media. In the beginning, the next symmetric tensor is evaluated
S =i“[grad (pb)+grad'(p b )]

(e))
Using the equilibrium equation, it follows that
_)
divg =-pb (€2)
Hence t
S =grad(divo- )+grad (divo- ) : )
The HOOKE's reversed law gives
1+v
€ =fF O - —(")1 , (e
s0 _ '
E A%
=—p¢ +——0 , S
G =1.vE 1301 ©%
where
O=trg , 9=trg =1_E2v® : (e6)
But
div(f] )=gradf . €7
Hence
div B dive +——0 ad © (e8)
C "1 vE T
Expression (el) becomes
= l—f‘—v[grad(div e )+gradt(dive )] e [grad(grad ©) + grad* (grad 9)], ©)
Because the tensor grad(grad © ) isa symmelric one, it follows that

S = [grad(dlv € )+ grad (divg )] + .4 grad(grad ®) . (elo)
The tensor in the first parenthesis of (e10) has the ij - component equal to

[grad(divg )+grgdt(divg )] —(dwg )i i +(dxvg )Jl 81qq1+51q "

E(ui.qu+uq,iqi+uj,qqi +uq,jqi) [(u. .l+uj.) . (Uq q) JJ' cth)
12 -2

(Aﬁ )ij *("8 ) i (AS ) +——!®. (Ae ) ¥ [arad(grad®)] i

Hence

grad(divg )+grad (dnvg ) Ag +]—E2v—gtad(grad®) ol (el2)

Using (e12) and (e10), the expression (¢l) becomes
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E 1
= Ag +——grad grad®
’ S 1+v € 1+v e
Applying the 3-dimensional LAPLACE operator A in (e4), it follows

1+v \Y
Ae =—E—AG —EAQI

Replacing (¢14) into (¢13) gives
: \% 1
S =A ———A®]1 +——grad grad® ,
S o 1+v 1 1+v BHacB

ie.

AG -—Y—A0] +——grad ad®=—.grad(é?)+gradt(p?)
c 1+v l+vgr o

But
tr(Ag )=A(trg )=A0,
tr(grad grad ®)=A0,
tr(A@] )=3A0,

— - - -
tr[grad(p b)+ gradt(p b )] = 21.r[grad (b )] =2div(p b)

Applying the trace operator in (¢16) and using eqs.(¢17) gives
._)

A®+—— 40 - A@=-2div(p b)
1+v 1+v
It follows the trace of the stress tensor verifies the relation
: 1+v ., 2
A®@ =—-——div(p b)
1-v

Replacing (¢19) into (€16) gives

v o R = t -
Ag +15divip b)] +1—;—;gradgrad®=— grad(p b ) +grad"(p b)

(el3)
(eld)

(el5)

(el6)

(el7)

(€l8)

(el9)

(é20)

Eqgs.(e19)-(c20) represents the equations of BELTRAMI and MITCHELL, having as unknowns only the elements of the
stress tensor . Together with appropriate conditions (in tensions) on the boundary of the elastic body, they allow one to solve

the corresponding linear static problem.
Particular cases.

a) Suppose that
_.)
div(pb)=0,
._)
i.e. a vector potential \/ exists having the property that
- -
: pb =rot vy,

From (e19) it follows that the traces of both stress and strain tensors are harmonic functions

A®=A0=0,
b) Suppose that

.—)
pb=grad @ , where Ap=0 ,

it follows that

__)
div(pb)=A¢=0,
i.e. eq. (¢23) is verified and eq.(20) gives

Ag + i?l—; grad grad® = — 2grad(grado)
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Applying the LAPLACE operator A to eq.(e26), it follows that the stress tensor is the solution of the bi-harmonic equation
AAg =0 . €27

In most real cases, the volume forces are neglected (or they are represented only by the weight of the body, satisfying eq.(24).
It follows the elastic linear problem involve solving harmonic and bi-harmonic equations.

E.2) The model.

A co-ordinate system having the third vertical axis positive downward is used. The semi-space X3 2 Ois represented by an
elastic, homogeneous, isotropic medium having the elastic coefficients A and W (or E and v respectively). In the origin of

the co-ordinate system is acting a vertical force having the magnitude equal to P. It follows to find the stress and the
displacements. Spherical co-ordinates will be used (Fig.E1):
xy=rsin 8 cosA, x2 =rsin8sinA, x3=rcos 9 (e28)

Fig.El The spherical co-ordinate system and a vertical force of magnitude equal to P acting at the origin.

Because symmetry, the displacement vector has the components like
u,=u,(n9), up=9 ug=ug9) (€29)
It follows the components of both stress and strain tensors are functions of rand 9 only.

E.3) The equations of equilibrium and strain tensor in spherical co-ordinates.

The LAME differential parameters for spherical co-ordinates are

_ h1=1, h2=f,,h3=fsin9 (€30)
The generalised curvilinear co-ordinates are

Cl=f,c2=9.c3=k (e31)

The unit vectors of the axis are
= -y - - - N

1_ 2_ 3._
n=e¢r-n"=eg-n=ep (€32)
By using, for example, (IVAN, 1996), the divergence of a symmetric tensor T in spherical co-ordinates is

divT =

0Ty 10Ty 1 0Ty 2Ty T Teg+Tan)”
+ =~ +— * + - e+
or r 09 rsin3 oJOA r rtan8 r

r

OTeg ,19Tgg, 1 9Tgyp 3Ty , Trg  Tog-Tan) > ©¥
: egt
or r 09 rsin8 OA r rtan 8 rtan 9

0T ,19Ten, 1 2Ta 3T ,2Ten |7
or r 8% rsin 0A r rtang JUA

In the same way, the gradient of a vector in spherical co-ordinates is

https://biblioteca-digitala.ro / https://unibuc.ro



35

2 oy, 7 10y, v 1 2y, ij—) -
=—1L ®ey +
grad v = or °r Dert [r 09 r eyt rsin3 oA r JCreCh
- -
oyg 7 7 L[19vg Vi - 1 9vg Va
- ® + (e34)
or ® r 09 r 69®69 rsin3 oA rtand €3 = e

-
oy, > 7 oy, 1 9vy Vi Vg )|
1 VA, Ve, V8 | g
or A% 55 ¥ g aa 1 T raans) O U CA

The components of the strain tensor are

aur . _1f10u, us , GUS
l'S 2

€= 5 or r 08 r or
1[ 1 2u; ux %uy 1%ug U )
Sl SO ... ... =- +—, (e35)
En = (rsms oA r T or 337 58 r
1{ 1 %ug up 19uy 1 6ux Ur, Ug
€ e EAL T
8%~ 2 rsin9 O0A rtan8 r 08 rsin3 9A r rtanS

In the particular case of eqs.(€29), it follows

our 1{1%u; ug 3u9 5
* €87 %(r a8 ¢ or En

15UQ Ur

8“)‘()—r 098 r o BT B rtan 9

€™ or

(e36)

Hence
- On=0g =0, )
By using (€33), the equilibrium equations in the absence of the volume forces are
06« +1 909 4 30, +.0r8 _ Or"Og99 7O
or r 099 r rtan 8 r '

0 0 3 S
Cr9 19093 °Ory  Ory , 088" Om_,
or r 09 r rten 9 rtan 9

(e38)

ie.

or 3. ) oy 2. ) _ 3.
E(r sm\‘}o-rr +(—3—-§(r SmSGrS =r“sin9 O, o
e
03 . or2. 2
—a—r(r sin § Grs) +£(1 sin 8 0-93) =r Acos Son

E.4) LAPLACE operator in spherical co-ordinates. LEGENDRE'’s polynomials.
Using, for example, (IVAN, 1996) the gradient of a scalar function in spherical co-ordinates is
= 10f 1 of

dp=8f o 2086 7 1 _of
B = e 1599  Tsnaan €A

2
! sinSi( 2 6f)+i( gﬁ) ] o°f (ed1)
r“sin 9 or or) 09 38) sin9 2

(e40)

Also, the LAPLACE operator is

Af=divgradf= >

Consider the LAPLACE equation
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Af=0 _ (e42)
for the particular case when the unknown function has the form f=f (r, 9). Equation (e42) becomes
d( 2 afJ 1 0 ( 6f)
= — |+ — nd—|[=0. e43
ar(' or) "sns o8 \"" " 59 ©
By using the method of scparation of the variables, a solution for eq.(43) has the form
f(r.8)=R(Y(8), (e44)

where R andY are two unknown functions. Eq.(e43) becomes

i(rz ﬁ) 1(sin ) EX)
dr dr/ _ d8 d$

s =k, e4s
R Ysin 8 (43
where k is a constant. From (e45) it follows that
: 2
2d R+2 E—kR=0 (c46)
dr2 dr

In a general case, the function R can be developed in power series. Let’s look for a particular solution having the form
Rp(r)= r™ where n is a natural number. It follows from (e46) that

k=n(n+1) (e47)
Then the particular solution of eq. (e46) can be expressed with the aid of two arbitrary constants as
Ruy(r)=A, ¥ +Bn/r (e48)

Because f has to approach finite values for r — o0 , it hastotake A, = 0.
The second relation (e45) gives

2
sxn8u+cossd—Y+n(n+l)Ysm9 0 (e49)
dg? ds
By performing the substitution z = 08 9 eq.(e49) becomes .
—d—[(l - 22) 91] +n(n+1)Y=0, (€50)
dz dz
The solution of (e50) is represented by the LEGENDRE polynomials denoted by Pn ( z) ,n=0,12.. So
Po(z)=1 , Pi(z)=z , Py(z2)=(32%-1)/2 @51)

Beéause the trace © of the stress tensor is a solution of the harmonic equation (e23), it follows that the general solution for
that trace in the case of the BOUSSINESQ problem is

0= Z
n= r
According to eq.(e6), a similar solution exists for the trace of strain tensor.

Pn (cos ). (e52)

E.5) The displacement field. .
We look for a displacement field having the form
UrmTe®) L ug=Iv®) . up=0 )
where ¢ and W are two unknown functions following to be obtained. Substituting (e53) into (€36) it follows that

En=-0/17 . gg=(do/d8-2y)/(2?) , g,y =0

(e54)
€99 =(0+dw/d8)/ 12, g1 =0, g1s =(0+y/1g9)/r?
1t follows that the trace of the strain tensor is
f=trg =8n+899+8x)\=(¢+d\y/d9+\u/tg3)/r2 (€55)
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A comparison of (€55) to (e52) shows that
@+dy/d3+y/tg8 =acos9 , (€56)

where a is a constant remaining to be obtained. Hence

0=acos8/r2 @:(3X+2p)e=(3)»+2u)acos9/r2

9 (e57)
£ =0 (e +Egg)=(acos8 - dy /d8)/r
By using HOOKE's law, it follows that
o-n=(7»acosS—2u(p)/r2 ) 0-r9=u(dq>/d9—2\u)/r2 3
099=[)»acos8+2u(q>+d\u/d3)]/r2 , (€58)

o= [(7& +2p)acos9 — 2udy / dS] / r2
Subsututmg (e58) into the first equilibrium equation (e39) and using (e56), it follows after elementary computations that

di} (sm 3 dS) a(2+A/p)sin29 . (€59)
Hence

sinsd—“’=—%(2+x/u)coszs+b=b—%(2+x/u)+a(2+x/u)sin2 9,

ds
(e60)
dp b-a(2+A/p)/2 .
—= +a(2+A/p)sin8
) sin 9 Fe@+rin)
where b is an integration constant. Because 4
dx X
—=Inftg—|+C, (61)
sin X 2
where C is a new integration constant, it follows that
=[b——;—(2+7&/p)]ln tg% —a(2+A/p)cosd +C . (e62)
For 3 — 1/ 4, the logarithmic term into (¢62) leads to infinite radial displacements. That can be avoided by taking
b—%(2+k/p)=0. ’ (€63)
Hence
o=-a(+A/wycos3I+C | :—g=a(2+k/u)sin3 . (e64)
and
O™ [(3k +4p)acos$ - 2uC]/ 2 (€65)
Substituting eq.(e64) into eq.(e56), it follows that
gl+—y—=a(3+7\./u)cos9+c ;
¢ dy g9
d . ; P
Eg(\usm“)):%(3+k/u)sm29 -Csin9
(e66)
wsin 9 =—%(3+X/u)c0528 +Ccos9 + D
a a . 3
= q —Z(3+x/u)+—2-(3 +A/p)sin“ 9 +Ccos8
Hence
D-a(B+A/pn)/4
= ( - 1) + g(3 +A/pu)sin9 + Cctgd . (e67)
sin 9 2 .

Because the tangential displacements has to be finite ones for & —> 0, it follows that
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\u=CEOS.—91+3(3+X/u)sin9=—Ctg§+£(3+)»/u)sins,
sin8 2 2 2 (68)
‘ ﬂ:——;:————+3(3+x/u)cos9
48 2c0s%(9/2) 2 .
By substituting eqs.(e64) and (e68) into eq.(e58) it follows that
Gry= u(2C tg%—— asin 9) /12 , O0gg= p[C(l - th %) - acosS]/ rz,
(e69)

29) 2
= 1+tg°—| - S|/
O u[C( +tg 5 acos ] r

Substituting eqs.(e69) into the second equilibrium equation (e39) it can be seen that the last one is identically verified.
E.6) Boundary conditions for stress elements. The final solutions.

Eqs.(e65) and (e69) contain the unknown coefficients & and 'C. These constants follow to be obtained taking into account
that the force P concentrated in the origin of the co-ordinate system is acting on the elastic semi-space. It can be seen that the
points of the horizontal plane X3 = 0 have the co-latitude § = / 2.

The unit vectors of the spherical co-ordinate system are related to the same vectors of the rectangular co-ordinate system by

(__) 3\ (_) 3\ (_) \ (__> \
€r €1 €1l - Cr
- - — t| -
es| Qles| ° |ea Qles| e
- - - -
\CJJ \63) \ €3/ \C;J
where the orthogonal matrix is
sin®cosA sin8sinA  cos9)
Q =|cos9cosA cos9sinA -sin8| . (eT)
—-sinA COSA 0 J
The outer pointing unit vector normal to the elastic semi-space is equal to
: - - -
. —e3=—cosSer+sinses. (e72)

The resulting exterior force acting on the elastic semi-space is vanishing for all the points of the horizontal plane § =7t/ 2,
excepting the origin, i.e. ) .
=2 -5

o |-e3|= 0. . (e73)
Substituting (€72) into (¢73) for 9 = &t / 2 gives
GSS:-O 5 Grs=0 . (€74)
By using (69), the first eq.(e74) becomes an identity and the second one leads to
a=2C. (e75)
So, eqs.(e65) and (e69) give
O = 2C[(3A + 4p) cos 8 - )/ 2, (€76)

) ]
0.9~ -2Cp tg—z—cosA/ r2 , 098 =Cuc039(tg2 3 l) / r2. €77)

Consider an elastic hemisphere having the centre at the origin of the co-ordinate system. The curved surface S of the
_>

hemisphere has the outer pointing normal equal to er On that surface, the rest of the elastic body (i.e. the semi-space

minus the hemisphere) is acting on the hemisphere with a total force equal to
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- - >
[lo eda=[floreorpes|da . )
S S
where dA is the surface element and the unit vectors are obtained with (e70). It follows that
2n w/2
Ho’ erdA Idk Io’ [ r sin SdS
0 0 €79)
/2 9 -
=4nC I {[(37& + 4p,) cos9 — u]cos 9sin 3+ tg—2- cos 9 sin S}dS €3= 4nC(A +p)e;
0
Because the hemisphere is into an equilibrium state, it follows that
- - -
Ho erdA+Pe3= 0, | (€80)
. S
Hence
C=- ———P ; (e81)
4r(A +u)
Finally, the non-zero components of the stress tensor are equal to
=- 3L +4p)cos9 - pul/ r - (82)
O 2n(x ) —5[CA+4) u]
P 3
—_ut cosS/r , (83)
Ora”™ 2r(A + )'Ll &2
P .2 S) 2
= cosS(l—t —|/r=. (c84)
G988 "I+ )t £ 3

The non-zero components of the displacement vector are

P
=——12(2+ A/ cosS—l fr
Ur= G a2 AW ]
p S (e85)
—_—|tg—— 3+A./ sin8 |/r
ug = 4n(x+u)[g ( 1Y) ]
Using eq.(e71), the components of the stress tensor into the Cartesian base can be obtained as
G11 O12 O13 |Or Ors 0
02 023|=Qlog 099 0 |Q (¢86)
O3 {0 0 oy
Also, the components of the displacement vector into the Cartesian base are
U1 Ur
t
uz[=Qlug| - (e87)
\U3 0
Of particular importance in real life are the components
2
3P 3 5 1 +v P { z
033= 27tz IS S uz= e L2(1 v) r3} ) (88)

The BOUSSINESQ problem has a great importance in Geomechanics, in relation to the computation of a building
foundation. The above solution derived for a concentrated vertical force can be used in the case of arbitrary vertical forces
(spread on a certain domain) by assuming the principle of the superposition.
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F) ELEMENTS OF THIN PLATES THEORY

F.1) The model of a thin elastic plane plate.

The thin plane plate is a cylindrical body having an arbitrary horizontal cross section in the initially non-deformed state. Its
height, denoted by H = 2h , is much smaller than the other dimensions (usually, around 7-10 times). The material of the
plate is an elastic, homogenous, isotropic one, having the constants denoted by E and v, respectively A and p . The third

axis of the co-ordinate system, denoted by Oz, is a vertical one, positive downward. Let bex] =X ,X2 =Y. In the initial,

non-deformed state, the plate is a plane horizontal one. The upper face has the equation z = —h and the down face has
z=h respectively. The plane of equation z = 0 represents the median plane. After the plate is' deformed, it becomes a
median surface.

F.2) The planar state of a plate. The bending state.

Two particular situation for a deformed plate are considered (Fig.F1).

(@) ----emeieemiemieeeeee p-m
— o ———

L I p.m.
-“__.——_-_—--"
\-—_'_—#—-F

€ - et s.m.
‘..‘_“_.—‘_—,.-"

Fig.F1. (a) The non-deformed plate; (b) The plate into a planar state; (c) The plate into a bending state. Here, the median
: plane is denoted by m.p. while m.s. is the median surface.

In the first case, the horizontal components of the displacement vector are symmetneal ones with respect to the median plane,
being even functions with respect to the z-variable, while the vertical component of the displacement vector is an anti-
symmetrical one (odd function with respect to Z), i.e.

uk(x’ Y,—z) = uk(xa Y, Z), k= 1:2

(f1)
u3(xy,-2)=-y3x,y,-2).

From eq.(f1b) it follows that
u3(x,y.0=0 , (f2)

i.e. the material points placed initially into the median plane have no vertical displacement as a consequence of the
deformation of the plate (the median plane holds a horizontal plane one). This kind of deformation represents the planar
state of the plate.

In the second case, the horizontal components of the displacement vector are anti-symmetrical ones (odd functions with
respect to z), while the vertical component of the displacement vector is a symmetrical one with respect to the median plane
(even function with respect to z), i.e.

uk(x) ya_z) = _uk(x’ Y, Z), k = 1:2

(f3)
u3(x.y.-2)=u3(x,y,-2).

By deformation, the material points initially placed into the median plane are displaced on the vertical direction, having no
horizontal movement. The median plane becomes a median surface. This state represents the bending state of a plate.
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F.3) Loads acting on the plate.

For simplicity, the forces acting on the lateral surface of the plate are neglected. On the upper surface of the plate, having

- -
- >

S S
the equation z=—h and the outward pointing normal vector 1} = — €3 it is acting the surface force q = q (x,y).

- -
In the same way, on the down surface, having the equation z = h and the normal vector ) = €3 it is acting the surface

—)0 _)l
force q'l = q‘l(x,y). Hence

—> -
o |-€ =qs,f0rz=—h , (f4)
i.€.
] s -
0‘13(’(,)’:"1‘):'q:(X,Y),O'Z;(X,YFh):“qz(xa)'),()'33(x)y,_h)=_q3(X,Y) (£5)
Also
-
G e3=q1,forz=h , (f6)
ie. )
G133 =), 6310 =q %V, G331 =q3 (5 Y). )

We shell see that the above presented deformation states are compatible only to certain distributions of volume or surface
forces applied to the plate.

F.4) Odd and even functions for the planar state and for the bending state.

Let f = f(x,y, z) be a function of three variables, supposed to be smooth enough. It can be seen that
: f(x,y,z)+f(x,y,~z) & f(x,y,z)-f(x,y,~z)

f(x,y,2z)= f8
(x,5,2) 5 5 ()
Let
f+ (X, y, Z) — f(xs Y, Z) +2f(x: y:*z) i ()
£ (X, v, Z) - f(x’ Y, Z) —Zf(x’ Y,"‘z) (£10)
It follows that

f+(x, y,—z)=f+(x, y,z) , f (x,y,-z)=—f (x,y,2) . (f11)

The function £+ represents the even part of f (with respect to z -variable), while the function f represents its odd part. It

follows that
+ N - Nt
() - () o @)
i.e. the even part of the even part.is equal to the even part too. A similar relation holds for the odd part. The even part of an
odd part (and the odd part of an even part) is vanishing. For k=12 |, x;=x , X9 =Y, it follows that

0 1| 0 0 +
(f+) ,k = —a-;l:f"' (X, Y, Z) = E[ f(X, Y, Z) + f(X, y,—z)] = [f,k (x’ Y, z)] (f13)

Oxy Oxk

Hence, the partial derivative (with respect to a horizontal co-ordinate) of the even part of a certain function is equal to the
even part of that derivative. This property holds for the odd part. So,

), 0 () )

’ ’
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Also,

(f+) . %{562 [f(x,y,2) + £(x, y,—z)]} = %[f 306y,2)-£3(x,y,-2)| = (£3) " @5

Hence the partial derivative of the even part with respect to the vertical co-ordinate is equal to the odd part of the partial
derivative of the function itself with respect to same co-ordinate. In the same way it follows that

(f") 3 =‘(f’3)+_ - (f16)

>

By using the HOOKE's law and the definition of the strain, it can be resumed that the planar state and the bending state are
characterised by the next components:

-for the planar state: - the displacement vector: ui*' s u; s u; ,
, o+ o+ =+ =+ o+
-slramtensor.gl],glz,e13,822,823,833,9 s
S - + - +
-stress tensor: G110 12:013°022°023°0 33
-for the bending state: - the displacement vector: ul_ , uE ’ u;- s
. - - + - + - -
- strain tensor € 11, € 12, € 13, € 22°€23:€33-3
- - + - + -
-stress tensor: (5 11,0 12°013°022°023:033 -
F5) Mean value of a function. Equilibrium equations for thin plates. -

Let f = f(X,y,z)an integrable function with respect to z -variable. The mean value of f computed on the thickness of the
plate is denoted by

_ 1 +h
fexy) =5 [fny.2)z @n
-h
For an odd function f , its mean value vanishes, i.e.
f (x,y)=0 , (f18)
It follows that o
| f=ftaf =T+ =£" (f19)
For a function C = C(X, y) depending only on the horizontal co-ordinates, eq.(f17) leads to
C=C , zC=0 . (20)
Differentiating eq.(f17) with respect to the horizontal co-ordinates, it follows that: '
fx =(f),k . k=12 . 1)
For the vertical derivative, it follows that
+h -
— 1 of 1 1 -
f3=— | —dz=—]{f(x,y,h)-f(x,y,~h)|=—f " (x,y,z=h) . (22
35 hazz 2h[(xy ) - f(x,y,~h)] SfT(uy.z=h) . @)
Consider the function zf(X, y, z). It follows that
zZft =(zf)" , =~ =(zf)+ . _ (23)
Its mean value is
o =2(f" +f7)=2f " 42T = 2f T = (o))" | (f24)

Hence
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+h +h 9
— af. 1 3 1[ +h] 1
1 e o —if —_— f -— |fdz=
3= J 350 [az(Zf) }17, 26 2hI i
~h -h ~h
_f(x,y,h)"‘f(x,y’—h)_F(x’y)=f+(x’y’z=h)—‘f:

2

(£25)

Neglecting the volume forces (the weight of the plate itself, for example), the equilibrium equations for the planar state are

o) Tt o
(1), (o3, (o, -
(01—3)’1 +(o2) 2 +(o ;3)’3 =

Let the mean values of the stress components be denoted by
+h

zu Glj 2h IGU(X Y:z)dz ‘ .’ 123 ’
Applying the mean value operator to egs. (f26) gives

(Zn) (212 2 h[0'13(x v,h)-a3(%y.- h)] 0

(212),1 » (222 2 + E[Gm (x,y,h) - 3%, y,-h)] =0
Using eqs.(f5) and (f7) it follows

(z“),l +(212),2 +§lﬁ[q£,("’ Y)TQT(X, y)]=
():12),1 + (222),2 + ;—h[q;(x,y) + q;(x, y)jl )

+h
1 5 &
Mij=zcij=51; J.zo'ij(x,y,Z)dZ 1,]=1,2,3
-h

Multiplying egs.(f26) by z and using again the mean value operator, it follows
633(’(, Y»h)+(}'33(xaya"'h) _
(Ml3),1 +(M23),2 * 2 - 233=0.

Hence, using again eqs.(f5) and (f7),

Sy -q) ny)
(M13),1+(M23),2+q3 ’ 2q3 ’ - 23370,

So, the equilibrium of a thin plate into the planar state leads to eqs.(f29) and (f32). .
Consider the weight of the plate, the equation of equilibrium for the plate into the bending state are

(01_1) +(0f2) +(Gfr3) =0
(01—2) +(o 22) (023) =0
(Gﬁ) 1 +(023),2 +(053),3 +pg=0

Here, the density of the plate is p and the acceleration of gravity is g . .

(f26)

(£27)

(f28)

(f29)

(f30)

(B1)

(32)

(33)

Proceeding in a similar manner to above, it follows the equations of equilibrium for the thin plate into a bending state are
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(213),1 +(223),2 +%[q;(x;y)+q;(x, y)]+ps=0.
(Ml l),] L (Ml2)’2 + %[q;(x, y)- q:(x, Y)] - 213 =0 . @34
(MIZ),I +(MZ?-),z +%[qj2("’ Y)'q;(",Y)] ~ 230

Eq.(f34b) is differentiated with respect to x and eq.(f34c) is differentiated with respect to y. The results are substituted in
eq.(f34a). Hence

(Ml 1)’“ + 2(M12)’12 + (Mzz),zz + %[qi(x, y)+ q;(x, y)] +pg

. (f35)
1| . 8 11 ] 8 _
*5[‘11("’ y)-q, y)] | t3 [qz("' ) -q,x y)] ) 0
F.6) Thin plane plate in the bending state.
Tﬁe component 1], of the displacement vector is developed in power series with respect to z -variable. It follows
u(xy,2)=y,;(x y,0) + z-a—z—-(x, y,0)+... (f36)

For the bending state, the first term in €q.(f36) vanishes. Because the thickness of the plate is a small one, only the second
term is kept. So the horizontal components of the displacement vector are

0
uz (x,y,0) . @37
oz

o, -
ul(x’ Y.2)=2'5'z—(x’ Y,O) ’ U2(x,y,z)—;

The vertical displacement of the points placed into the median plane is denoted by
w= W(X, Y) = u3(x! yao) ’ (f38)
i.e. the mean surface has the equation z = w(X, y). Here, W represents the arrow of the plate.

F7) BERNOULLI’s hypothesis.

According to BERNOULLI, it is assumed that an arbitrary material segment of the plhte, initially perpendicular on the
median plane in the non-deformed state, rests perpendicular on the mean surface in the deformed state. Let A(X,y,2) a
certain point of the plate (not placed in the mean plane) and A (X, y,0) its projection on the median plane. So, the

ﬁ
segment A )A is perpendicular on the median plane. After deformation, the material point A is moving at the point

having the co-ordinatesM(x +mxy. 2 y+ys(xy,2),2+ us3xy, z)), while the point A () is moving at the

point Mo(x 0% 1,00,y + 15 (x,3,0), W(x, y)) . The horizontal displacements of the points placed in the median
plane are vanishing. So, writing the vector along the line, it follows that

- ,
MoM = (ul(x, Y,2), uz(x, y,z),z+ u3(x, y,z) — w(x, y)) 39)
Expanding in power serics the even function 1) 3 with respect to z -variable, it follows

u3(x.y,2)=w(x,y) + 22B(x,y)+.. (f40)
Using eqs.(f37) and (f40), it follows that ' o
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- 0 0
MM = (z aul (%,y,0), z—gl—:‘(x, y,0), 2+ 2°B(x, y)+~)
z

(f41)

0 0
=’{% (%,9,0), 2 (x,,0), 1+ 22B(x, y)+.--]
z oz . e
Hence the direction is o
0
- [ﬂ (%,9,0), 2 (x,,0), 1+ 22(x, y>+...)
MoM__\ 0z oz (f42)
—> 2 2
0 0 2
IMoM] (-—E) +[————}12) +(1+22B(x,y)+...)
0z oz

"_’_6_%_2!1) (6_W)2+(0_WJZ+1 -
n={"%x" oy’ ox oy '

Comparing eq.(f42) to eq.(f43), the supplemental hypothesis of BERNOULLI is satisfied if

ouy ow U, ow
— o = —— c—— 0 = — s ,Y, = ! s 44
F (x,y,0) Fr el G ) dy .u3(4x ¥,z)=w(x,y) (f44)

i.e., by using eq.(f37), the displacement vector has the horizontal componemé equal to

ow ow
U](xa)’:z)="z'5; ’ uz(X,Y,Z)=_za_y‘ ’ u:;(x’y,Z):W(x,Y) . (f45)
From eq. (f45), the components of the strain tensor are
'—_za_z.‘_w_ —-z.@f_w_ —_z_a.i‘.v_ =0 t46)
En="20 7 8127 55y (€227 oy2 3370 -
The LAPLACE operator in horizontal components is denoted by '
2 2
A"‘z—a——2—+a—2 . (f47)
ox“ 0Oy
Hence the trace of the strain tensor is
*
B=trg =811+822+€33="ZA“’ . (48)

F8) HOOKE'’s law for a thin plate.

By using eqs.(f46) and (f48) it follows that

2
e 0w
O =Mrg +2ug“=—z{M w+21 2) (D)

ox
But
— +h 2
2_1 1,24, 0"
z oh z%dz= 2 (£50)
-h
Hence
2 2 2 2
h * o“w H * 0“w /
=z =——| A W+2 =—-—AA 5
M]] T11 3 { uaxz] 12[ w+2uax2J . f31)

In the same way,
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—_— h2 62w _ H2 62w

MNP Y 0 S : €2)
Mi12=20125 24 5.0y - * 6 a0y

2 2 2 2

h 2w| HZ( o+ Pw
M22=ZG22— [M w+2u5-y—2—J—--l—2-[kA w+2u asz (f53)

Substituting eqgs.(f51)-(f53) into eq.(f35) it follows the equation of Sophie GERMAIN:

DA*A"w = pgH + qg(x, ¥) +q§(x, y)

ulr .
+;{[q{(x. y)-q; (% y)]’1 +[q’2(x, y)-q5(x. ”],z}

, (£54)

where
2n®  Ea-v) HY
3 (1+v)1-2v) 12

D=(A+2p) (f55)

represents the flexural rigidity of the plate.

So, obtaining the median surface asks someone to solve a bi-harmonic equation, with certain boundary conditions on the
upper/ lower faces of the plate. The equation (f55) will be solved in same cases of particular importance in real cases.

EXERCISE. Find the expressions of 213 and Z 23 for a thin plate into a bending state.

F.9) The infinite, 1-dimensional (1-D) plate, The flexure of the lithesphere.

Consider an infinite extended plate along y -co-ordinate. The component 1} 2 of the displacement vector is equal to zero,
and the rest of the components does not depend on Y -co-ordinate. In this case, the plate is assumed to be in a cylindrical
bending state. Neglecting the horizontal loads, eq.(f35) becomes

d4
d x4

For the case presented in Fig.F2, on the upper face of the plate is acting the load P due to the relief and the lithostatic
pressure, i.e.

q3()=P+prg(w(x)-h) , | (57

where pris the density of the filling sediments (assumed to be homogeneous ones) placed between the reference plane of

elevation equal to zero and the upper surface of the plate. On the down face of the plate, it is acting the pressure of the liquid
of density equal to Py, ,i.e.

q3()=P,-Pme(W(x)+h) , (#58)
where pg is an unknown constant. Eq.(f59) becomes
4
d'w
D= =P- =(Pm —Pr)gW(x)+P,—Pr8h —pmgh +pgH . (£59)
d x4 0

1t is assumed that in the absence of the relief (i.e. P=0), the non-deformed plate (i.e. w(x) = 0) is in an equilibrium state
under the action of its own weight and of the pressure of the liquid, i.e.

P~ Preh - pmgh +pgH =0 (f60)
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M

R I

Fig.F2. The flexure of the lithosphere under the action of the relief (P), of the lithostatic pressure I'. and of the pressure of

the liquid Dy .
It results the flexure equation of the 1-D plate :
' 4
d'w
= —[P (Pm - Pr)8W(x)] (1)
d x
Let
(pm -pr)a/D=4/a* (f62)
where o is the flexural parameter of the plate. Eq.(f61) becomes
d4w(x) P 4
b 1 w(x) , (f63)
dx? ) a

F.10) Exterior forces on the lateral surface of the plate. Buckling.

To derive Sophie GERMAIN equation (f36) for the bending state, exterior forces acting on the lateral surface of the plate
have been ignored, especially those placed into the median plane. Consider a very thin plate simply leaning like in Fig F3.
The load P is absent and the plate is infinite developed in a direction perpendicular on the plane of the figure. An element of
the plate having the length equal to unit along that direction is considered too. Let h be the thickness of the plate. The forces

: —
per unit length along the above direction are denoted by * N , being derived from the stress O ¢ ( positivs for compression )

by

N=och (f64)
v 4 h 4
@ -l h . "5
¢ -
C i a -' c '
+ X
=) e
(b) N o
- 1 o=
=i p-.
) 4=
y

FigF3. A plate simply leaning, subject ta the action of forces plaoed into the median plane
{@)A lateral view. (b) A View from above. : B
_) id
If the forces + N are small ones; the plate will-be- dd'ormed according to a plane:state;’ attempung a ‘fina! conﬂguradon
_)
similar to Fig.1b. If the forces = N are above a certain crmcal value the plata loses luddcnly its eqmllbnum state, attendmg
a deformation state like Fig.F4a, (or in the contrary sense, i.c. symmetrically with respect to the line of its supports. The

displacement field in this case is similar to the cylindrical bending. ‘That phenomenon represents the buckling of the plate. It
characterises very thin plates or bars.
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Fig.F4. (a) The equilibrium of a buckled plate acted by the forces + N and by the reactions of the supports.
(b) The equilibrium of a buckled plate acted by a vertical load p and by the reactions of the supports.

_)
(c)The equilibrium of a buckled plate acted by the forces = N and by a load q having the same magnitude but a

contrary sense with respect to the load presented in Fig.F4 (b).
In order to use the previous results, it is necessary to find when the mechanical state of stress / strain corresponding to the
presence of the lateral forces is identical to the mechanical state of stress / strain corresponding to an unknown vertical load

p = p(x) (Fig.F4b). The equilibrium condition for the case shown in Fig.4a is

- 71) - -
, >N+ RW=0 " (f65)
and the equilibrium condition for the case shown in Fig. F4b is
_)
— -
Tp+YXRP=0 , (f66)

- -
where Z R(l) and Z R(z) are the reactions of the supports in the above cases. Because the mechanical state of stress
is identical in both cases, particularly in the neighbourhood of the supports, the reactions will be the same, i.e.

- -
>RY=-3R®. , )
It follows that
— > o
DN+Y(-p)=0 . (f68)
Hence for the corresponding state of stress / strain, the plate is in an equilibrium state if it is acted by the lateral forces and by
> -

a vertical load q =— p , in the absence of the supports (Fig.F4c). Consider a plate element having the horizontal length
equal to dx and the ends denoted by A and B (Fig.F5).

lw q todt?*dq,

Fig.F5. The equilibrium of a plate element due to the load ¢ and to the internal tensions.
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Because the plate is a thin one, the tangential efforts are neglected. At the point A, it is acting a force (per unit length)
denoted by t , representing a normal effort, tangent to the plate. The angle between t and the horizontal axis is denoted by
__)
@. At the point B, it is acting the effort t + dt, making an angle equal to @+d¢ with the horizontal axis. The equilibrium
conditions are
tcos @ ~(t +dt)cos(ep + do) =0

(f69)
tsin @ — (t+dt)sin(p + de) - qdx = 0
For small angles @, it follows that
cos = cos(¢ +dg) =1
sing = ¢, sin(¢ +do) = ¢ +do (£70)
.. )
¢ =180 dx
The first equation in (f69) gives
dt
—=0 f71)
dx o
Hence t has no variation along x-axis, i.e.
t=N (f72)
The second equation in (f69) gives
: to - t(¢ +dgp)—qdx =0 (t73)
By using (f74) and (f70c) it follows that
2
q=- d—(Psz.w : (f74)
dx dx?
Hence the forces on the lateral faces of the plate are mechanical equivalent to a vertical load equal to
d2w
p=p(x)=-N (£75)
dx 2
It follows that eq. (f63) has the next general form
dhw NdPw 4 P -
dx? D gx2 ot D

-

F.11) The buckding of a simply leaning thin plate.

Consider the plate in Fig.F3. For simplicity, it is assumed that ¢ = O (i.e. the plate is leaning just at its ends). The buoyancy
force and the vertical loads are neglected. Equation (f76) becomes

4 2
_d__‘:_ + Eg_%’_ - 0 , (f77)
dx D gx -
together with the next conditions:
-al the end point having x=0: w=0, d2w / dx2 =0 (f78)
-at the end point having x=a: w=0, d2w / dx2 =0 (£79)

*
The equations (f77)-(f79; has the trivial solution w = 0. It follows to find a critical buckling value N = N in order the
system (£77)~(f79) to have further non-trivial solutions. Successively, equation (f77) can be written as

—di—[dzw +Ew] =0 : (f80)
dx?\dx? D ’

2

g W+Ew:clx+C2 5 (f81)
dx? D
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where Cj , Co are two integration constants, vanishing according to (£78)-(f79). Hence (f81) is

d2W+-Iiw=0 5 (182)
d x2
having the solution
w(x) = C3sin(+N/Dx)+Cy4 cos(vN/Dx) . (f83)
From (£78) it follows that C4 = 0, while from (f79) it follows the critical values
Nk = D(kn/a)? ,k=12,... (84)

The lowest critical value is obtained for k =1.

EXERCISES.

(1)Perform a study for the buckling of a 1-D plate having an embedded end pomt the other being free.

(2)Perform a study for the buckling of a 1-D plate having both end points free. The plate is simply leaning at 1/3 from its
length with respect to its left end.

(3)Perform a study of the simply leaning 1-D plate in the presence of the buoyancy force.

(4)Modify the equation of Sophie GERMAIN for the 2-D plate in the presence of lateral forces.

(5)Perform a study for the buckling a 2-D rectangular plate, simply leaning at all its sides.

F.12) The infinite extended 1-D plate.

By integrating both sides of eq (f76) it follows

+00 +a0
D j d +N j dx+(pm -plg [w(x)dx = [P(x)dx | (f85)

Because W and its denvauves of any order are vanishing at infinite, the first two integrals in (f85) are vanishing too. It
follows that the area bounded by the median curve (the flexure) and the horizontal x-axis is proportional to the load due to
the relief, irrespective the presence of the lateral forces:

Iw(x)dx = IP(x)dx . (£86)
e (Pm - P)8
Let an approximation of the relief be a set of m steps, each one of height equal to h j and density equal to p i ie.
m
pigh;i, pentux €la;,b;
P(x)= Y Pj(x) , Pj(x)={ 1" [J J] . (@87
j=1 0, in rest
Equation (f86) becomes
+00
[ wixydx = ij jbj-aj) . (f88)
—o Pm — ,] =1

Hence the area bounded by the flexural curve and the horizontal axis is a linear combination of the areas approximating the
relief. In real cases, the flexural curve can be outlined along a finite interval denoted by [—L 5 L] , hence an upper bound for
the difference of the densities can be obtained as

m +L
Pm —P< ijhj(bj-—aj) Iw(x)dx . (f89)
j=1 =

Equation (f76) will be solved by using FOURIER transforms.

F.13) FOURIER transforms. Properties.

The direct FOURIER transform ( r.F.d. ) of a function f(x)is the new function @ of variable u, defined as
+0
O[f)(u)= [f(x)exp(-iux)dx, i=+v-1 (0)
-0
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The inverse FOURIER transform ( £.F.i. ) of a function ®(u) is the function f(x) defined as
] +00
f(x)= Q—l[d)[f](u)](x) = 5 J'd)(u)exp(+iux)du (91)
—o0

| df
Differentiating both sides of eq. (f91) with respect to x, it follows that the £.F.d. of the first derivative a— can be obtained by
X
4w .
can be obtained by multiplying the
dx*

. Consider two functions f and g of one variable. Their convolution product is

multiplying the the +.F.d. of f(x) by iu. Hence the tF.d. of the derivative

t.F.d. of w(x) by (iu)4 _—

+a0
(E*g)x)= [f(y)a(x—y)y . ®2)
Q0

Permuting the integrals, it follows that the direct FOURIER transform of the convolution product is the product pf the
transforms of both factors of the product, i.e.

400 +o0 ]
@[f *gl(u)= [ | [f(y)e(x-y)dy Jexp(—iux)dx
L : . . (93)
+00 . +0
= [ f(y)exp(-iuy)dy [g(z)exp(-iuz)dz = @{f] Dlg]

F.14) Solution of the flexure equation by using FOURIER transforms.

The solution of eq.(f76) is the sum of two terms, a term corresponding to the homogeneous equation and a term
corresponding to a particular solution, i.e.
w(x)= wh (x)+wP(x) (194)
A particular solution wP =wP (x) will be obtained applying the direct FOURIER transform to eq.(f76) and by using the
above presented properties of the FOURIER transform

w4OwPI(u) - N u2@[wPi(u) + — BwPI(u) =~ PPIu) . ®S)
D o D
i.e. -
1 @O[P](u)
o[wP)(u)=— . (96)
D u4 —Ku2 +4/(X,4

It is assumed that the value of the positive constant K = N/ D is small enough. Consider the particular case when the load
due to the relief is a load concentrated at the origin of the axes, having the magnitude equal to unit. The direct FOURIER

transform of this load is equal to unit too. The corresponding solution, denoted by W (3, represents the elastostatic GREEN
function. It allows one to obtain the solution corresponding to an arbitrary load of magnitude equal to P . Hence

AWGIw) = — )
(u2-k/2)" +4/a% - (k1202
It is assumed that the next condition is satisfied
K| <4/ a? (198)
Let
A=VI/a2 +K/4 , B=yl/0?-K/4 (99)
But :
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1 _ﬁ u _ u .
vt -ku?+4/0* BAl(u+A)?+B2 (u-A)?+B2

(f100)
- S .
4 | (u+A)?+B2 (u-A)?+B?
The next result is valid (Rijic and Gradstein 1955)
< Re(z) T :
Iﬁ%rl—ezz—cos xdx = —exp(-z) , z#0 . (f101)
0 Z-+xX 2
By using (f101), the next inverse FOURIER transforms are obtained
1
-1 1 1 .
@~ | ————— |[(x) = ——exp(-Bx| FiAx) . (f102)
[(uiA)2 +B2J( 2B

(I>'l|: 1 + 1 }(x) = %exp(-B{xD cos(AIxI) . (f103)

(+A)?+B% (u-A)?+B2
By using the property of the derivative, it follows

1 d iu
CIJ{———— exp|—Bjx| - iAx }(u)=——— . (f104)
2B dx{ ( l I )] (u+A)2+B2
In the same way
1 d u
(D{ exp|—Bjx| +iAx }( )= ———————— (£105)
2B dx ( H )] ( —A)2+B2
Subtractmg €q.(f104) from eq.(105), it follows that
1d u u
CD{—— exp| —B|x|) sin( Ax }(u)= - (f106)
B x| Bhsin(a) (u-A) +B? (u+A)?+B2
Hence
-1 u 3 u
(u-A)+B%2 (u+A)?+B2 —

———[exp B|x|)s1n(Ax)] exp( BIxD[ cos(A'xI)—sm(A|x|)]

Using thc above results, it follows after some elementary computations that

2 .
O[wgl(u) = %I_)— (D{exp(—B|x|)[sm(Al.x|) + COS(AIXD ]} ., (f108)

A B

2 .
wG(x)= % exp(—B|x|)[ sm(:lxl) + cos(l;&|x|)] ; (£109)

It can be observed that wG — o for B — O , corresponding to the buckling of the infinite plate in the presence of a
lateral compressive stress. From (f96) and (f97) it follows that

o[wP]=O[P]d[wg] . (f110)

Hence the solution for an arbitrary load is the convolution of the load due to the relief and the function given by (f109),
representing a general property of the GREEN function:

+00
wP(x)=(P*wg)(x)= [P(y)wg(x-y)dy . (f111)

=00
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For the approximation of the relief represented by eq.(£87), it follows that
m .
1
Px)=——— -h-[lb'—x—Ia-—x] . (f112)
whX p :
4(pm_p)j§lJJ(J ) (J )

where

K
Vom -pg/D-K2 /4

The solution of the homogeneous equation can be immediately derived as
wh (x) =[C cos(Ax) + C sin(Ax)]exp(—Bx) +[C3 cos(Ax) + C4 sin(Ax)]exp(Bx) (f114)
Hence the general solution is '

1 m
W(X)=mj§lpjhj[1(bj - x)‘ I(aj - x)] (f115)

+[Cj cos(Ax) + C3 sin(Ax)]exp(—Bx) + [C3 cos(Ax) + C4 sin(Ax)]exp(Bx)
It follows to find the unknown coefficients Cp,C9,C3and C4 in some particular cases. For the infinite plate, the flexure
W is subject to the next conditions: '

sin(AlZ]) | +2 (f113)

1(z) = sgn(z){ exp(-Blz]} -2 cos(Al2]) +

lim W(x)=0 (f116)
X—» to0 ' :
Hence the coefficients C1,Co, C3and C4 are vanishing and the general solution is just the particular solution represented

by eq.(116). In the case of the semi-infinite plate the flexure W is subject, for example, to the next conditions:

lim W(x)=0 (f117)
X—»0 .

W(0+0)=Wy . (f118)
2 "

d W(0+0)=W0=—]\/10/D (f119)
dx2

[1]
where W() , W and M 0 (positive when acting into a clockwise sense) are the values of the flexure, that of the second

derivative of the flexure and that of the bending moment respectively at the left end of the plate where the origin of the x-axis
is selected. It follows

C1=Wo - jzipjghj[‘(bj)-‘(ﬂj)] '

‘ (f120)
2| s Sl o) -] - S -

and

C3=C4=0 . (f121)
A finite plate of variable thickness can be approximated in real cases by a sum of n elements having constant thickness and
homogeneous elastic properties. To obtain the values of the unknown coefficients C1,Co, C3and C4 for each element,

proper conditions have to be verified at the ends of each element. A finite element algorithm based on the continuity of the
values of the flexure, of its first derivative, of the bending moment and of the share force has been derived by Ivan (1997).
EXERCISE. Derive the expression of W(x) for a load due to a relief having the equation

pghosin(2nx/A), pentru x €[-A /2, +A/2
P=P(x)=pgh(x)={ ; )»pentny x el !
0 ,in rest

where h is the amplitude of the relief and A is its wave-length.

» (f122)
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F.15) Finite plates.

In the case of the finite plates, the boundary conditions on the contour of the plate are essential ones in order to obtain the
values of the integration constants. Some particular, most common cases will analysed in detail. As a consequence, a previous

examination of the mean values Zjjand Mjj | j j=1,2,3, itis necessary.
F.15 a) Significance of Zij and Mij for the bending state.

According to the definition of the stress tensor elements, ¢y ij is the projection along j -axis of the surface force acting on

_-)
the surface having the outer pointing normal equal to ni: Because the elements O13 » Op3ae even functions, the

mean values 213 ¥ o3 are representing share forces, acting like in Fig.F3.

—x1)

2
Y@

(a) ye (b)
s ols
SN i Y
&l | L1114
...... { B i ST SUCDITRIRRONS £
/ Zis o%s| | | l 1l
o lzma

Fig.F3. The mean values £13 (a) and 273 (b). Both of them are share forces.

Similar considerations allow one to conclude that the mean values M11 and M22 are bending moments, while

M, M éare torsion moments (Fig.F4).

x(1) B
(b) (e) 7
o5 772',-"
T
...... ) Jw&wvw{ gﬁv/
7

Fig.F4. The bending moments M), (a) and My, (b). The torsion moment M,, acting on the side having the outer pointing
normal 1 is presented in Fig.4c. A similar torsion moment is acting on the side having the normal 2, but it is not presented in
the figure.

F.15b) The rectangular plate. Boundary conditions. LEVY ;s solution.

Let consider a rectangular plate having the sides equal to 2a and 2b respectively (Fig.F5). Consider, for example, the side
AB, having the equation X = a, y €[-b, b]). Among most commonly used boundary conditions are
-the embedded side: the flexure of the plate and the derivative of the flexure are both equal to zero

w(x,y)=0,0w/dx=0; (f123)
-the rotating side: the flexure of the plate and the bending moment are both equal to zero:
w(x,y)=0,M;;=0 . (f124)
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2
w(x,y)=0,1A*w+ Zua o
ox

-he free side: the share force, the bending moment and the torsion moment are all equal to zero.

=0 . (f125)

Cf-a.-b) B(a.-b)

0
1
D x(1)

[-a.b) Ala.b)
vi2) z0)
Fig.F5. The rectangular plate.

Similar conditions can be derived for plates of arbitrary shape.
As an example, consider the rectangular plate with two opposite articulated sides. Neglecting the lateral forces and the
gravity, it follows to solve the simplified equation of the flexure
AAw=q(x,y)/D , (£126)
with the boundary conditions (f125) written for X = +a and a 2-D LAPLACE operator. Consider a particular solution
having the form

Q0
w(x,y)= Y fi(y)sin(knx /a), (F127)
k=1
it follows that
w(ta,y)=0,
22 2
f128
0 S - Yk sin(knx /a) G
ox a® k=1
Hence : ;
' 02w / ox2 —62w/6y2 =0,forx=zta. (f129)

It follows the conditions (f125) are fulﬁlled for the two opposite articulated sides. Substituting (f127) into (£126), it follows
that

s 2 4
" kr " kn . knx
> |tk (y)—z(—) fk(y)+(—) fic(y) [sin— = q(x,y)/D . (1130)
k=1 a a a
The function q(X,y) is expanded in FOURIER series and the coefficients are identified. Both sides of eq.(f130) are

- L jmx - , :
multiplied by sin ATX ,J=12,... The result is integrated on the interval [—a,a], taking into account that
a

kn jmx 0 ,pentruj#k
sm—sm —dx = 5 ) (f131)
—a a a a ,pentru j=k
Hence

U kr 2 " kn 4 1 by N . krx
fx (V)-2/ —| fk(M+|—]| fk(y)=— I q(x,y)sin——dx .k =1,2,... . (f132)
a a Da a
=8
In the beginning, the next homogeneous equation is solved, i.e.
2 4
m kn " kn
Fi (y)—2(7) Fk(y)+(—a—) Fe(y)=0,k=12,...  (f133)

The characteristic equation is

4
km km .
r4—2(—;—) r2+(7) =0,deci r=rp=-kn/a J3=rg=kn/a, (f134
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hence the solution of the homogencous equation is
km kn . kn
Fk(y)= Ak coshm + Bk sinh Lo y(Ck cosh _ay + D sinh —R—X) . (1135)
a a
where A, Bk, Ck, Dk, k=12,... are some constants following to be obtained from the boundary cor.ditions on the

other two (non-articulated) sides of the plate. The general solution of equation (f132) is the sum of (f135) and a particular
solution. The last one can be obtained by the usual techniques (e.g. CAUCHY method). The above approach is due to

LEVY.

F.16) Vibrations of a plate laying on a viscous substratum.

In this chapter, the flexure is considered as a function of both spatial co-ordinates and time. The corresponding differential
equation is derived, being solved in the case of the 2-dimensional plate.

a) The differential equation.

As usually, a co-ordinate system is used having the horizontal axes x and y. The z -axis is positive downward, having the
- ' e
unit vector denoted by € - By applying the mean-value operator, the equations of motion for the bending state are

(1]
d
61\/1,(,(/ax+alvixy/ay+[qx(x,y,t)—qi(x,y.n]/2—z,(z=pzux . @
d (1]
u
c'i]\/lxy/ax+6Myy/6y+quy(x,y,t)—qy(x,y,t)]/2—z:yz=pzuy ; (f137)
and
ox+0 Liqd u o 13
0% xa/O% +OL [0y + 5 qz(x,y,t)+.qz(x,y,t) +p8=P1, : (£138)
It will be assumed that Bernoulli’s hypothesis is valid for all time. Hence the displacement vectof has the elements
ux(x,y,z,t)=—z-g—w; , uy(m,y,z,t)=—zgw—y , uz(x,y,?,t)=w(x,y,t). (f139)

Substituting (f139) into (f136)-(f138) it follows after elementary computations that

oo _
DA™ w =pgH - pHw+ 2 B3 wq| (x,.0+q (6 y.1)
12 z z .
, (f140)
+Aaqt myn-q ey | x+dq) xy0-q o y.0| /oy
2 qx i ’ qx e » y 'y ’ y b bl
As usually, the horizontal loads for the upper face of the plate are neglected, the surface forces being assumed to be
U_ .u- U_ F [ 1 ]
q,=90 . qy—O ,» q =P gw+P(I-w/g) , (f141)

where pF is the density of the filling sediments and P is the load. The last term in (f141) is an inertial one. For the material
below the plate, the next constitutive equation is assumed

M g ¥ 2-1‘]M € (f142)

o =lpo-pMeH+w)] +Mirg 1 +20
where p() is a reference pressure and pM is the density of the material below the plate. The LAME elastic coefficients are

XM . uM and 'r|M is the viscosity. Hence the loads on the lower face of the plate are
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[ ] [ ]
I Mow _MOow 1 _ Mow  _MOwW
SJTRaaRR e | PESTRaLATY
=t %™ & * ™ F H (f143)

d H *
q,="o —EXMA w+pMg(H+w)

Apain, a correction due to the compressive horizontal stresses cg , 0§ acting along the x- and y-axes respectively at the

ends of the plate follows to be considered further. The reference pressure P () is selected in order the flexure W to vanish in

the absence of the load P . Finally, a generalisation of the Sophic GERMAIN equation for a time dependent flexure is
obtained as

DA A w + 2 (AM WM)a” w+H[ox ‘32‘2" +of 62“’) +(oM - pF)gw
ox 6y (f144)

® [ 1] [ 1]
=P +nM-IziA*w— (pH+P/g)w+%H3A* w
b) The rectangular plate with 3 embedded sides.

For usual materials XM = uM , hence the second term on the left side of (f144) vanishes. Because the load is mainly
represented by the relief, having the elevations much smaller then the thickness of the plate, the inertial term is usually

negligible on the right side of (15). Let w® = w®(x, y) be the equation of the flexure corresponding to the state of
equilibrium in the presence of the load, i.e.

DA"A"WE + H[0$5%w® 1 0x? + 0552w 1 ay?) + (oM - pFygw® = P (£145)
Consider the difference .
8 =8(x,y,t) = w(x,y,t) - we(x,y) (f146)
It follows that

F oo M _e Y
12
AA'S +—= [0 % yasz 12p pp g a=l{A*s+—6"——A*5—£5J (F147)

0a? HZ ax2 o2 a2 2 oHZ )

where a denotes the velocity of P-waves through the plate.
Consider the lengths of the sides are Ly , Ly respectively. Suppose the plate is embedded according to

3(x,0,t)=0, with 0<x<Ly
5(0,y,t)=0, with 0<y< Ly , (f148)
O(L4,y,t)=0, with OSySLy

at any time. A particular solution satisfying (f148) is
L]

Smn(x,y,t)= sin(mnx / Lx)sin[(n - 0S)my / Lylta(t) , mn=12,. (f149)
Substituting (f149) in (f147) it follows the modes are damped harmonic, i.e.
) ° 2

T+20mn T+TT=0 , (f150)

Thn
For m,n =12, ... (he periods are
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Amn +12
A

*
| a xznn —l2n2[o§m2H§ +o§‘,(n —0.5)2H§,]/(pa2)+12p glr{/a2
and the decay constants are %
M
3n A
Cmn =~ 5" m:12 : (f152)
pH mn
where .
Hy=H/Lx , Hy=H/Ly , p =(™-p")/p @sy)
and .
Amn = uz[mzH,Z( +(n- 0.5)2H§:| . (f154)
According to (f139), the modes are both toroidal and spheroidal.
For each mode, a critical viscosity can be found from
' cmrn =2n/Tmp ‘ (f155)
ie. -
2
A
'ﬂcmrn _ 2npH mn +12 s

3Tmn Amn _
For values of viscosity less than the critical value (f156), the motion of the plate is represented by a sum of damped
oscillations. The decay constants are obtained from (f152) and the periods are

* o )2
Tmn =Tmn /41— (Cmn /Cmn) (f157)
For values of viscosity greater than the critical value, the motion of the plate is aperiodic and the characteristic roots of (21)
are "(Cmn + \/C%nn —4n? TrznnJ and —(Cmn - \/C;Znn —4n?/ Tr%m) . It follows that for large scale of times,

the solution of (f150) behaves like exp(—Ct), where the decay constant is

C=Cy -y -an? /TS e
all the other terms being faster attenuated. In many real applications, an approximate value of (f159) is

2,72

C= = e 2 (f159)
¢ +JC“ —4n” /T SPLNT

With regard to (f149), the decay constant (f158) or (f159) can be obtained as the ratio between the amplitude of the velocity

00 / Ot and the amplitude of & . By using eq.(f152), that ratio can be used to estimate the mean viscosity of the material

below the plate

M _ sz 27t2

Amp +12
3C lel Amn_

A numerical application with respect to the Moesian Platform is presented by (Ivan 1997§,b).

(f160)

https://biblioteca-digitala.ro / https://unibuc.ro



59
G) THE SPHERICAL SHELL

G.1) The model. BERNOULLI’s hypothesis. Displacement vector and strain tensor.

A spherical elastic, homogeneous shell having the elastic moduli equal to A, is considered and the usual spherical co-
ordinate system (r,B,(p) is used. However, some of the derived results are also valid in the case of a more general, non-

elastic spherical shell. In the initial state, the homogeneous density is denoted by p( and the median spherical surface of the
shell has the equation
r=R, (gl)
where R is the radius of the sphere. At a certain time during the deformation, the median surface will be
r=R-w(6,0,t) , (82)
where W = w(0, @, t) is the flexure of the shell, positive downward. Hence the unit vector normal to the median surface at
a certain point of co-ordinates (r =R -w,6, (p) is

;)— —*+@_)+——l—-a—w——) / 1+i (@)2+ ! (@)2 (83)
| €7 120 €0 rsin6 ap C@ 2\ " g2p\ee) | 0 ®

Neglecting the quantities of the second order, it follows that
n=ze+ + i

€r" R6 ©0” Rsind ap 0

Consider the initial, non-deformed state of the shell and two points of co-ordinates A o(R,6,¢) and Bo(R +h,0,¢),

- : -
where H=2h is the thickness of the shell. It follows that the segment A B () has the unit vector equal to € - Atan arbitrary

(e4)

time, in the deformed state of the shell, the point A () is displaced to a point A having the position vector equél‘ to

- 2 S

A =Reg +uR,0,0,1), . (&5)
while the point B()is displaced to the point B having the position vector equal to

- - -5
B =(R+h)e .+ u(R+h,6,0,t) . (g6)
- ;
Here, u is the displacement vector at a point of certain spherical co-ordinates. Assuming the shell is thin, quantities of the

—)
order h 2 are neglected and the segment AB has the unit vector equal to

- - - - &
~ r
(rB—rA]/rB—rA =(1+ ry

The partial derivatives in (g7) are computed at the point (R,0, (). It is assumed that Bernoulli’s hypothesis is valid for all

time. It follows that a segment inside the shell, which is initially normal to the median spherical surface, will be always
normal to the median surface during the deformation. From (g4) and (g7), it is supposed that the displacement vector has the
elements

)—’+au9 —>+au(p . 7

.

ul'(r’ e» 9, t) = _W(B) Q, t)
r— R ow
] ’e’ )= P, ,
ug(r,6,0,t) R aeﬂ(ewt) (88)

r-R 1 ow
R ;i-n‘ga*')'(e,w.t)

up(r.0,0,t)=
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where X and y are two unknown functions representing the horizontal displacements of the points initially placed on the
median sphere. A further hypothesison X and y will be later considered. It follows the elements of the strain tensor are

1{10u;y up 6ue) X
=—| -+ —=|F-— , 10

€0 Z(r ® r or 2r B1

1( 1 du up Ou
g == b A DN .4 P @l1)
¢ 2\ rsin® Op r or 2r

(2e,,)- r—R?ﬁJ,z(.c‘z_ ) €
€66~ 20 J R 2 r\d ' s

1( 1 g up dg) r-R 3 1aw'1'1‘axay y
¢ 2r sin® oo " tan® M R 0 sin® 8p/) 2r\sin® oo & tan 0

and

1 1 dug ug ) r-R[ 1 Pw_ 1 aw| 1 1 & x
€ tur+ = ‘ + =% e o= Wik e} {R14)
®9 " r\sin® o0 tan © R (sn2g 6(p2 tan® 90 ) r smea(p tan 6

Hence the trace of the strain tensor is

trg =8"+869+8¢¢=B£1T_I{)A*w+?s%n—e‘[—2WSine+%(X5ine)+%:l , (gl5)
where the two-dimensional LAPLACE operator is
: 2
1 0 ow 1 0w
A'w= —(sine )+———— . 16
v stine[m 00/ sin@ &p2:| : (816)

_G.Z) Quasi-mean values. Equations of motion.

Consider the stress tensor in spherical co-ordinates. For each element of the tensor, the corresponding quasi-mean value is
defined, for example, by

- 1R+hr
Tn=Cn=% | XOmdr ®17)
R-h
In the same way, the corresponding quasi-moment is defined by
R+h
L[ L¢-r)g.d 8
Mn'"H .[ R(r )GIT r : (818)
R-h
The equations of motion in spherical co-ordinates are
d ) 96, OgotO 2
0'n-+20'n+ 0'r9+ O N ‘1 rp 966 (pcp__pg=p6 ur
or r ro® rtan® rsin® O r a2
96, .0 90gs 1 908p Oep Oy 0%ug
+3 + +— + =p (g19)
or r r® rsin® do rtan© a2

2
a(')'r(p+30'rq,+60'e(p+209(p+ 1 aO'q,(p=p6 Up
or r ro0 rtan® rsin® O a2

In the above equations, p denotes the density of the shell in the deformed state. Assumed to be a negligible second order
cffect, that density will be replaced by the initial dencity p() at the right side of (g19).
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The first equation in (g19) will be multiplied by r2 and the quasi-mean operator defined by (g17) will be applied. The next

two equations in (g19) will be multiplied by r and the quasi-moment operator defined by (g18) will be applied. In order to do
that, some intermediary results are necessary.

G.3) Integrals of the stress elements. Quasi-moments.

Let the stress values on the upper/lower faces of the shell be denoted as

g’=g ®R+h,0,0,1) (820)
and, réspecu‘vely, by
o= ®R-h0,0,1) . €21)
Elementary computations show that
R+h 2 2
11 290 _R h)* U h)* L
HER h(r Y +2['Gn_Jdl'--ﬁ[(l+‘i) Gfl'_(l—i GIT 8 (822)
In the case of the elastic shell, the HOOKE's law leads to
Integrating by parts, it follows that
E I K(r R)Tdr_—ﬁ [ (r- R)o’re] i + ux I(3r—2R)dr
“R-h X 3 o R=h - @24
_R h U h L
"E[(”i{) o+ () Gre]“‘xre
Also,
R+h 2
_lﬁ J‘ _(r_R)_____dO',e r=0 . (25)
R—h
Similar relations are derived for ¢y "
Also, .
2 R+h 2 2
2n 0°w h * 2 0“w
M =(m“w+ J (r-R)Zdr="1- (M w+ "J . (826)
06 R2 692 I R2 0«
In the same way, it follows that
2
_h 2_u£( 1 6WJ
Me“’ 3 p2 0 \sinb dp) ’ L
and
2 )
h 2u 0°w
M (A+2p )A wW-— . (g28)
09" R2 692
G.4) Integrals of the displacement vector.
Using (g8), it follows
1 R}’hrz 5 0%u; dr=—poR Hl(h)z 02w )
e i = — || o —_— g [\

Also,
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}_th z(r_R) ue dr=p0R2 o [hz h4J0w+2x(£)2J ; (g30)
H R 6t 6t2 3R2- 5R4 d 3 \R
R-h L
and
_R}-h 2(r—R) 62u(p dr=p0R2 i (hz + h4J ! 61+2_y(£)2 - (83D
H' R 0752 a2|l3R2 sg4)sin@ e 3 \R

G.5) Equations of motion in quasi-mean values.

Let the first equation in (g19) be multiplied by r2. By applying the quasi-mean operator defined by (g17), it follows
oy R+h
1 rQ

m[%(s“‘ezre)* 20 ] (Zee+2¢¢)-——RIir g(r)dr

2
R 2 U 2 _L1_ 1 h) 0w
+ﬁ[(1+h/R) Gn_—(l—'h/R) Gn_]——pORlil'f';(—— —at—z——
The next two equations in (g19) are multiplied by r and the quasi-moment operator defined by (g18) is applied. Hence

o\ -
%[aMeeJr 1 M9¢]~Z$+Mee M

(832)

QO 1[ 2 U ) L]
. +—|(1+h/R +(1-h/R
®  sin® dp Rtan® 2 ) ot ) o
o 1(3)21(3)4 a_w_+z_x(z)2
P23\ TS\RJ (a8 T3 \R

1(6M9(p+ 1 aM(p(p} Zr(p Me(p

(833)

2 2
1+h/R -h/R
7.8} sin@ O Rtan® 2[(+ ) 0"‘0 - ) G“"]
02 1(h)2 l(h)4 1 ow 2y(h)2
=fplesatlial =] o= | |
a2 ||3\R 5\R/ |[sin@dp 3 \R

G.6) Quasi-mean. value of the shell density. The differential equation.

(g34)

According to (g17), the quasi-mean of a constant is equal to that constant. Applying the quasi-mean operator to the mass
balance equation in the linear approximation gives

p=po(-trg) . €35)

1t will be further assumed that the quasi-mean of the density is constant and equal to its initial value. From (g35) it follows
that

trg=0 , (g36)
i.e., using (g135),
%(x sinB)+ % = 2wsin® | @)

For the elastic shell,
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o =Mrg ] t2ug . (838)
By using (g9), it follows '
Cpp T Opo ™ 2A+pltreg (839)
or, using (g36), .
2ept Lopp=0 - (g40)

The term (h / R)4 will be neglected. Using (g40) and substituting er and qu) between (g32)-(g34) it follows

1 az(sineMee) 2 62(sin9Me(p) i a M 3
F 02 * @n6 090¢ +sine &pz‘P‘P ( eM(p(p)

-

snne[(1+h/R)2 U_g-n/R? g L] 2;%{sine[(l+h'/R)2c%+(1—h/R)20-L

1 8 5 2 R+h

R-h
2 2142
=posin6 E——A (6 2J 1—(2) -(?—2“—'
o R/ ot

NS

A correction due to the compressive horizontal stresses ¢, ¢y WE acting at the ends of the shell, approximately along
the O — and (p — axes respectively, follows to be further considered.

(g41)

G.7) The buckling of a spherical shell.

Consider the element ABCD of the mean surface of the deformed shell from an G1. It is centred at the point M, where the
- - -
local unit vectors are @, r€9:€o- The centres of the lateral sides are denoted by Mk k =1,2,3,4. On the meridian

cross section M 4MM 2 is acting a normal compressive stress O'WE, having the approxiinate direction from West to

East, and a tangential stress TNS, having the approximate direction from North to South. On the parallel cross section
L . NS . . N

MMM 3 is acting a normal compressive stress o , having the approximate direction from North to South, and a

tangential stress TWE, having the approximate direction from West to East. Let ® be the angle between the normal

_)
vector to the meridian section M4MM 2 and the unit vector e 0 Also, let ® be the angle between the normal vector 1o

N ,
the parallel section M | MM 3 and the unit vector €g - The concentrated force acting at the point Mjis

£t el 906 o295

o 2 op 2 op 2
NS - (&4
NS 01 " do ( 00 d(p) . ( o0 d(p) - ( ow d(pj
+ - 0-——— - -
{'r % 2] cos 3o 2 Cg tsin 20 2 €, |t x| R-w+— Hdo
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Fig.Gl. A rectangular element of the mean surface of the deformed shell

In the same way, the concentrated force acting at the point M3 is equal to

— WE
zf_{c,wmg_.d;} of 0+ 28)e, ia(0:22%0)

o9 op 2 op 2
NS (g43)
Ns_ 91 " do 00 do . owde
{T oo ] s(®+———)ee+s (®+£2 €, |t R-w B0 2 Hde
The concentrated forces acting at the points M9 and M 4 are respectively equal to
_->
NS, 50‘ dG s( ) ( aG)dG)
=F ®:i:—— + 0+t——
L4 [0' J Co +sin(@+>)C;
WE 61; do OCDdO) ( @d@)
Ot+t——|€C  +sin|Pt+t—— 44
+[1: ® ] » 2 C; (844)
X (R -wF évld—e-) sin(0 + d6)Hd¢
0 2
But
e 1 ow 1 ow
o=l 0=1 ind=0= — , sin®@z=0@z=—— . 45
cos , COs , Sin Rsin® o sin R 20 (g45)

Let p = p(0, )a surface density of forces normal to the element of the shell, having the same mechanical effect as the
presence of the compressive stress. The force due to that density is equal to

- -
T, =pO,0)R - w)?sin6dodo e, . (846)
It follows the deformed element of the shell is into an equilibrium state due to the action of the lateral stress and to the
._)
opposite force —Zp ie
- =5 =5 5 = _
21+22+Z3+Z4—Ep_=0 3 (@47

Hence the next three equations of equilibrium are obtained:
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( smeaw) NS ow 'tWan
0s0- 2N 5

R 69 sin® oo
WE , (848)
. Nsow T ow| afg ow, Nsow|_ RR-w) . o
+sinb—| o t— |V 1tT = =—p(6,p)———sin
0 69 sin@ dp| Op| sin® oo 0 H
NS NS
NS( 0s0 g aw)+sm660 +6T =0 (g4
_— =0 , g49)
G R @ 0 29
and
WE WE
0 0
0-—+1;WE(20059 g 8w) +5in0—L—=0 . (850)
[ R & o)
For the particular case when GWE is a constant and I-NS = TWE =0, eqs.(g48)-(g50) show that the presence of the
lateral compressive stress is equivalent to a supplemental ioad placed on the upper face of the shell, having the value
2 2
1 0
p(9,¢)=-£2(cha—¥-+gWE 3 ——2’} , (e51)
R 0 sin“ 6 Jp

a result similar to the case of the plane plate (Timoshenko and Woinowsky-Krieger 1959; Nowacki 1961). Quantities of the
second order, like (aw / ae)2 have been neglected again.

G.8) Load on the upper face. Stress on the lower surface of the shell.

Consider now the differential equation (g41). Usually, the horizontal loads for the upper face of the shell are neglecied, and
it is assumed that

2
F : law} . 09= U-o, (852)

09=0 » O~

where p is the density of the filling sediments, P is the load and an inertial term is consndered For the material below the
shell the next constitutive equation is assumed

M
d
oM =[po-pMa®-n-w)|] +AMugM] +2uMeM+2nM—%t— . @)

where p()is a reference pressure, pM is the density of that material and ] is the unit tensor. The elastic coefficients are
KM . uM and the viscosity is denoted by ‘nM. The strain tensor inside the material is 8M and the strain rate here is
agMia.

The first boundary condition assumed on the lower face of the shell, having the equation r =R — h , is the continuity of
the displacement vector. Hence the elements of the displacement vector inside the material placed immediately below the

lower face of the shell are assumed to be equal to the same elements at the points of the shell placed on the lower face. By
using eqs. (g8), it follows

ul'(ryer @, t) = —W(e, P, t)

fu(r8.0.0= 2 sx@0 . @4
“h 1 ow

“w(feq’r‘)-———ea; y(6,0,t)

Hence the next values for the strain tensor immediately below the shell are obtained
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M 1 ow X M__ 1 1 ow y

=0, el
Emr €O 2R 2R-h) ' ¢  2RsinBdp 2(R-h)

_)
The normal vector at the lower face of the shell is Ee: From Newton'’s third low, it follows a relation between the stress

(g55)

o S inside the shell and the stress ¢y M inside the material below the shell, i.e.

- M -
G €. |=-0 |6 - (&56)

on the lower surface of the shell. Here, the next elements of the stress are obtained after some elementary computations

Rh
O-%r=po-ng(R—h—w)——R_thA*w , @57
L 1ow . x ) M[ 1 a(aw) 1 x|
== ——| =] +t=—=] . 58
G (RBO R-n) | [R(’)B a) R-na) ' &Y

and

Rsin6@dp R-h Rsin® op \ ot R-

L M 1 ow y ) M|l 1 @ (6w) 1 oy ,
=M ¥, Y |_ 21— 9
Crp="H ( : + n [ - + hot (859)

G.9) The differential equation of time dependent flexure.
The reference pressure p()in (g53) is selected in order the flexure of the shell to vanish in the absence of the load.
Substituting the loads on the upper/lower faces of the shell in eq.(s41) and taking into account the presence of the lateral

gstress, a generalisation of the Sophie GERMAIN plain plate static equation in the case of a time dependent flexure of a
spherical elastic shell is obtained as

3 * 2 2
H L oeoma* i w ety —(1+£) ngw+Pl——a—

2 2 .
+(1—%) (ngw+ Rh XMA*W)—-—H—(I—-E) uM(RA*w-I-' 2w)

R-h 2R R R-h
2 - 2 2 . (g60)
H( h) M *(aw) 2 ow| H| NSOW WE 1 0w
1= 2] Mgt () 2V, B GNSO W, Iw
RU R a) R-ha| g2 22 0 o2

12 . 0%w h\? |0%w
=poH LA e L] =] [
12 atz R 5t2
If quantities of the order (h / R)2 are neglected with respect to unit, it follows finally thatA
M _ M M__F_ =*
DAAw+2(?» )A w+(p -p -p )gw
2 2
1
+H (GNS+0*)' > o — +(GWE+0'*)—2 : 5 .l ‘zv )]
R“ o0 R“sin“ 0 o

2 2
—p*+ Iy M ﬁ[A"w+ 2‘”] o+ 2| OTW 0 3 8% ey

where
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_Q20H o H

12 12
is the flexural rigidity and a is the velocity of the P-wave through the shell. Also,

M 2

«+ | M F u"|H « puH * P( H)

= +p A=, ==—— | P =Pl+—| . (g63
P (P p R]R (o) 6R2 863)

D (862)

G.10) Spherical effects with respect to the plane plate.

For the usual materials, XM = u.M . In that case, the corresponding equation for the plane plate (Ivan 1997) is.

2 2
DA*A'w + Gf‘a—‘l +o-°-al +(pM - pF)gw
5 ' 5 (864)
=P +EnM 2(A"'w) —(pH+-Ii)a—2v—+—p—H3 a—(A"‘w)
2 ot g) a2 12 2
With respect to (g64), a change of the density difference pM - pF according to (g63a) and a substitution of the real lateral

stresses O'NS ,GWE by their apparent values O'NS + 0* , O-WE + 0“ can be observed in eq.(s61). A supplemental

load is present according to (g63c). For wusual values (e.g Ivan 1997a) like H/Roc1/100,
u,uM oc lOllI’a,pM,pF oc 3000kgs / m3,o'NS,O'WE0C3OMPa, all these effects are usually negligible and

difficult to be observed in real life. To compare 2w / R2to A*W in the left side of (g61), the case of a rectangular plate
having the sides equal to Ly, Ly is considered. Here, the flexure is proportional to a product of sins (cosines) functions, i.e.

w oc sin(mmx / Ly )sin(nmy / Ly ). It follows the LAPLACE operator of thke flexure is proportional
toA*w e nz(mz / L%( +n2/ L%) sin(mmx / Ly )sin(nmy / Ly). For the fundamental mode (m=n=1) it
follows that | |

2w/R% 1 -
Aw  n?R?2/15 +1/12)

That ratio is negligible too in the usual cases.
It can be concluded that in the usual cases, the sphericity of the crustal plates can be ignored and the equation derived for
the flat plate can be used.
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H) ELEMENTS OF RHEOLOGY

H.1) Introduction.

Especially for geological processes at a large time scale and great values of the stress, the internal friction of the material
cannot be ignored. Consequently, the HOOKE's law has to be replaced by assuming different constitutive equations (models).
Their expressions are mainly depending on the time scale of the geophysical process to be modelled. In relation to seismic or
seismological applications, for example, short periods and short stresses are required (usually, seconds up to minutes, with a
maximum value around one hour for the fundamental mode of the free oscillations of the Earth). Here, the non-¢lasticity is
related to the very short period irreversible changes in the crystal defect structures of the medium (e.g. opening/closing of
pre-existing cracks) and/or to the energy lost by friction at the two sides of a crack or on the non-elastic boundary coupling
grain particles to the adjacent material (Aki and Richards, 1980; Ranalli, 1987, Wahr, 1996).

With respect to the mathematical relation between stress and strain, there are two kinds of constitutive equations (models).

H.2) Linear models.

Simpliﬁed models involves a linear relation between stress (and its derivatives of various orders with respect to time) and
strain (together with its time derivatives).

In the beginning, only the 1-D case will be discussed. More general examples follow to be presented in relation with the
dynamic aspects of the flexure of a plate (shell) and to the accretion prism. For each constitutive equation, a mechanical
analogue can be considered. The elastic part will be represented by a spring, while the inelastic (viscous) behaviour is

associated to a dashpot. Both parts are supposed to be linear ones, i.c. a linear relation ¢y =2 g is valid for the spring

[ ]
and a similar linear relation holds for the dashpot ¢y =2ng.
My 3
/Y D .
25,
a
®
I
—~AN—] o
hoow, 2R,

T
-'—l P iy o | T
(©) 272 7y

B

[ T ——

t

1

Fig.H1. (a) KELVIN-VOIGT model; (b)) MAXWELL model; (c) BURGERS model

a) KELVIN-VOIGT (strong viscous) model.

The mechanical analogue of the first model to be considered is represented in Fig.Hla. The total stress is the sum between
the stress in the spring and the stress in the dashpot, while the total deformation is equal to both the deformation of the spring
and the deformation of the dashpot. It follows that KELVIN-VOIGT model has the next constitutive equation

[ ]

O =2uKg +t2nKeg . (hl)
whcre the dot shows the (total, material) derivative with respect to time. Here, the second term is the inelastic one, MK being

the viscosily. Suppose now a constant stress equal oy 0 is applied. Elementary computations show that the differential

cquition
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dg
Co=2MKE +2MK —~ (h2)
with the initial condition
g (t=to)=0 (h3)
has the solution |
€ =30 l—exz{—ﬂli(t—to)]] , (h4)
2pK nK
for t 2 t(. Hence, for very great values of time, the strain approaches a limiting value equal to
oo™ ———0 0 (hs5)
2uK
The “flowage function”, denoted by
J(t)=——1—— 1- exp(——&(t— to))] , (h6)
2uK nK

shows that for a constant stress (equal to unit here), there is a temporal variation of the strain.
Suppose now at a certain moment t =t], the constant stress (y 0 is removed, the corresponding strain at that moment

being equal to £ 1 It follows now the corresponding solution decreases towards zero as

KK
= exp(— —=(t-t) )) . (h7)
€ 78" "k |

b) MAXWELL (viscous-elastic) model.
Consider the mechanical analogue represented in Fig.H1lb. The total stress is equal to both the stress of the spring and to
the stress of the dashpot, while the total deformation is the sum between the deformation of the spring and the deformation of

the dashpot. It follows that MAXWELL model has the next constitutive equation

[ ]
. (0]

g=-0—+
2uMm  2qMm

(h8)

with the initial condition represented by (h3).
Suppose again a constant stress equal to (y 0 is applied. The spring is instantly deformed to a value equal corresponding to
the first term in the right hand of (h8), i.e.

Oo_
(h9)
€07 2um
and the solution of (h8) (for a constant stress (0] 0) with the initial condition (h9) is the str_aight line
- 0o (t-to)+ Go_ (h10)
2nMm 2umMm

having the slope related to the stress ¢y 0 and to the viscosity of the dashpot. Suppose now at a certain moment t = t], the

constant stress (y 0 is removed, the corresponding strain at that moment being equal to €1 It follows from (h8) that the
strain remains constant.

¢) BURGERS (general linear) model.
The third model to be considered has the mechanical analogue represented in Fig.Hlc.
EXERCISE. Show that the corresponding differential equation is

oo .

ni L) K1

2n18+2u18- o+( l) +—g . (h11)
H2 n2 P«Z ¢ n2 ¢

Consider now the same initial condition (h3) and suppose again a constant stress equal to Oo is applied. In a similar
manner to MAXWELL model, the system is instantly deformed to a value equal to

https://biblioteca-digitala.ro / https://unibuc.ro



70

Oo
(h12)
€072,
and the solution of (h11) (for a constant stress ¢y O) with the initial condition (h12) is
=Eg+ﬂ(t—t0)+c l—exp(—ﬁ(t——to)J ) (h13)
2up  2m2 T

where C is an unknown coefficient (because (h11) is a second order differential equation, two initial conditions are requnred
1o obtain the complete solution). However, differentiating (h13) it follows

_—Q+Cﬂexp(—ﬁl—(t—to)) . (h14)
2z M n

Hence, for great values of time, the solution (h13) approaches asymptotically to a straight line having the slope equal to
Co / 27 . Suppose now at a certain moment t = t{, the constant stress (y 0 is removed, the corresponding strain at that

moment being equal to £ 1 It follows from (h13) that the strain decreases exponentially towards zero, i.e

€ =816xp(—i—:(t-t1)) ; (h15)

EXERCISE. Show that two (or more) springs / dashpots connected in series (or parallel) sequence are equivalent to a single
spring / dashpot. Justify that the BURGERS model is the general linear model.

d) Remarks on the linear models.
In the most general case, the linear relation between stress and strain can be written as

PD)g =QMD)g . (h16)
where
PD)= A%+ A'D+ A%2D2+ .+ APD" (h17)
and
_ 0 1 212 mpm
QD)=B"+B'D+B“D“+.+B D (h18)

d
are formal polynomials of the variable D = _(R representing the derivative with respect to time, applied to stress and strain

respectively. Here, AO,AI,...,An,BO,Bl,...,Bm are fourth rank tensors. For example, with respect to the
MAXWELL body having the constitutive equation (h8), it follows that

P(D)= ! + !
M 2uM

A common way to solve (h16) is by using the LAPLACE transform (e.g. Sokolnikoff and Redheffer, 1958). Consider a

certain function of one real variable f(t), providing that

1. f(1)=0 , for t<O;

2. f(t)is piecewise continuous on every finite interval;

D , QD)=D (h19)

3. therearetwoconstants 0<M |, a<0 inorder to have |f (t)| <M exp(at) , for an arbitrary t .
Under the above conditions, the LAPLACE transform of f(t) is a new function of the variable p, defined by

Q0
L[f)p) = j f(t)exp(—pt)dt (h20)
0

EXERCISE. Show that:
(a) The LAPLACE transform of the first derivative is

L[%%}(p)= pLf] - £(0+0) (h21)

| ,
® Lfexp(-at)j(p)=—— , 0<a (h22)
p+a
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(¢) The convolution theorem. Consider the functions f , g vanishing for negative values of their argument and a new
function (also vanishing for negative values of the argument defined) by the convolution product

+00

h(t)=(Frg)(t)= [f(v)e(t - e = [ f(0)a(t - 1)de (123)
-0 0

Show that

L{f+g]=1[f]1[g] - (h24)

As an example, consider again the MAXWELL model by applying the LAPLACE transform to both sides of (h8). It follows

that
- 0:#( ]_ 0) 1 ] ’ (h25
PL{S ] € 2 PL{O‘ o +2’ﬂ , (h25)

where 0‘0 =g (0+0), eo =g (0+ 0) are the initial stress and strain respectively.
EXERCISE. By using the above propenies of the LAPLACE transform, show that

22,
UM 0_ 0 (_ EM ) ,

2 —— — 2 t h26

c (W=2umeg () Ie (t)e&p[ n —(t t)}iﬁ(c uMe)exp " (h26)

If the initial conditions are elastically coupled, ie.
' 0'0= 2uM 80 (h27)
it follows an integral representation of the stress which is independent on the initial conditions

22, !
2 - -——(t- (h28
o M=2ume (-7 jg (t)exp[ (t r)]a )

Henée, the actual value of the stress is related both to the actual value of the deformation and to the previous values of the

strain (i.c. the stress depends on the “history” of the deformation). If a constant strain g (t) = go ,fort >0 is applied to
the MAXWELL body, it follows from (h28) that the stress decreases as

KM :
o )=2ume exp( ) ; (h29)
M
representing a “relaxation phenomenon” (stress decreases in time if a constant deformation is present). Here, the function
G(t)=2pM exp(-t/ M) (h30)

is the “relaxation” kernel and the parameter T\f = MM / LM is the relaxation time.

A very similar approach (e.g. Wahr 1996) is based on the use of FOURIER transform (see Chapter F.13). Formally, the
results derived by using FOURIER transform are derived from the same results obtained with LAPLACE transform by
performing the substitution p = iu.

The above 1-D models can be generalised for the 3-D case. For example, consider again the MAXWELL body. There is a

strong experimental evidence that the MAXWELL Rheology applies only to the dissipation of the shear energy, i.e. the stress
and strain tensors in (h8) are the deviatoric tensors

1
o 0 —Etro' 1 . g ¢ -—%trg | (h31)
1t will be further assumed that there is no dissipation of the compressional energy, i.e. a proportionality like
rg =(AM +2uMrg ‘ (h32)
is valid. By differentiating with respect to time
. [} [ ]
trg=0CGApm +2umtrg (h33)
Substituting (h31) and (h33) in (h8) it follows
[ ] ° e -
3AM +2uM 1 3AM +2uM
-—tre]l= tr - tre h34
g-3vel=5 0" 3 81 2 | O 3 gl] @

Hence
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3AM +2
0‘+—uMG —2uM8+lM"81+“M M3 2 tre] (h35)
By applying the FOURIER lransform to both sides of (h35), it follows
D g |=Atr®| g |]1+2uDg| . (h36)

i.e. a relation similar to HOOKE's law is valid between the FOURIER (or LAPLACE) transforms of stress and strain. Here,
the coefficients similar to LAME parameters are
UM (1 L2 HM)

e nM 3 iu
7\=7\M i M2 W=MM —— = (h37)
iU + —M ) u+ _M
™ ™M
At short penods T correspond high values of the pulsanon u=2n/T.From (h37) it follows
A= AM . H=HM (h38)
and the behaviour of the MAXWELL body is an elastic one.
At long periods T correspond low values of the pulsation and
- M +2 ~
x=M—3“M—=KM , u=0 (h39)

and the MAXWELL body is a fluid having the compressional coefficient denoted by KM .

H.3) Non-linear models.

For tectonic applications, large stresses and periods of thousands to millions of years are appropriate. Here, the non-elastic
behaviour is probably related to the diffusion or dislocation creep of the molecules, a major factor being the high
temperatures.

There are great difficulties to consider constitutive equations with non-linear relations between stress and strain, but some
attempts have been made. A very common non-linear model is the work-hardening plasticity (e.g. Ranalli, 1994)

* n-— 1 *
_3|0g| Oij

AT ) (h40)
Y 2 Co Co

* * 3 % %
where Gij is the component of the deviatoric stress, O~ Eo-ijo-ij is related to the second invariant of the

deviatoric stress, and ¢y o- 1 are material parameters.

H.4) Brittle. Creep. Empirical criteria.

The usual materials are reacting in an elastic manner only for small values of the (deviatoric) stress, i.e. for stress values
smaller than a limiting value representing the yield strength (or the yield stress), denoted by Cy: The yield stress is a

function of the nature of the material, of the temperature, pressure, the chemical composition of the adjacent rocks and,

finally, of the history of the deformation (i.e. the intermediate steps followed to attend the yield value). When the yield stress

is attended, there are two possibilities of behaviour of the material:

o a rupture deformation of the rock, when the continuity of the deforlnatlon is lost, usually along a fault surface; this is the
case of the brittle materials. The process is illustrated in Fig.H2a and b.

e a plastic, irreversibly flow of the material (creep), when, apparently, the continuity holds. The phenomenon is quite
similar to the usual viscous flow, but it can be observed only when the yield stress is attended. This is the case of the
ductile materials. The process is illustrated in Fig.H2c. An usual non-linear constitutive equation is the BYERLEE
power-law creep

[ ]

£=Ag"exp(-H/RT) . (h41)
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where A, nare material parameters, His the activation enthalpy, R is the gas constant and T is the absolute

temperature. It should be noted that the same material can act as a brittle or a ductile one according to the external
conditions.

Fig. H2. (a) Faulting of a brittle material; (b) Increasing of the yield stress due to the history of deformation;
(c) Creep of a ductile material.

H.S5) Empirical criteria for shear-faulting. TRESCA criterion. COULOMB-NAVIER criterion.

A first criterion also (valid for plasticity) is due to TRESCA. It assumes that faulting (for brittle materials) or creep (for
ductile ones) is attended at that points of the material where the maximum value of the shear (tangential) stress is equal to a

yicld value denoted by Oy Consider now a homogeneous (constant) stress field inside the material. Such a case can be
obtained either by considering an infinitesimal volume of material or by taking into account a prismatic body with very large
(infinite) sides. Consider the eigen-values 01°CG2:03 of the stress tensor. It will be assumed that they are denoted in

‘order to have O3 < 0-2 < Ul , with the remark that ,in real life, stress is assumed to be positive for compression. Hence,

with respect to Fig.H3, let C11=~ 01 02203 and C12= 0 in egs. (d11) and (d13). It follows that

01*03 0103
G =0y~ 5 - 5 cos2y

, (h42)

0,703 .
T =-0're=—12——-3-sm2\|/

" where ¢y , T are so-called “normal stress” and “tangential (shear) stress” respectively, acting on a plane inside the

’ T
material. The plane is at an angle Yy =0 — E with the direction: of the maximum compressive stress. The outer-pointing

normal at that plane makes an angle © with the direction of the maximum compressive stress. With respect to a
O — T reference system, eqs.(h42) are the parametric equations of the MOHR circle (see Section D4), plotted in Fig. H3.

In the most general case, stress field is varying from point to peint inside the material. Hence both the eigen-vectors of the
stress tensor (i.e. the local directions of the maximum / minimum compressive stress) and the eigen-values of that tensor (i.e.
the magnitudes of the maximum / minimum compressive stress) are also changing from point to point. For a fixed point
inside the material, both normal stress and shear (tangential) stress are varying with the angle between the plane (with
respect to normal and tangential stresses are defined) and the direction of the local maximum compressive stress. Consider a
certain point inside the material and imagine various planes passing through that point. Hence, according to TRESCA
empirical criterion, failure of the material is produced here if

max| 1 |=oy (h43)
Using eq.(h42b), it follows
01703 . . .
max ——]—2—3 sin 2y| = gl—zq_l maxlsm 2\y|=GY (h44)
v v
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Consider now a homogeneous stressed material subject to progressive increasing values of the difference ;O3 The
material is characterised by a yield value denoted by Oy Eq.(h44) shows that:

o if (0-] = 0'3) /2< Oy there is no failure inside the material;

e when the equality

0‘1—03=20Y (h45)

b1
is attended, a failure is produced along the planes at angles \ = * Z with the direction of the maximum compressive stress.

T
(0,0) 5
e
2v i ' S
01—03—" : Ul.! )}9 1.01
b o ; L '|
9,0, ' 050, S,
e 5 e 3
(a) (b)
1T Fd
—T-0
n x E.d Y
(¢) o 24 24

Fig.H3.(a) The MOHR circle;
(b) A plane inside the material, at an angle y with the direction of the maximum compressive stress;
(c) TRESCA criterion. E.d and F.D. denote the elastic domain and the failure domain respectively;
(d) COULOMB - NAVIER criterion.

Eq.(h45) represents the TRESCA criterion in terms of the eigenvalues of the stress tensor. In the case of a material subject to
a non-homogeneous stress ficld, eq.(h45) is a local condition. Here, the eigen-values are obtained (see Section A). For a

compressive stress, that values are expected to be negative ones. They have to be denoted by -0~ 0203 where
03<072<01"
A second criterion is due to COULOMB and NAVIER. It can be used to describe only the shear fracture. According to it, a
*
material is characterised by the cohesive strength denoted by S and by the coefficient of friction, denoted by L =tan¢.

Here, ¢ is the angle of internal friction (¢ = 30° in most rocks). According to COULOMB - NAVIER empirical criterion,
shear failure of the material is produced at its points where

*
max|| T |-» o|=$ (b46)
v
Using eqs.(h42), it follows
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0,103 61703
2

5 cos 2\|/) =S (h47)

ax ﬂ%gglsin 2y| - tan d{
v

If \ is a solution of (h47), T — y (or just —\ ) is a solution too. Hence, without loss of generality, the values of the angle
W will be limited to the first quadrant, where eq.(h47) is

01703 1 0'3 :
—_— sin(2y + S + tan =21 23 (h48)
2 cos¢ m\f}xl ( ¥ ¢)] ¢
Eq.(h48) shows that:
- +
o if M—I— - tand)g—l——(—y—1 < S, there is no failure of the material;
2 cos¢ 2

¢ when the equality

+
(0 )] 0'3 1 tand)ol G3=S

(h49)
2 cos 4) 2

T ;
is aitended, a share fracture is produced along the planes at angles Wy = :t(—— - 9) with the direction of the maximum

compressive stress. Eq. (h49) represents the COULOMB - NAVIER criterion in terms of the eigenvalues of the stress tensor.

Taking into account that |,1 = tan ¢, eq.(h49) can be written as

(O] (“*)2“““* -03 (u*)2+l+u'}=25 , (h30)

outlining that COULOMB - NAVIER criterion is a generalisation of TRESCA criterion for a non-zero internal friction.

H.6) Von MISES-HENCKY criterion for ductile flow (plasticity).

Because the ductile (plastic) flow is independent of the co-ordinate system used, it depends only on the invariants of the
stress tensor (Section A, eq.(a22)). Hence an equation like

f(I;,12,13)=0 (h51)
will be valid. There are strong experimental evidence that the plastic flow does not depend on the hydrostatic pressure, being
also similar for compressive and tensile states of stress. It follows the function f in (hS1) depends only on the second
invariant of the stress deviator (see eq.(a23)). Hence, ductile flow occurs only at those points of material where the second

invariant of the deviator stress reaches a certain value, depending on the nature of the material. Using eq.(a24), the criterion
of Von MISES - HENCKY assumes that ductile flow occurs at those points of the material where

2 2 2 2 2 2 2
(611-022) +(622-033) *+(o33-01) +6(0'12+023+013) =k e
In terms of the principal stresses, eq.(h52) is
2 2 2 2 i
(01-02) +(02-03) +(03-0)) =6k L

Hence the criterion of Von MISES - HENCKY can be regarded too as a generalisation of TRESCA criterion, by taking into
account the presence of the intermediate stress.
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H.7) Rheological models.
a) SAINT-VENANT body (elastic-plastic material).
The behaviour of that material is characterised by linear elasticity for stress values below the yield strength. When the yield

stress is attended, the body exhibits a pure plasticity. Its constitutive equation (using deviator tensors) has the symbolic form

%* *
o =248g¢  O<Oy
(h54)

* %
f(2,13)=6y . 0=0Oy
The above material has the mechanical analogue presented in Fig. (h4a), being referred as a SAINT-VENANT body.

b) BINGHAM body (visco-plastic material).

Similar to the SAINT-VENANT body, that material exhibits linear elasticity for stress values lower than the yield strength.,
but flows linearly above that value. The strain rate is proportional to the difference between the deviatoric stress and the yield
strength. Its constitutive equation is

* *
O =2UBEg » 0<0y

%*
* dg
0 =Cy*2MB—~ - 020y
The above material has the mechanical analogue presented in Fig. (h4b), being referred as a BINGHAM body.

(h55)

Oy £
() —ﬁg—@— I
UY : UY 0‘.
¥ /
» I8 —i—

Fig H4. (a) The SAINT-VENANT body; (b) The BINGHAM body.
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I) THE ACCRETION WEDGE.

11) The model.

Consider a 2-D prismatic body having a triangular vertical section (Fig.I1), in the presence of gravity. The wedge rests on a
rigid basement having the slope equal to 0 (). Both the compressional force acting on the left side of the wedge and the
friction to the basement cause thickening of the incompressible material and the development of a topographical slope equal
to o . It is assumed that the material is into a state of plastic yielding according to the VON MISES-HENCKY criterion. It
follows to obtain a condition relating the slopes of the topography and that of the basement to the geometry of the wedge, its
yield strength and the friction coefficient to the basement.

Fig.I1. The 2-D accretion wedge.

12) Equations of equilibrium. Yield condition. Stress field.

Taking into account that the 2-D case is discussed, the stress in polar co-ordinates is

C =|Cp CGgg O o @i1)

0 0 V(Cn+569)

Because the material is assumed to be incompressible, the POISSON coefficientis v=1/2.
Usmg polar co-ordinates, the equilibrium equation (d40)-(d41) in the presence of gravity are

%Gy, 90w, O~ Tep

+pgsinf=0 i2
o 20 Pg (i2)
0 0
c;r'e ?(;ge +2 19 +pgcos®=0 (i3)
Using (il), the yield condition (r54) is
01" 03=2k (i4)

Taking into account again that the compressive stress is assumed to have positive sign, egs.(d11)-(d13) give
) O = —£(1,8) - kcos2y
Ogo= —f(r,0)+ kcos 2y R (iS)
0= ksin2y | -

where the trace of the stress has peen denoted by f(r,0) = %tr (@) and W = y(r,0) is the angle between the radius and

the local direction of the maximum compressive stress (variable inside the wedge). However, it will be assumed that
v = () only. After some manipulations, substituting (i5) into (i2)-(i3) gives

of 2k d 2k

——=——c032\v—w— ——cosZ\u +pgsin®

o r do i6)

of . .
i -2k sin 2y :—\g + 2k sin 2y + pgr cos®
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Eqs.(i6a) and (i6b) are differentiated with respect to ©, 1 respectively, the results of the differentiation being equal each
other. After some elementary manipulations, it follows that

d ( dy ) ,
—| cos2y———cos2y |=0 , (i7)
ol Ve M : ‘
i.e. g
W14 . (i8)
do cos2y
where C is a constant of integration. Substituting (i8) into (i6a) gives
oAk + pgsin® (i9)
ar c Pg , »
ie. )
f=2CkInr+ pgrsin® + g(0) , (i10)
To find the unknown function g = g(0), eq.(i10) is substituted into (i6b) to obtain
dg 3
— =-2Ck tan 2 . i1l
0 L4 (il1)

Using (i8), it follows that

98 _ pox_Sin2v N (i12)

dy cos2y +C
ie.
g=CkIn(C +cos2y)+ A , (i13)
where A is another constant of integration. Hence the final stress inside the wedge is
(o —2CkInr - CkIn(C+co2y)—pgrsin® — A — kcos2y
Opp= —2CkInr-CkIn(C+co2y)—pgrsin® — A+ kcos2y . (i14)

Gre=k5in2\l/

13) Boundary conditions. Final results.

Consider the segment AC placed on the side OA of the wedge, having 8 = 0and OC <r<OA, where the point C is

> o
very closed to the point A. The outward pointing normal vector is n = —eg@ . Here, is acting the lithostatic pressure due to

the topography. Hence

- - '
O|—¢€p |=pgrtanaeg (i15)
ie.
Cp(0=0)=0
(il6)
Gee(e = 0) = —pgrtana
Because the angle 0 () has very small values, it will be assumed for all angles © that
Cgg = —Pgrtana . (i17)
or
0
__(;96 =-—pgtana . (i18)

However, all the next derivations are supposed to be valid at the rear of the wedge, where the topography is generated due to
the horizontal compression, i.e. the radius ris a mean value of the lengths OA and OC, the point C being closed to A. By
differentiating (114b), eq (i18) leads to
2Ck
——=pgtana , (i19)
r
where
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=
o

-
n

(i20)

(<>

0
- -
Consider now the side OB of the wedge, having 6 = 6 () and the outward pointing normal vector n = eg@ . Here, is acting

the friction force due to the basement, assumed to have the magnitude equal to Ak , where A is a friction coefficient. Hence

=
ie. ‘
G.o0=00)=2k . : (i22)

The next partial derivative follows to be evaluated in two ways. In the first approach, eqgs.(i22), (i16a) and (i20) are used to
give

acrezlcre(9=90)—0're(9=0) Ak

0 r 0p-0 - ho

The dominant stress is into the wedge is the horizontal compression. Hence =0, both angles having small values. It
follows cos 2\ = 1. Eqs.(i5¢c), (i8), (i19) and (i20) give

(i23)

0
0.re=g—l-(-r.:052\y—qy:Z—k-(C+cos2».y):=ﬁ+§=pgttmov.+ ] (i24)
100 r e r r r 0
From (i23) and (i24) it follows :
pghg tana +2k6 = Ak , (i25)

showing that the friction force (resistance to sliding of the wedge onto the basement) is balanced by tqo forces. The first one
is due to the topography and the second force is related to the compressive stress and to the slope of the basement. Further
details related to the application of eq.(i25) in real cases are presented by Ranalli (1987).
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