VINDICATION

OF

Sir ISAAC NE WTO N's

 Principles of Fluxions, AGAINST THEOBJECTIONS
Contained in the

AN A LV T.

By F. WALTON.

Ci Si quid novifti rectus iftis,
Candidus imperti : Simon, bis utere me cum. Hor.
In the Fulne/s of bis Sufficiency be fall be in Straits: Every Hand of the Wicked fall come upon bim.

Јов.

$\mathcal{D} \cup B L I N$:

Printed by S. Powell,
For William Smith at the Hercules, Bookseller, in Dame-fireet, 1735.

A

VINDICATION, $\mathcal{E}^{\circ} c$.

 NDER Pretence of fome Abufes committed by Mathematicians, inVirtue of the Authority they derive from thei ${ }_{r}$ Profeffion, the Author of the Minute Philofopher, in a Libel called the Analyft, has declared 'em Infidels, Makers of Infidels, and Seducers of Mankind in Matters of the higheft Concernment : This he profeffes to have done, not from any real Knowlege of his own, but from the credible Information of others; but he has neither produc'd his Informers, nor proved the Accufation in any one Inftance; and therefore it is Defamatory.

But they aflame an Authority, it lems, in Things foreign to their Profeffion, and undertake to decide in Matters whereof their Knowledge can by no Means qualify them to be competent Judges: And as this Practie, if not prevented, may be of dangerous Confequence; he has undertaken to enquire into the Object, Principles and Method of Demonftration, admitted by the Mathematicians of the prefent Age, with the fame Freedom, he fays, they prefume to treat the Principles and Myfterues of Religion, to the end, that all Men may fee what Right they have to lead or what Encouragement others have to follow them.

And whereas Sir ISaac Newton has prepfum'd to interpol in Prophecies and Revelations, and to decide in religious Affairs, it has been thought proper to begin with his Method of Fluxions, and to try what cou'd be done with that Me thod, with the Inventor himfelf, and with his Followers: And what has been done with 'em every intelligent Reader is able to judge.

A Vindiçation, Eo c.

If this Writer may be credited, the Objects about which the Method of Fluxions is converfant, are difficult to conceive or imagine diftinctly ; the Notions are moft abftracted incomprehenfible Metaphyfics, not to be admitted for the Foundations of clear and accurate Science; the Principles are obfcure, repugnant, precarious; the Arguments admitted in Proofs, are fallacious, indirect, illogical; and the Inferences and Conclufions not more juft, than the Conceptions of the Principles are clear.

How far the Credulous and Injudicious may become infected by this uncommon Way of treating Mathematics and Mathematicians, is not eafy to forefee, and therefore it will be neceffary to give a fhort Account of the Nature of Fluxions, and of the Objects about which the Method is converfant; and when it fhall be made apparent, that this Author has not underftood the Metaphyfics he wou'd refute; it will not be difficult to defend the Principles and their Demonftrations, from any Imputations of Fallacy or Repugnancy, which which have yet been pointed at by him or any other Writer.
"In the Method of Fluxions, Sir
6 I faac Newton confiders mathematical
"Quantities, not as compofed of the
" fmalleft Parts, but as defcribed or ge-
" nerated by continual Motion. Lines
"s are defcribed, and by being defcribed
" are generated, not by an Appofition
". of Parts, but by the Motion of Points ;
" Surfaces by the Motion of Lines, So-
" lids by the Motion of Surfaces, Angles
" by the Rotation of their Sides, Times
"by a continual Flux, and fo of the reft.
"And by confidering that Quantities, in-
" creafing in equal Times, and generated
" by increafing, become greater or lefs,
" according as the Velocity with which
"t they increafe, and are generated, is greater
" or lefs, he found a Method of deter-
" mining the Quantities themfelves from
" the Velocities of the Motions, or of
" the Increments, with which they are
" generated; calling the Velocities of
" the Motions or of the Increments
"Fluxions, and the Quantities generated
"Fluents.
The

A Vindication, Goo.

The momentancous Increments or Decrements of flowing Quantities, he elfewhere calls by the Name of Moments, and confiders the Increments as added or affirmative Moments, and the Decrements as fubducted or negative ones: By Moments we may underftand the nafcent or evanefcent Elements or Principles of finite Magnitudes, but not Particles of any determinate Size, or Increments actually generated; for all fuch are Quantities themfelves, generated of Moments.

The Magnitudes of the momentaneous Increments orDecrements of Quantities are not regarded in the Method of Fluxions, but their firft or laft Proportions only ; that is, the Proportions with which they begin or cafe to exit: There are not their Proportions immediately before or after they begin or ceafe to exit, but the Proportions with which they begin to exit, or with which they vanifh. If the Lines AC and BE are fuppofed to begenerated in the fame Time, by the Motons of the Points A and B , to C and E; and if by continuing the Motions of thole AC and BE ; it is evident that the Points D and F may flow back in the A B fame Time to C and E, and by flowing back perpetually leffen the Magnitudes of thofe Increments till at laft they vanifh together, when the Points D and F come to coincide with C and E : Now the ultimate Ratio of thofe Increments is that Ratio with which they vanifh and become nothing; or the Ratio with which they ceale to be: And the firft Ratio of them is the Ratio with which they begin to exift, at the very firf fetting out of the Points from C and E towards D and F.

Hence, if the defcribing Points move back to C and E , in the fame Time wherein by moving forward they generated the Increments DC and EF; and in returning have every where the fame Velocities, at certain Diftances from C and E, which they had at thofe Diftances

A Vindication, $\mathcal{E O}^{\circ} c$.

 in going forward; the laft and firt Ratios of the Increments will be equal, or they will vanifh, and become nothing, with the very fame Ratio with which they began to exift.3 Hence likewife it appears, that to obtain the laft Ratio of fynchronal Increments, the Magnitudes of thofe Increcrements muft be infinitely diminifl'd. For their laft Ratio is the Ratio with which they vanifh or become nothing: But they cannot vanifly or become nothing, by a conftant Diminution, till they are infinitely diminifh'd; for without an infinite Diminution they muft have finite or affignable Magnitudes, and while they have finite or affignable Magnitudes they cannot vanifh.

The ultimate Ratios with which fynchronal Increments of Quantities vanifh, are not the Ratios of finite Increments, but Limits which the Ratios of thofe Increments attain, by having their Magnitudes infinitely diminifh'd: The Proportions of Quantities which grow lefs and B lefs
lefs by Motion, and at laft ceafe to be, will continually change, and become different in every fucceffive Diminution of the Quantities themfelves: And there are certain determinate Limits to which all fuch Proportions perpetually tend, and approach nearer than by any affignable Difference, but never attain before the Quantities themfelves are infinitely diminifl'd; or till the Inftant they evanefce and become nothing. Thefe Limits are the laft Ratios with which fuch Quan tities or their Increments vanifly or ceafe to exift ; and they are the firf Ratios with whichQuantities or the Increments of Quantities, begin to arife or come into being.

Quantities, and the Ratios of Quantities, which conftantly tend to an Equality, by a Diminution of their Difference, and before the End of fome finite Time approach nearer to an Equality than by any affignable Difference, at laft become equal. For they become equal when the Difference between them vanifhes or becomes nothing; and it will vanilh finitely diminifhed : It the Quantities A C and AD perpetually tend to an Equality, either by the Motion of the Point D to C, or by that of C to D; they will become equal, and their Ratio a Ratio of Equality, when their Difference C D, by a conftant Diminution, vanifhes and becomes nothing, which it will do under a Coincidence of the two Points in C or D ; and then either AD becomes AC, and fo $\frac{A D}{A C}$ or $\frac{A C}{A C}$ is a Ratio of Equality, or elfe AC becomes AD and $\frac{A D}{A C}$ becomes $\frac{A D}{A D}$; which isalfo a Ratio of Equality.

The Fluxions of Quantities are very nearly as the Increments of their Fluents generated in the leaft equal Particles of Time: If CD and EF be Increments of the Fluents A C and B E, defcribed in the leaft equal Particles of Time; the Fluxions in the Points C and E will be nearly as the Increments DC and EF . For from the exceeding Smallnefs of the B 2

Times F, muft be extreamly near to C and E ; and by Confequence however the Velocities are accelerated or retarded thro' the Spaces CD and EF, they will be very nearly the fame in D and F as they were in C and E: But Velocities which are very nearly uniform, will be very nearly proportional to the Spaces defcribed by them in equal Times; and therefore the Velocities in the Points C and E, which are the Fluxions of AC and BE in thofe Points, will be very nearly as the Increments DC and EF, defcribed in the leaft equal Particles of Time.

The Fluxions of Quantities are accurately in the firft or laft Proportions of their nafcent or evanefcent Increments: Thus the Fluxions of AC and BE, in the Points C and E, are in the firft or laft Ratio of the Increments CD and EF. For the firft or laft Ratio of the Increments $\subset D$ and EF, is the Ratio with which they begin or ceafe to exift: But the Ratio with which they begin or ceafe to exift, is the fame with the Ratio of the

Velocities

A Vindication, Goo.
Velocities in \mathbf{C} and \mathbf{E}, which are the Fluxions in thofe Points; and confequently the Fluxions in C and E are in the firft or laft Ratio of the Increments CD and EF.

The Fluxions of Quantities are only the Velocities with which thofe Quantities begin to be generated or increafed; or the Velocities with which the generating Quantities begin to fet out; not the Velocities they have after moving thro' Spaces of any finite or affignable Magnitudes: And therefore if two mathematical Quantities fet out together, and begin to move with Velocities which are as a and b, they muft begin to defcribe Spaces in the fame Proportion with a and b; or the Proportion with which the Spaces begin to exift or to be defcribed, mult be the fame with that which the Velocities have at the very Beginning of the Motion. For in the very Beginning of the Motion there is neither any Change of Velocity from Acceleration or Retardation, nor Difference of Time.

Hence

Hence it appears that to obtain the Ratios of Fluxions, the correfponding fynchronal or ifochronal Increments mult be leffened in infinitum. For the Magnitudes of fynchronal or ifochronal Increments muft be infinitely diminifhed and become evanefcent, in order to obtain their firft or laft Ratios, to which Ratios the Ratios of their correfponding Fluxions are equal.

Hence likewife it appears that the Moments of like Quantities, compared with each other, are in Ratios compounded of the Ratios of the generating Quantities, taken when firft they begin to move, and of the Velocities with which they fet out: Or in Ratios compounded of the Ratios of the generating Quantities when firt they begin to move, and of the firft Ratios of their fynchronal nafcent Increments. The Moments of Lines therefore are as the generating Points and as the Velocities with which they begin to move taken together: The Moments of Surfaces, which become greater or lefs by carrying of moveable Lines along immoveable

A Vindication, Goo.

 moveable ones, are in Ratios compounded of the Ratios of the moving Lines, and of their frt Velocities, or frt Rataos of the Increments which begin to rife with thole Velocities: And the whole Motion by which Squares or Rectangles begin to alter, cither from an Augmentaton or Diminution of their Sides, is the Sum of the nafcent Motions of thole Sides, or the Sum of the nalcent Increments arifing with the firf Motions of the Sides: For the Proportion of nafcent Increments is the fame with that of the Motions with which they begin to be generated.From this flirt Account of the N_{2} ture of Fluxions, compared with the Anaby ft, it appears that the Author of that Paper is greatly miftaken in the Object of 'em; and he' is alto miftaken in the Principles: For he thinks the Moment or Fluxion of a Rectangle, contain'd under two indeterminate Quantities A and B, from whence are deduced Rules for obtaining the Moments or Fluxions of all other Products or Powers whatever, is Newton: But he ought to have read Sir Ifaac with more Care and Attention than he feems to have done, before he fet up to decide and dictate in Matters of this Nature ; and he wou'd do well yet to read him with Attention.

If any Rectangle CK be increafed from an Augmentation of its Sides by Motion, fo as that DK becomes L G in the fame Time that $D C$ becomes $\mathbf{E} G$; the Moment of that Rectangle is the Sum of the Rectangles of DK into the Moment of DC, and of DC into the Moment of DK : That is, putting A and B for the Sides DK and DC, and a and b for their refpective Moments, the Moment of the Rectangle $A B$ will be $\mathrm{A} b+\mathrm{B} a$.

For the Gnomon C G K in the Inftant it begins or ceales to exift is the Mo ment of the Rectangle CK: But the firft or laft Ratio of that Gnomon to the Sum of the Rectangles LD and FC is a Ratio of Equality : For the Difference

A Vindication, $E^{\circ} c$.

 between the Gnomon and the Sum of those Rectangles perpetually leffens, by a conftant Diminution of the Increments
will be manifest on taking the Ratio between the fail Gnomon and the Sum of the Rectangles, at feveral Diftances of the Points F and H from D : For whatever be the Magnitudes of a and b, when F and H firf begin to move back towards D, the Gnomon C GK and Sum of the Rectangles LD and FC, will be as $\mathrm{A} b+\mathrm{B} a+b a$ and $\mathrm{A} b+\mathrm{B} a$; when thole Points, by moving towards D , have leffen'd the Increments of DK and DC to $\frac{1}{2} a$ and $\frac{1}{2} b$, the Gnomon and Sum of the Rectangles will be as $\mathrm{A} b+\mathrm{B} a+\frac{1}{2} b a$ and $\mathrm{A} b+\mathrm{B} a$; when they have leffen'd the Increments to $\frac{1}{4} a$ and $\frac{1}{4} b$, the Gromon and Sum of the Rectangles will be $\mathrm{A} b+\mathrm{B} a+\frac{1}{6} a b$ and $\mathrm{A} b+\mathrm{B} a$, when they have leffen'd thofe Increments to $\dot{i} a$ and $\div b$: Hence it appears, that under a conftant Diminution of the Increments a and b, by the Motion of the Points F and H towards D, the Gnomon CGK and the Sum of the Rectangles C F and D L, conftantly tend to an Equality by a continual Diminution of their Difference F H, and that they become equal, and their Ratio becomes a Ratio of Equality, in the Inftant that Difference vanifhes and the Points F and H coincide with D ; or in other Words the Gnomon and Sum of the Rectangles $L D$ and $F C$ begin or ceafe to be under a Ratio of Equality : And therefore the Sum of thofe Rectangles, or $A b+B a$, is the Moment of $A B$.

Hence, the Gnomon C G K, or $\mathrm{A} b+\mathrm{B} a$ $+a b$, found by taking the Difference between the Rectangles EL and CK, or by deducting the Rectangle AB from a Rectangle contain'd under the Sides \mathbf{A} and B increafed by their whole Increments, is not the Moment or Fluxion

A Vindication, Eo'c.

of the Rectangle $A B$, except in the very Inftant when it begins or ceafes to exift: And this will allo appear by confidering it in another Light. For the Moment of the Rectangle CK, or the Motion with which it firf begins to alter, either by increafing or decreafing, is the Sum of the nafcent Motions of its Sides; and the nafcent Motions of its Sides, are meafur'd by their refpective Magnitudes in the very Inftant they firt begin to change, and by the Velocities with which they begin to move taken together ; and the Velocities with which the Sides begin to move being in the firft Ratio of the momentaneous Spaces which arife with 'em; it follows that the Sum of the nafcent Motions of the Sides, is the Sum of D K multiply'dinto DH in its nafcent State, and of CD multiply'd into DF in its nalcent State: But DH and DF in their nafcent States, are the Moments of DC and DK : And therefore the whole Moment of the Rectangle AB , is $\mathrm{A} b+\mathrm{B} a$.

In determining the Moments of Quantities, Sir Ifaac Newton exprefly tells us, that we are only to confider the Ratios with which they begin or ceafe to exift ; and to obtain thofe Ratios, it is not neceflary that the infochronal Increments fhou'd have finite Magnitudes. " Cave tamen intellexeris particulas " finitas, fayshe, Particule finitanon " Junt Momenta, fed Quantitates ip $\sqrt{\text { e }}$ "ex Momentis genita. Intelligenda - funt Principia jamjam nafcentia " finitarum Magnitudinum. Neque " enim Spectatur in boc Lemmate mag", nitudo Momentorum, fed prima na" fcentium proportio. And in another Place, " Fluxiones funt quam proximè .. ut Flucntium Augmenta aqualibus "Temporis particulis quam minimis " genita, et, ut accurate loquar, funt " in primá ratione Augmentorum na"Scentium; exponi attem poffunt per - lineas quafcunque, que funt ipfis "proportionales. And again, Siquan" do facili rerum conceptui confulens ... dixero Quantitates quam minimas, -. vel evanefcentes, vel ultimas ; cave " intelligas

A Vindication, $0^{\circ} \%$.

"intelligas quantitates magnitudine " determinatas, fed cogita femper di" minuendas fine limite.

From thefe Paffages it appears, that the Gnomon CGK in its nafcent or evanefcent State only, or in the Inftant it begins or ceafes to exift, is the Moment or Fluxion of the Rectangle CK ; and in a nafcent or evanefcent State, when only the Increments of Quantities become their Moments, its Ratio to $\mathrm{A} b+\mathrm{B} a$, which is the Sum of the Rectangles LD and FC, is a Ratio of Equality. By diminifhing the Magnitudes of a and b, which are Increments of DK and DC, it is obvious that the Gnomon C G K diminiflhes fafter in Proportion, than the Sum of the Rectangles F C and D L does; and by diminifhing fafter, it continually approaches to an Equality with that Sum, and attains the Equality only, when their Difference FH becomes evanefcent, that is, when the Points F and H come to coincide with \mathbf{D}; fo that here is no Artifice or falfe Reafoning ufed, to get rid of HF_{2} or $a b$, that Term having no Exiftence

Exiftence at the very Beginning of the Motion, or in the nafcent State of the Augments.

After Sir Ifaac had fo exprefly told us what he meant by Moments and Fluxions, and by nafcent or evanefcent Quantities, one wou'd imagine it impoffible to bave miftaken and mifreprefented him in the Manner this Author has done. He feems indeed to have been lead, or rather to have been deceived, by an Opinion that there can be no firft or laft Ratios of mathematical Quantities or of their ifochronal Increments generated or deftroy'd by Motion; imagining that no fuch Quantities, by any Divifion or Diminution whatever, can be exhaufted or reduc'd to nothing: But if Lines, Surfaces and Solids can be generated or augmented by the Motion of Points, Lines, and Surfaces, they may likewife be deftroy'd or diminilh'd by the Motion of the fame Points, Lines and Surfaces, in returning to the Places from whence they firt fet out. While a generating Quantity moves back thro the fame Space

A Vindication, Go ${ }^{\circ}$.
23
Space it before defcribed in moving forward, the Quantity generated, or its Augment, continually leffens; and by perlevering in a State of decreafing, it muft in fome finite Time vanifh and become nothing; and therefore mathematical Quantities, by a conftant Diminution, may be reduc'd to nothing: And fuch as are thus generated or deftroy'd in equal Times by Motion, or which arife and vanilh together, will arife or vanifh under certain Ratios, which are their firft or laft Ratios; or the Ratios with which they begin or ceafe to be: But it may be neceffary to perfue this Cafe a little farther, and fee whether Sir Ifaac Newton's Demonftration of it cannot be defended, and proved to be geometrical.
"Suppofe any Rectangle AB aug-
" mented by continual Motion ; and " the momentancous Increments of its " Sides A and B to be denoted by a and " b; the Moment of the generated Rect" angle will be meafured by $\mathrm{A} b+\mathrm{B} a$.

[^0]" For when the Sides A and B want" ed half of their Moments, the Rect" angle was $\overline{\mathrm{A}-\frac{1}{2} a} \times \overline{\mathrm{B}-\frac{1}{2} b}$ or $\mathrm{AB}-\frac{1}{2} \mathrm{~A} b$ " $-\frac{1}{2} \mathrm{~B} a+\frac{1}{4} a b$: And as foon as the " Sides A and B are augmented by the " other halves of their Moments, it be" comes $\overline{\mathrm{A}+\frac{1}{2} a} \times \overline{\mathrm{B}+\frac{1}{2} b}$, or $\mathrm{AB}+\frac{1}{2} \mathrm{~A} b$ " $+\frac{1}{2} \mathrm{~B} a+\frac{1}{4} a b$: From this Rectangle " deduct the former, and there will re" main $\mathrm{A} b+\mathrm{B} a$: Therefore the Incre" ment of the Rectangle AB, generated " with a and b the whole Increments " of the Sides, is $A b+B a$.

Now, in determining the Moment of a Rectangle, there is nothing to be confidered, when it firft begins to be augmented by the Motions of its Sides, but the Sides themfelves and the Velocities with which they begin to move; or the Sides and the firf Ratio of the Spaces defcribed by them. And therefore the true Moment of the Rectangle AB, or the Law according to which it begins to be augmented, on the Principles of Sir Ifaac Newton, will only be the Sum of the
the Rectangles $\mathrm{A} b$ and $\mathrm{B} a_{\xi}$ for the Sides A and B begin to move with Velocities which are as b and a : But this Moment $\mathrm{A} b+\mathrm{B} a$, is manifeftly equal to the Difference between the Rectangles $\overline{\mathrm{A}+\frac{1}{2} a} \times \overline{\mathrm{B}+\frac{1}{2} b}$ and $\overline{\mathrm{A}_{-\frac{1}{2} a} \times \overline{\mathrm{B}-\frac{1}{2} b} \text {; }}$ and therefore Sir I Jaac's determination of it is geometrical.

From the foregoing Principle fo demonftrated, the general Rule for finding the Moment or Fluxion of any Power of a flowing Quantity, is eafily deduc'd: It is ealy, from hence, to infer that the Moment or Fluxion of A^{n} is as $n \mathrm{~A}^{n-1}$, or that the Fluxion of x^{n} is as $n x^{n-1}$: But becaufe this is alfo determined in a manner feemingly different, by Sir I Saac, in his Introduction to the Quadrature of * Curves, the Author of the Analyft obferves, "That there feems to have been " fome inward Scruple or Confcioufnefs " of Defect in the foregoing Demon"ftration." And he repeats the fame Reflection in another Place, adding withal, "That Sir Ifacc was not enough " pleaded with any one Notion fleadily

[^1]"t to adhere to it: But Reflections of this Nature deferve no Regard unlels it be allowable, by way of Return, to obferve that the Perfon who makes 'em has very often been guilty of like Practices himfelf.*

The Proof given in the Introduction to the Quadratures, is faid to be a molt inconfiftent way of arguing ; as proceeding to a certain Point of the Demonftration upon Suppofition of an Increment, and then in a fallacious Manner, fhifting the Suppofition to that of no Increment; and to thew the Inconfifteny with greater Force, a Lemma is premifed by Way of Axiom; as if fome very obvious and natural Application of an apparent Truth, wou'd at once overturn the Whole of Sir I Jaac's Demonftration: But that Lemma, however true in it felf, is no Way pertinent to the Cafe for which it was intended; and therefore

[^2]
A Vindication, $\theta^{\circ} c^{\circ}$.

therefore fuch Inferences as are made in Virtue of it, with relation to the Point in difpute, are illegitimate, and inconfiftent with the Rules of true reafoning.

Nothing is more plain and obvious, than that Quantities which begin to exift together under certain Proportions, and with certain Velocities ; may become evanefcent and ceafe to exift, under the fame Proportions and with the fame Velocities; and this is all Sir Ifaac fuppofes in that Determination of the Fluxion of $x^{\prime \prime}$; and it is not very obvious, that the Lemma which this Author has hit upon, is applicable to Cafes of fuch a Nature.

That the Reader may fee how flricily Sir Ifaac Nerwton has kept to the fame Principle in this Determination, how fteadily he adheres to the fame Method, and how ill the Author of the Analyft has proved his Imputations; it will be neceffary to perfue this Point, and confider the Proof it felf.

$$
\text { D } 4 \quad \text { Let }
$$

A Vindication, Goc.

Let it be requirea' to find the Fluxio on of x^{n}, suppofing x to increafe uni. formly.

Suppofe x in any finite Particle of Time, to become greater than before, by a finite Increment, whole Magnitude is exprefs'd by 0 . Then, in the fame Time that x, by flowing becomes $x+0$, the \because Power of x will become $x^{n}+n o x^{n-x}$ $+\frac{n^{2}-n}{2} 0^{2} x^{n-2}+E \mathcal{C}$. Confequently the Magnitudes of the fynchronal Increments of x and of x^{n}, are to each other as I and $n x^{n-1}+\frac{n^{2}-n}{2} 0 x^{n-2}+$ ©c. Now, let the Increments decreafe by flowing back, in like Manner as they increas'd before by flowing forward, and continually grow Jefs and lefs till they vanifh; and their ultimate Ratio, that is, the Ratio with which they become evanefcent, will be exprefs'd by x and $u x=-5$: But the Fluxions of Quantities are in the laft Ratio of their evanefcent Arguments; and by Confequence the Fluxion of x is to that of x^{n}, as 1 to $n x^{n-1}$.

IA

A Vindication, Go.

In this Computation, Sir ISaac endearvours to collect the Proportion with which the ifochronal Increments of x and of x^{n}, begin or cease to exit: Their Proportion obtain'd on Suppofition that 0 is fomething, is allowed to be the fame with that of \mp and $n x^{n-1}+\frac{n^{2}-n}{2} 0 x^{n-z}+$ Soc. And it mut be acknowleg'd that this Ratio has a Limite dependent on the Magnitude of o, which Limite it cannot attain before the Increments are infinitely diminiff'd and become evanefeent ; and when, by an infinite Diminuton, they become evanefeent, no other Terms of their Ratio will be affected, fo as to vanifh with 'em, but fuck as are govern'd or regulated by them: In the Infant therefore that o var. nifhes, $\frac{n^{2}-n}{2} 0 x^{n-2}$ and all enfuing Terms of the Series abfolutely vanilh together; but the Terms 1 and ηx^{n-1} remain invariable under all poffible Changes of the Increments, from any finite Degrees of Magnitude whatever, even till they become

A Vindication, $0^{\circ} \mathrm{C}$.

 come evanefcent: They therefore exprefs the laft Ratio, under which the ifochronal Increments of x and x^{n} vanifl, or the Proportion of the Velocities with which thofe Increments ceale to exift: Sir Ifaac Nerwoton then rightly retain'd "em for the Meafures of the Ratio of the Fluxiz ons of x and x^{n}, tho' got in Virtue of his firf Suppofition; and the Fallacy, the Inconfiftency, lies on the Side of this Author ; who wou'd have them rejected on the Authority of a Lemma not to the purpofe.To make this Point ftill more plain and obvious, I thall propofe the reafoning in a ftronger Light: It amounts therefore to this, or may in other Words, be thus expreffed: If x be fuppos'd to flow uniformly, the Fluxions of x and x^{n}, will be as x and $n x^{n-1}$. For in the fame Time that x by flowing, becomes $x+0, x^{n}$ will become $\overline{x+0} n$, which by the Method of infinite Series, is equal to $x^{n}+n 0 x^{n-1}+\frac{n^{2}-n}{2} 0^{2} x^{n-2}+\sigma c$. Confequently ${ }_{2}$

A Vindication, $E^{\circ} c$. quently the Increments of x and x^{n}, generated in the fame Time, are 0 and $n o x^{n-1}+\frac{n^{2}-n}{2} 0^{2} x^{n}-\cdot+\xi^{3} c$. But the nafcent or evanefcent Increment of $x^{\prime \prime}$, is as its Fluxion ; and in either of thefe States thie Ratio of nox $x^{-1}+\frac{n^{2}-n}{2} 0^{2} x^{n}-1+$ E'c.to nox ${ }^{3}$ - is aRatio of Equality : For as theMagnitude of O becomes lefs and lefs, the Quantities nox $x^{-1}+\frac{n^{2}-n}{2} 0^{2} x^{n-2}+$ Øூc. and nox x^{-1} conftantly tend to an Equality, by a continual Diminution of their Difference; and they become equal, and their Ratio becomes a Ratio of Equality, when their Difference vanifhes; that is, in the Inftant o becomes evanefcent, or in the Inftant that the Inerement of x^{n} firft begins to exift: For as they vanifh together under a Ratio of Equality, fo they begin to exift together under the fame Ratio ; and therefore in the nafcent or evanefcent State of 0 , the Fluxions of x and x^{n}, are as 0 and $n o x^{0-r}$, which are manifeftly to each other as I and $n x^{n}-1$.

A Vindication, $\sigma^{\circ} \sigma^{\circ}$.

Hence it appears, that this Method of finding the Fluxion of x^{n}, upon a Suppofition that x flows uniformly, is the very fame with that of finding the Fluxion of a Rectangle, as it is defcribed in the fecond Book of the mathematical Principles : For, as $a b$ the Difference between $\mathrm{A} b+\mathrm{B} a+a b$ and $\mathrm{A} b+\mathrm{B}$ a grows lefs and lefs perpetually, by diminifhing the fynchronal Increments of the Sides of the Rectangle, and at laft evanefces, and in the lnftant of its Evanefcence, the Gnomon $\mathrm{A} b+\mathrm{B} a+a b$ becomes equal to the Sum of the Rectangles $\mathrm{A} b$ and $B a$; fo $\frac{n^{2}-n}{2} 0^{2} x^{n-2}+\sigma c$. the Dif. ference between $n 0 x^{n-1}+\frac{n^{3}-n}{2} 0^{2} x^{n-2}+$ Ebc. and nox \quad - grows lels and lefs perpetually, by diminiflhing the Increment 0 , and at laft evanefces, and in the Inflant of its Evanefcence nox ${ }^{n}-1+\frac{n^{3}-n}{2}$
$b=x^{n-2}+$ ظुc. becomes equal to $n o x^{n-1}$: And as the Gnomon $\mathrm{A} b+\mathrm{B} a+a b$ is not the Moment or Fluxion of the Rectangle $A B$, but in the Inftant of its

A Vindication, ह゚ॅc.

becoming equal to $\mathrm{A} b+\mathrm{B} a$, fo no x $\boldsymbol{x}^{-1}+$ $\frac{n^{2}-n}{2} 0^{0} x^{n-2}+\sigma c$. is not the Moment or Fluxion of x^{p}, but in the Infant of its becoming equal to no x - :

The Author of the Analyst therefore, is : greatly miftaken, in thinking Sir Ifaac found the Fluxion of x^{n}, by a Method different from that he used in finding the Fluxion of a Rectangle, contain'd under two flowing Quantities: He fteadily adheres to one and the fame Method namely, that of taking the fist or lat Ratios of Quantities, or of their ifochronal Increments, for the Medfares of the Ratios of their Fluxions; and uses no illegitimate Artifice to obtain thee first or lat Ratios; unlefs it be accounted illegitimate to fuppofe that mathematical Quantities can be generated and deftroyed by Motion.

It is istetended, That the Method - for finding the Fluxion of a Rectangle " of two flowing Quantities, is it is " fer forth in the Treatise of QuadraE " lures,

A Vindication, もoc.

" tures, differs from that found in the " Second Book of the Principles, and is " in Effect the fame with that ufed in " the Calculus differentialis: For the " fuppofing a Quantity infinitely di" minihh'd and therefore rejecting ir_{3} " is in Effect the rejecting an Infinitefi" mal." But if this Author deduces the Rule from the firft Propofition in the Treatife of 2 uadratures, and confider's it ever fo little, ho awill find it the very fame with that fet down in the fecond Book of the Principles: And it is doubtlefs in Effect too the fame with that ufed in the differentialCalculus, to far as different Methods can effect the lame Thing, but no farther: For Quantities iare not rejected in the Method of Fluxions, as in the differential Calculus, on Account of their exceeding Smallnefs.
"But according to the received Prin" ciples it is evident, fays he, that no " geomerrical Quantity, by being infi" nitely diminifh'd can ever be exhauft" ed or become nothing." Now, on the received Principles of Fluxions, this is

A Vindication, $\theta^{\circ} c$.

a direct Ablurdity For thefe Principles fuppofe that mathemarical Quantities can be generated by Motion, which he has not yer thought proper to contradict; and conequently they may alfo by Motion be deftroy'd : For Quantities, and the Augments of Quantities, which in fome finite Time are produc'd by Motion, may perpetually grow lefs and lefs by reverting that Motion; and by conftantly growing lefs and lefs, they may come to be infinitely diminifled, or to be lefs than any affignable Quantities; and from being lefs than any affignable Quantities, the Motion ftill perfevering, they muft at laft vanifl and become nathing; arherwife it might be contended that a Body fetting out from any Place, and, in any finite Time, defcribing a certain length, coutd never by moving back and returning in the fame Line, arrive as the Place from whence it firt fet out.

Upon the whole then it appears, that the Method of Fluxions, as defcrib'd by Sir Ifaac Newton in his Introduction to the Quadrature of Curves, and in the E 2 fecond
fecond Book of his mathematical Principles, is not that wretched un-fcientifical Knack fet forth in the Anaby/t; but a Method founded upon obvious, rational, accurate and demonftrative Principles: It likewife appears, that the Conclufions: do not arife from illegitimate tentative, Ways or Inductions, but follow from fuch Premifes, and by fuch Arguments, as are moft conformable to the Rules of Logic and right Reafon: All the Skill and Dexterity therefore by ohis Authos fliewn, in the Inveftigation of contrary Errors correcting each other, are vain and impertinent. He has miftaken the Doctrine of Fluxions, and by notrightly diftinguifling its Principles from thofe of the differential Calculus, has impofed a falle Meafure of Moments upon his Readers, and arguing from that falfe Meafure, has unjuftly charg'd Sir Ifaac with Errors arifing from it ; and, to mend the Matter, has inflituted Computations to, Shew how thofe Errors redrefs one another, and how Mathematicians by Means of Errors bring forth Trutb and Science.

The

A Vindication, $\theta^{\circ} c$.

The Difpute between the Followers of Sir Ifaac Nerwton, and the Author of the Analy f, is not about the Principles: of the differential Calculus, but about thofe of Eluxions; and it is whether thefe Principles in themlelves are clear or obfcure, and whether the Inferences from them are juft or unjuft, true or falfe, fcientific or otherwife: We are not concerned abour Infinitefimals or minute Differences, but about the Ratios with which mathematical Quantities begin or ceafe to exift by Motion ; and to confider the firlt or laft Proportions of Quantities does not imply that fuch Quantities have any finite Magnitudes: They are not the Proportions of firt or laft Quantities, but Limits of Ratios; which Limits, the Ratios of Quantities attain only by an infinite Diminution of their Magnitudes, by which infinite Diminution of their Magpitudes they become evancfeent and ceafe to exiff. If therefore Quantities may ceafe to exift by Motion, and if the Ratios with which they become evanefcent be traly determin'd, it will follow that there are no Errors, however Fluxions; and if no Eirors be admíted in the Principles; there can be none in the Concluffons, nor any to be accounted for in the Arguments by which thofe Conclufions are deduc'd from theie Premifes: The Hints therefore, which this Author has condefcended to give the Mathematicians for afcertaining the Truth of their Conclafions, by means of contrary Errors deftroying each other, will probably be left to be farther extended and apply'd by himfelf, to all the good Purpofes he pleafes to extend and applys them; as having more Leifure, and a Science more tranfcendental*, and perhaps a much greater Curiofity for fuch Matters, than they have.

It has been obferv'd before, that Fluxions may be expounded by any Lines which are proportional to them; and fo the Analy fis may be inftituted, by confidering

* A Pbilofopbia prima, a certain tranícendental Science fuperior to and more extenfive than Mathematics, which, he fays, it might behove our modern Analyts rather to learn than defpife. fidering the mutual Relations or Proportions of finite Quantities, as the Proportions of Fluxions themfelves. To this it is objected, "That if, in order " toarrive at thefe finite Lines propor" tional to Fluxions, there be certain Steps " made ufe of which are obfcure and in"conceivable, it mult be acknowleged, " that the Proceeding is not clear, nor "the Method fcientific." But there may be many Steps obtcure and inconceivable to Perfons, who are unacquainted with Sir Ifaac Newton's Method of firf and laft Ratios, with his Doctrine of Fluxions, and with his Principles of Motion; and yet thofe Steps may appear vefy different to others who have duly confider'd 'em: And therefore, till it be made apparent from geometrical Principles that the fluxional Triangle, which evanefces upon the returning of the Ordinate of any Curve to the Place from whence it firft fet out, cannot in its laft Form, that is, in the Form it has at the Inftant it becomes evanefcent, be fimilar to a Triangle contain'd between the Tangent, the Abfcifs extended and theOrdinate of the

A Vindication, $\sigma^{\circ} \mathrm{C}$.

fame Curve; or till it be proved that ilio Triangle; which is capable of becoming evanefcent by a Diminution of its Sides from Motion, can be fimilar in its laft Form to any plain Triangle whatfoever; we fhall continue to expound Fluxions by fuch Right Lines as are proportional to them; and do affert, that the Proceeding is clear, and the Method foientific.

$$
F I N I S
$$

$E R R A \mathcal{T} A$

PAGEro. L.2. s. will in moft Cales r. of continually change. Page r4. L. 20. equal Times.

[^0]: " For

[^1]: D
 " to

[^2]: * See his new Theory of Vifion; his Treatife on the Principles of Human Knowlege; and fome later Undertakings of equal Importance.

