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Putting Cyclin E in the trash

L
u and Pfeffer uncover 

a protein that helps 

remove Cyclin E after 

it has outlasted its usefulness.

Cyclin E pushes cells 

from G1 into S phase. But 

if the protein lingers in cells, 

they can’t progress normally 

through the rest of the cell 

cycle. During S phase, the SCF 

pathway directs phosphory-

lated Cyclin E to the protea-

some for destruction. A second, 

little-known pathway removes 

unphosphorylated Cyclin E. This pathway includes the protein Cul-

lin3 (CUL3), which forms part of a ubiquitylating complex. CUL3 

partners with proteins in the BTB family, which enable the complex 

to grab its targets. Lu and Pfeffer tested whether the Golgi-localized 

BTB protein RhoBTB3 promotes the elimination of Cyclin E.

Cells missing RhoBTB3 arrested in S phase with elevated 

Cyclin E levels. The Golgi apparatus in these cells also broke up, 

suggesting that RhoBTB3 helps structure the organelle. RhoBTB3 

joined the same ubiquitin-adding complex as CUL3, and it latched 

onto Cyclin E molecules to spur their ubiquitylation.

The researchers determined that RhoBTB3 functioned proper-

ly only if it was located on the Golgi apparatus, yet much of the cell’s 

Cyclin E resides in the nucleus. However, some Cyclin E gathers near 

the centrosome, which is adjacent to the Golgi apparatus. RhoBTB3 

might ensure that the cell disposes of this stockpile of Cyclin E, 

preventing the centrosome from duplicating more than once.

Lu, A., and S.R. Pfeffer. 2013. J. Cell Biol. http://dx.doi.org/10.1083/

jcb.201305158.

Polysaccharide’s central role in cell division

M
uñoz et al. show that a 

cell wall polysaccharide 

promotes fungal cell di-

vision by helping to center the con-

tractile ring.

During animal cell division, 

the contractile ring pinches the cell 

in two, and then the plasma mem-

brane extends to separate the daugh-

ter cells. A fungal cell is encased 

in a cell wall that complicates the 

division process. As the contractile 

ring closes and the plasma mem-

brane expands, an extension of the 

cell wall called the septum stretches 

across the cell. When this barrier is 

complete, the central part of the septum deteriorates and the remain-

ing material forms the new end of each daughter cell. The cell wall 

and septum contain several polysaccharides known as glucans, 

including branched �(1,3)glucan (B-BG), which is made by the 

enzyme Bgs4 and helps the cell maintain its shape and integrity. 

But the role of B-BG during cell division isn’t clear.

The contractile ring typically forms in the middle of the 

cell, but in cells lacking Bgs4 it was often off center and at the 

wrong angle. Moreover, the ring often slid instead of remaining 

in place until septum synthesis started. This suggests that B-BG 

helps situate the contractile ring and hold it in position.

B-BG also helps locate and fortify the septum. The structure 

normally grows perpendicular to the sides of the cell, but when 

B-BG was lacking it sometimes formed at an oblique angle or 

appeared wavy. The septum usually advances across the cell at the 

same time that the contractile ring closes and the cell membrane 

extends. But if B-BG was missing, the contractile ring and cell 

membrane were out of sync with septum growth, suggesting that 

B-BG helps link all three together so that they progress in unison.

Muñoz, J., et al. 2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201304132.

Two views of a cell show 
that the septum (blue line, 
left) and the contractile ring 
(red, right) are tilted in the 
absence of B-BG.

Dynamin 2 cuts the cord for newborn lysosomes

T
he membrane-

snipping pro-

tein Dynamin 2 

enables cells to burn fat 

by spurring the forma-

tion of new lysosomes, 

Schulze et al. show.

Many kinds of 

cells cache lipid drop-

lets that they can con-

sume when nutrients are scarce. One way that cells break down 

these droplets is through autophagy. A membrane pocket in the 

cytoplasm encircles a droplet and then merges with a lysosome, 

forming a structure called an autolysosome that digests the lipids. 

Autolysosomes sprout buds that detach and mature into fresh lyso-

somes ready for another delivery of lipids. During endocytosis, the 

GTPase Dynamin 2 snips free newly formed vesicles. Schulze et 

al. asked whether the protein performs a similar function during the 

production of replacement lysosomes.

Knocking down or inhibiting Dynamin 2 suppressed the 

breakdown of lipid droplets in liver cells, the team found. Lyso-

somes ballooned to 4–5 times their normal size and sprouted 

long membranous tubules.

When Schulze et al. dosed liver cells with a Dynamin 2 

inhibitor and then removed the compound, some of the tubules 

that extended from autolysosomes began to fragment. This result 

suggests that Dynamin 2 helps midwife new lysosomes by cut-

ting them loose from their parental autolysosome. The research-

ers now want to determine whether Dynamin 2 carries out the 

same task in other cell types that are reliant on lipid droplets, 

such as muscle cells and adipocytes.

Schulze, R.J., et al. 2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201306140.

The Golgi apparatus (green) is intact 
in a control cell (top) but fragmented 
in a cell lacking RhoBTB3 (bottom).

Autolysosomes are small and punctate in a 
control cell (left), but they swell and grow 
tubules in the absence of Dynamin 2 (right).
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Introduction
Cytokinesis is a critical process for cell integrity and is very 
well conserved from animal to fungal cells. All require coor-
dinated contractile actomyosin ring (CAR) closure and plasma 
membrane (PM) extension. Fungal cytokinesis requires the 
additional synthesis of a special division wall termed septum, 
strictly coupled to CAR contraction and PM extension (Pollard, 
2010; Balasubramanian et al., 2012). The septum is a three-
layered structure of a middle primary septum (PS) flanked by a 
secondary septum (SS) on each side. The Schizosaccharomy-
ces pombe septum grows by simultaneous synthesis of both PS  
and SS. The last step of cytokinesis is cell separation by con-
trolled cell wall and PS degradation. Correct septum formation 
and especially cell separation are critical processes for cell in-
tegrity and survival (Cabib et al., 2001; Sipiczki, 2007; Cortés 
et al., 2012).

The fission yeast cell wall contains different essential  
glucans, but no chitin has been detected (Pérez and Ribas, 2004). 

Branched (1,6)glucan is located in the cell wall and SS; minor 
linear (1,3)glucan (L-BG) is located mainly in the PS and 
some in the cell wall; and major branched (1,3)glucan  
(B-BG) and (1,3)glucan are located in the cell wall and both 
PS and SS (Humbel et al., 2001; Cortés et al., 2007; Cortés et al., 
2012). L-BG is a special glucan necessary, but not sufficient, for  
PS formation that interacts with high affinity with the fluoro-
chrome Calcofluor white (CW) in S. pombe (Cortés et al., 2007). 
B-BG and (1,3)glucan are essential for cell shape and integrity 
(Ribas et al., 1991; Hochstenbach et al., 1998; Katayama et al., 
1999; Cortés et al., 2005, 2012). (1,3)glucan is essential for 
the PS adhesion strength needed to support the internal pres-
sure during cell separation (Cortés et al., 2012). However, the 
B-BG functions for cell wall and septum structure and integrity 
remain unknown.

S. pombe contains four essential integral PM glucan syn-
thases (GS) that localize to the CAR, septum, and growing 
poles. Bgs1 and Ags1 appear simultaneously at the division site 
before septum synthesis, whereas Bgs4 localizes after septum 

Cytokinesis has been extensively studied in different 
models, but the role of the extracellular cell wall 
is less understood. Here we studied this process 

in fission yeast. The essential protein Bgs4 synthesizes 
the main cell wall (1,3)glucan. We show that Bgs4-
derived (1,3)glucan is required for correct and stable 
actomyosin ring positioning in the cell middle, before the 
start of septum formation and anchorage to the cell wall. 
Consequently, (1,3)glucan loss generated ring sliding, 
oblique positioned rings and septa, misdirected septum 
synthesis indicative of relaxed rings, and uncoupling 

between a fast ring and membrane ingression and slow 
septum synthesis, suggesting that cytokinesis can prog-
ress with defective septum pushing and/or ring pulling 
forces. Moreover, Bgs4-derived (1,3)glucan is essential 
for secondary septum formation and correct primary sep-
tum completion. Therefore, our results show that extracel-
lular (1,3)glucan is required for cytokinesis to connect 
the cell wall with the plasma membrane and for contrac-
tile ring function, as proposed for the equivalent extracel-
lular matrix in animal cells.

Extracellular cell wall (1,3)glucan is required to 
couple septation to actomyosin ring contraction

Javier Muñoz,1 Juan Carlos G. Cortés,1 Matthias Sipiczki,2 Mariona Ramos,1 José Angel Clemente-Ramos,1  
M. Belén Moreno,1 Ivone M. Martins,1 Pilar Pérez,1 and Juan Carlos Ribas1

1Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
2Department of Genetics, University of Debrecen, 4010 Debrecen, Hungary

© 2013 Muñoz et al.  This article is distributed under the terms of an Attribution–Noncommercial–
Share Alike–No Mirror Sites license for the first six months after the publication date (see 
http://www.rupress.org/terms). After six months it is available under a Creative Commons 
License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at 
http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y



JCB • VOLUME 203 • NUMBER 2 • 2013� 266

changes in cell shape, density, cell wall thickness, or cell wall 
composition. Most of the lysis occurred at the septum and very 
little at the poles (Fig. S1 D). In agreement with previous data 
from bgs4+ point mutants (Ribas et al., 1991), the Bgs4-depleted 
cells showed a considerable decrease in total cell wall -glucan 
(56%) and the corresponding compensatory increase in -glucan 
(Table 1 and Fig. S1 E).

The Bgs4 amount was analyzed during Bgs4 depletion. 
Compared with other essential GS, the native expression of 
Bgs4 is by far the most abundant: 44-fold Bgs1, 9-fold Bgs3, 
and 6-fold Ags1 (Fig. S1 F). During bgs4+ repression, Bgs4  
decreased rapidly to 20% at 8 h, when lysis started, and at 12 h 
it was just 5% of the native level (Fig. S1 G). Therefore, a five-
fold Bgs4 reduction is critical for cell wall and septum forma-
tion and cell integrity. Also, GFP-Bgs4 localization during 
repression decreased quickly; at 8 h it was not detected at the 
poles and at 10 h it was not detected at the septum (Fig. S1 H).

Bgs4 is required for correct PS completion
To know the Bgs4 function in septum formation precisely, the 
septation defects caused by Bgs4 absence were analyzed. The 
septation percentage increased after 8 h of bgs4+ repression, 
when cell lysis started, reaching twice the amount of septa at 12 h. 
This increase was detected only considering live cells. When 
lysed cells were included (total cells), the septation index was 
unaffected (Fig. 1 A, left). CW specifically stains the PS (Cortés 
et al., 2007). CW staining showed a considerable increase in 
open septa and concomitant decrease in complete septa, gener-
ated during the period of lysis induction (Fig. 1 A, right).

To confirm the Bgs4 importance in septum completion, 
the septa were observed simultaneously by CW staining and 
GFP-Bgs1 localization. Surprisingly, many CW-stained incom-
plete septa appeared complete by GFP-Bgs1 (Fig. 1 B, arrow-
heads). The imbalance between open and complete CW-stained 
septa was not observed with GFP-Bgs1; instead, the amounts 
of open and complete septa were unaltered (Fig. 1 C, left). This 
uncoupling of CW-stained open septa occurred in both grow-
ing and complete GFP-Bgs1 septa (Fig. 1 C, right). Thus, Bgs4 
absence causes a specific delay in CW-stained PS closure rather 
than in general cytokinesis completion.

To check if the GFP-Bgs1 advance and closure observed in 
CW open septa was a process common to all septum compo-
nents, CW staining and localization of septum membrane Bgs1 
and Bgs3 or the CAR components myosin II regulatory chain 

initiation. Bgs1 is responsible for the L-BG and PS synthesis; 
and Ags1 is responsible for the (1,3)glucan and SS synthesis 
and the PS adhesion strength. The function of Bgs3 remains un-
known (Cortés et al., 2002, 2005, 2007, 2012; Liu et al., 2002; 
Martín et al., 2003).

Bgs4 and Ags1 are essential for cell integrity during polar-
ized growth and mainly cytokinesis (Cortés et al., 2005, 2012). 
Bgs4 is responsible for the cell wall B-BG synthesis and the 
major (1,3)GS activity. Bgs4 is also responsible for the resis-
tance to specific (1,3)GS inhibitors (Ribas et al., 1991; Castro 
et al., 1995; Cortés et al., 2005; Martins et al., 2011).

In this work, in addition to our findings concerning the  
essential Bgs4 B-BG functions for the cell wall and septum struc-
ture and integrity, we show for the first time that extracellular 
B-BG is important for CAR positioning in the cell middle. Fur-
thermore, B-BG plays a role in coupling septum synthesis to 
CAR contraction and PM extension. Our findings reveal impor-
tant similarities between the function of B-BG in connecting cell 
wall to CAR and determining intracellular functions of cytokinesis 
and an analogous role suggested for the ECM (functional equiv-
alent of the cell wall) in animal cells (Xu and Vogel, 2011).

Results
Bgs4 is essential for cell integrity mainly 
during cytokinesis
To study the essential functions of (1,3)GS Bgs4, a bgs4 
strain containing integrated bgs4+ regulated by the 81X version 
(highest repression level) of the thiamine-repressible nmt1+ pro-
moter, was made (see Materials and methods). The 81X-bgs4+ 
strain showed a uniform repression phenotype of cell lysis. 
Cell growth arrested after 8 h of bgs4+ repression and sorbitol  
delayed growth arrest to 12 h (Fig. S1 A, arrow). Thus, sor-
bitol was selected to study stronger bgs4+ repression defects 
in cells that would otherwise be dead. Cell lysis in the presence 
of sorbitol started at 8 h (Fig. S1, B and D [arrows]), earlier 
than cell growth arrest was detected, and reached 50% at 
12 h. Cell lysis without sorbitol also started earlier than cell 
growth arrest, at 5–6 h (unpublished data). Coincident with  
the cell lysis, the increase in cell number also arrested at 8 h 
(Fig. S1 C, arrow). This discrepancy between absorbance arrest 
and start of cell lysis was also detected with (1,3)GS ags1+ 
repression (Cortés et al., 2012). This could be because of additional 
absorbance of lysed cells, released cytoplasmic material, or 

Table 1.  Incorporation of [14C]glucose into cell wall polysaccharides during Bgs4 depletion

Strain Thiaminea Incorporation of [14C]glucoseb

Cell wall -Glucanc -Glucanc Galactomannanc

h % % % %
Control 0 (on) 25.0 ± 2.3 22.2 ± 1.9 62.7 ± 1.4 15.1 ± 0.7
81X-bgs4+ 6 (off) 23.1 ± 0.7 33.8 ± 4.0 52.4 ± 3.2 13.8 ± 0.8
81X-bgs4+ 8 (off) 24.0 ± 1.2 40.1 ± 5.1 43.2 ± 6.7 15.8 ± 1.7
81X-bgs4+ 10 (off) 29.9 ± 0.2 49.2 ± 1.0 35.6 ± 1.5 15.1 ± 0.5

aEarly log-phase bgs4+-repressed cell cultures were grown in MM + 1.2 M sorbitol for 0, 6, 8, and 10 h in the presence of thiamine (bgs4+-repressed conditions). 
[14C]glucose was added 4 h before harvesting.
bPercentage of incorporation of [14C]glucose = cpm incorporated per fraction × 100/total cpm incorporated. Values are the means and SDs calculated from three 
independent experiments.
cValues are percentages of the corresponding polysaccharide in the cell wall.

http://www.jcb.org/cgi/content/full/jcb.201304132/DC1
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confirmed that the CAR stays attached to the PM when the  
CW-stained PS is uncoupled (Fig. 1 E, brackets). A similar PS 
defect was observed in the Bgs4-defective cwg1-1 and cwg1-2 
mutants (Fig. S5 A, see last section of Results). This defect was 
not permanent; at longer times the CW-stained PS was com-
pleted (see Fig. 4 below). This shows that Bgs4 is specifically 
required in the last stages of PS formation.

Bgs4 (1,3)glucan is needed for  
correct and stable CAR positioning  
in the cell middle
To investigate other possible Bgs4 functions, the different cyto-
kinesis steps were analyzed after 8 h of bgs4+ repression, when 
cell lysis started, ensuring the presence of mild Bgs4 absence 
phenotypes and the absence of compensatory mechanisms, 

Rlc1 and F-Bar protein Cdc15 (Naqvi et al., 2000; Carnahan 
and Gould, 2003; Wu et al., 2003), indicative of the growing 
edge or complete septa, were analyzed simultaneously during 
bgs4+ repression (Fig. 1 D and Fig. S2, A and B). The wild-type 
(WT) septum showed a coupled progression of CW-stained PS, 
Bgs1, Bgs3, Rlc1, and Cdc15 (Fig. 1 D and Fig. S2, brackets). 
In the absence of Bgs4, the CW-stained PS was coincident with 
CAR and septum membrane proteins only in the early stages of 
septum formation. In advanced growing and complete septa, the 
CW-stained PS delayed and uncoupled from Bgs1, Bgs3, Rlc1, 
or Cdc15 progression (Fig. 1 D and Fig. S2, brackets). A simi-
lar CW-stained PS delay was observed with CAR Myo2 and 
Myo3 and septum Ags1, Rho2-5, Cdc42, Rgf1, and Rgf3 (un-
published data). Simultaneous analysis of CW-stained PS, Rlc1, 
and the PM syntaxin 1 homologue Psy1 (Maeda et al., 2009) 

Figure 1.  Bgs4 is required for PS completion 
but not for general septum closure. (A) Absence 
of Bgs4 promotes a septation increase in live 
but not in total cells (left). Bgs4 absence pro-
duces an increase in CW-stained open septa 
and concomitant decrease in complete septa 
(right). Arrow shows start of septum defects 
and cell lysis. Cells were grown in MM with 
thiamine (+T; repressed) and 1.2 M sorbitol 
(S). (B) Bgs4 absence causes a defect in CW-
stained but not in GFP-Bgs1 septum completion 
(arrowheads). Cells were grown in MM+S+T 
for 10 h. (C) Bgs4 absence generates an in-
crease in CW-stained open PS (arrow), not 
detected in GFP-Bgs1 septa (left). Defective 
open PS are detected in both advanced (with 
respect to the CW signal) and complete GFP-
Bgs1 septa (right). Cells were grown as in A. 
Error bars indicate SD. (D) The defect in open 
PS does not correspond to a general defect in 
septum synthesis or CAR contraction. Progres-
sion (bracket) of WT PS coincides with that of 
septum membrane (Bgs1, Bgs3, and Psy1) and 
CAR (Rlc1) proteins but not in the absence of 
Bgs4, in which the CAR stays attached to the 
PM, whereas the PS formation is uncoupled 
and delayed. Cells were grown as in B. The 
number of experiments and cells or septa ana-
lyzed is shown in each case. Bars: (cells) 5 µm; 
(septum details) 1 µm.

http://www.jcb.org/cgi/content/full/jcb.201304132/DC1
http://www.jcb.org/cgi/content/full/jcb.201304132/DC1
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Bgs1, Bgs3, and Ags1) were quantified during Bgs4 depletion 
(Fig. 2 E). Maximal amount of oblique CAR (25%) was higher 
than that of septa (20%), suggesting that some oblique CAR 
could slide along the PM and correct their position to perpen-
dicular in the cell middle, before septum synthesis initiation and 

which were induced at longer times (unpublished data). The ab-
sence of Bgs4 generated oblique positioned nodes, CAR, and 
septa in the cell middle (Fig. 2, A–C, dotted lines). Transmission 
electron microscopy (TEM) confirmed the formation of oblique 
septa (Fig. 2 D, arrows). Oblique CAR and septa (Rlc1, Cdc15, 

Figure 2.  Bgs4 and its (1,3)glucan are required for correct and stable CAR positioning in the cell middle. (A–E) Bgs4 absence generates oblique (dotted 
line) nodes, CAR (A and C; Rlc1 and Cdc15), and septa (B and C; Bgs1, Bgs3, Psy1, and CW staining). (D) Ultrastructure of oblique (arrow) and misdi-
rected septa. Cells were grown in MM+S+T for 8 h. (E) Percentage of oblique CAR and septa. Error bars indicate SD. (F) Bgs4 absence causes oblique 
CAR (arrow) in the cell middle that form oblique septa (dotted line). Arrow in dotted line, partial CAR sliding. (G) Bgs4 absence generates defective CAR 
positioning and sliding in the cell middle until septum synthesis initiation and anchorage to the cell wall. Oblique CAR sliding (arrow) to perpendicular 
position (left). Perpendicular CAR sliding (right). (H) The defect in Bgs4 function (shown in the cwg1-2 mutant) causes similar oblique CAR and septa (dotted 
line). Cells were grown as in Fig. 1 B (F and G) or in YES medium at 25°C and shifted to 37°C for 5–6 h (H) and visualized by time-lapse. Bars: (cells)  
5 µm; (septum details) 1 µm.
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Bgs4 is required for coupling septum 
growth to CAR contraction and  
PM extension
Septation in the absence of Bgs4 was analyzed by TEM. In WT  
it started with the annular rudiment, a tiny PM invagination  
of PS, followed by a small septum that already had the three-
layered structure of PS flanked by a SS. The septum grew per-
pendicular to the cell wall, forming a straight rigid structure, 
and simultaneously the PS drilled into the wall flanked by  
matériel triangulaire dense (MTD; triangular dense material;  
Fig. 3 F, left). In contrast, Bgs4 absence caused oblique, twisted, 
and misdirected septa, suggesting weak CAR and PS structures 
(Fig. 3 F, right, arrows). The SS was absent and the PS only 
connected to the wall by a thin PS covered by diffuse matériel  
dense (MD; dense material). Interestingly, as the PS progressed, 
it formed a very thin PS end structure indicative of defective PS 
synthesis in the last stages of septum formation (Fig. 3 F, right).

Detailed TEM analysis of WT septum showed that PS 
and PM edges always stayed in close contact (Fig. 3 G, left), 
indicating that septum growth stays coupled to PM extension 
and hence to CAR contraction (Fig. 3 H, left). Surprisingly, in 
the absence of Bgs4, the thinner PS edge (Fig. 3 G, right, ar-
rowheads) appeared clearly detached and delayed from the PM 
edge, which formed a sharp tip extension with no PS material 
inside (Fig. 3 G, right, arrows). Similarly, a more advanced sep-
tum closure showed a growing PS but complete PM extension 
(Fig. 4 F), indicating that septum growth was uncoupled and 
delayed regarding PM extension and CAR contraction (Fig. 3 
H, right). This shows that Bgs4 and/or its B-BG play a role in 
coupling septum synthesis to PM and CAR progression.

The uncoupling of CAR contraction from septum synthesis 
was analyzed by time-lapse. The start of CAR contraction and 
septum synthesis (t = 0) was located precisely to the time before 
the first image when a CW-stained PS signal was detected  
(Fig. 4 A, blue arrowheads; t = 2). In WT cells, the CAR coin-
cided with the edge of the growing PS throughout the con-
traction process, indicating that CAR contraction and septum 
synthesis are coordinated (Fig. 4 A and Video 5). In the absence 
of Bgs4, CAR contraction progressed more slowly than in  
WT, and septum synthesis advanced much more slowly, de-
layed and uncoupled from CAR contraction (Fig. 4 A, Fig. S4 A, 
and Video 6). The analysis of 26 WT and 34 Bgs4-depleted 
time-lapses showed no significant differences in CAR assem-
bly and maturation. However, Bgs4 absence promoted a 4-min  
increase (121% of WT) in CAR constriction and an 8.5-min  
increase (144%) in uncoupled septum synthesis (Fig. 4 B).

Kymographs showed that Bgs4 and its B-BG are critical 
for the early steps of CAR contraction and septum formation. 
WT kymograph showed uniform and coincident CAR contrac-
tion and PS formation (Fig. 4, C and D). The kymographs of 
Bgs4 absence showed strong defects in initial CAR contraction 
and PS formation and a clear delay in PS formation during and 
after CAR contraction (Fig. 4, C and D; and Fig. S4, B and C).  
The start of CAR contraction was severely compromised dur-
ing a 6–8-min period, after which contraction proceeded even 
faster than in WT. The initial slow CAR contraction was cou-
pled to a defective slow and asymmetric PS synthesis start, 

anchorage of the septum to the cell wall. The oblique septa  
(71 oblique septa; n = 6) showed a displacement of the septum 
base with respect to the perpendicular division plane by 0.28 ± 
0.2 µm (0.04 ± 0.01 µm in 42 WT cells; n = 2) and of the septum 
center with respect to the cell middle by 0.23 ± 0.1 µm (0.04 ± 
0.01 µm in WT). Therefore, the oblique CAR and septa can be 
positioned in a 0.56-µm middle region, always located in the 
cell cortex surrounding the nucleus (Rlc1-GFP Hht1-RFP; un-
published data).

To examine the CAR formation and dynamics in the  
absence of Bgs4 before septum initiation, when CAR position 
is fixed by the septum anchorage to the cell wall, time-lapses 
of CAR (Rlc1) and septum (CW staining) formation were 
performed. Many cells (31%, 11/35) formed a stable oblique  
CAR and the ensuing oblique septum (Fig. 2 F, dotted lines; 
and Video 1). In some cases the nodes also condensed in an 
oblique fashion (Fig. 2, F [right] and G [left]). Interestingly, 
many oblique CAR (23%, 8/35) slid along the PM to perpendic-
ular position in the cell middle before septation start and some 
perpendicular CAR also slid along the PM until septum initia-
tion (Fig. 2 G, arrows and dotted lines; and Video 2). The same 
defect in oblique CAR and septum positioning was observed in 
the cwg1-1 and cwg1-2 mutants (Fig. 2 H, Fig. S3 A, Video 3, 
and Fig. S5 B, see last section of Results). This shows that Bgs4 
is required for proper and stable CAR positioning in the cell 
middle before septum initiation and anchorage to the cell wall. 
However, Bgs4 appears in the cell middle after septum initia-
tion (Cortés et al., 2005), indicating that the CAR defects are 
not caused directly by Bgs4 absence, but by the lack of cell wall 
B-BG, owing to the Bgs4 defect in previous cycles.

Bgs4 and its (1,3)glucan are required for 
correct straight CAR constriction
Absence of Bgs4 led to 20–25% misdirected CAR and septa 
(Fig. 3, A–D, arrows). A similar defect of misdirected CAR and 
septa was observed in cwg1-1 and cwg1-2 mutants (Fig. S5 C,  
see last section of Results), being more abundant in cwg1-1; there-
fore, it was selected for time-lapse study (Fig. 3 E, Fig. S3 B, 
and Video 4). The analysis showed that misdirected ingression 
could appear and be corrected throughout septum progression, 
indicating that this defect is independent of the septation stage. 
In addition, some misdirected edges showed the opposite di-
rection, whereas in others both edges pointed in the same wrong 
direction (Fig. 3 E and Fig. S3 B, arrows). Detailed CW staining 
showed wavy PS (Fig. 3 E, bottom right), indicative of multiple 
minor changes in septum synthesis direction that could not be 
detected by CAR and PM ingression analysis. TEM confirmed 
the formation of misdirected septa (Fig. 3 F, arrows). These 
data suggest the formation of a relaxed CAR unable to provide 
the tensile force needed for a straight growing septum and a 
weak flexible septum lacking the rigidity needed for a straight 
septum structure. In addition, some septa showed simultaneous 
misdirected progression and defective CW-stained PS, suggest-
ing that ingression can progress with defective PS and CAR 
forces (Fig. 3 E, Fig. S3 B, and Video 4). However, all misdi-
rected septa were progressively corrected until septum comple-
tion, indicating some CAR force.
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Figure 3.  Bgs4 and its (1,3)glucan are required for correct straight CAR constriction and for coupling septum synthesis to CAR contraction and PM exten-
sion. (A–D) Bgs4 absence causes misdirected (arrows) CAR (A and C; Rlc1 and Cdc15) and septa (B and C; Bgs1, Bgs3, Psy1, and CW staining). Cells were 
grown as in Fig. 2 A. (D) Percentage of misdirected CAR and septa. Error bars indicate SD. (E) The defect in Bgs4 function (shown in the cwg1-1 mutant) 
produces similar misdirected CAR contraction and septum progression (arrows). During misdirected ingression, the CAR (Rlc1) stays attached to the PM 
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This shows that Bgs4 B-BG is necessary to confer the rigidity 
needed for a straight septum to support the changes in internal 
pressure between sister cells.

Bgs4 is responsible for the SS formation
Because of the importance of Bgs4 in septum maturation and 
structure, complete septa were analyzed in detail by TEM. 
WT complete septa showed a clear transition to thicker septa 
in a maturation process of a second round of SS synthesis. 
In addition, the PS appeared well anchored into the cell wall 
(Fig. 6 A, left). However, in the absence of Bgs4 the septa 
showed a total absence of SS during septum formation (see 
Fig. 3 F) and the whole maturation process (Fig. 6 A, right). 
Although the SS contains different polysaccharides, this shows 
that Bgs4 B-BG is responsible for the SS formation. Bgs4 is 
also required for PS completion (see above for Figs. 1 and 4). 
As a result, the initial complete septa showed a large middle 
region of defective very thin PS, which during septum matu-
ration was gradually disappearing by addition of new PS ma-
terial (Fig. 6 A, right).

Detailed TEM study of the PS showed the WT annular ru-
diments containing a PS formed at the wall surface. During sep-
tum growth and maturation, the PS drilled progressively to 
reach the middle of the cell wall (Fig. 6 B, top, arrows). How-
ever, in the absence of Bgs4 the PS was formed with only a very 
thin and twisted PS base reaching the wall surface. Then, during 
septum maturation the PS never drilled into the wall but gradu-
ally retracted from it, leaving a spaced filled by amorphous MD 
(Fig. 6 B, bottom, arrows). This shows that Bgs4 is not only re-
quired for PS completion but also for the integrity of the PS 
base and its anchorage into the wall.

Bgs4 is essential for cell integrity at the 
start of cell separation
The main defect of Bgs4 absence is the lysis and cytoplasm 
release after septum completion. Lysis occurred in either one 
or both sister cells, appearing in one single cell earlier than in 
both cells (Fig. 7, A [arrows] and B). After lysis in one cell, 
the surviving sister cell initiated a new cell growth cycle, the 
wall carcass of the dead cell sometimes remaining attached. 
At later times, the lysis appeared in both cells, probably be-
cause of an increase in cell wall weakness (Fig. 7 A). Cell 
growth is mainly monopolar and therefore most of the new 
defective wall is located at one pole. After septum synthesis, 
lysis occurs only on the side of defective cell wall. In the next 
cell cycle, the defective wall increases, generating after septa-
tion the lysis in both cells (Fig. 7 C). Similar cell lysis defects 
were observed in the cwg1-1 and cwg1-2 mutants (Fig. S5 E, 
see last section of Results).

as observed by the reduced CW staining on one side (Fig. 4,  
C and E; and Fig. S4 B, white arrows). TEM showed that the 
asymmetry was coincident with bent or twisted starting septa 
(Fig. 4 E, black arrows), suggesting that Bgs4 B-BG strength-
ens the starting septum and that the CAR force is not sufficient 
to maintain it straight. After this, PS synthesis uncoupled from 
CAR contraction, starting a delay that increased along septa-
tion. The 6-min delay in septum completion (t = 22–28) coin-
cided with TEM observations of growing PS but complete PM 
extension (Fig. 4 F).

The analysis of WT CAR contraction and PS synthesis 
rates showed a coincident and constant rate (95 nm/min) 
throughout the process (Fig. 4 G). However, Bgs4 absence 
caused an initial slow CAR contraction and septation rate, sev-
enfold slower than in WT (15 nm/min in both cases). Interest-
ingly, after this defect the CAR contraction rate increased to 
127% faster than WT (120 nm/min). The PS synthesis rate also 
increased, but only to 76% of WT (72 nm/min), confirming the 
defective and delayed PS synthesis (Fig. 4 G). This suggests 
that in WT, CAR and PM ingression rates are restricted by the 
synthesis rate of the attached septum.

Bgs4 (1,3)glucan confers the rigidity 
needed for a straight septum
In the absence of Bgs4, the septa presented important morpho-
logical and structural defects. Many septa had a curved shape 
(Fig. 5 A) and defects in PS maturation of CW-stained PS re-
tracted from the cell wall (Fig. 5 B, left, arrowheads and arrows). 
TEM confirmed the retraction of mature PS, leaving a space 
filled by new MD (Fig. 5 B, right, arrows). Similar defects were 
observed in the cwg1-1 and cwg1-2 mutants (Fig. S5 D, see last 
section of Results).

To study the formation mechanism of curved septa, time-
lapses of septum formation were performed. WT cells formed a 
rigid straight septum that, after maturation (11 min), was slowly 
and symmetrically degraded by its PS to permit sister cell sepa-
ration (Fig. 5 C, top; and Video 7). In the absence of Bgs4, matu-
ration of some septa extended for a long period (60 min), during 
which the septa displayed an oscillating curved shape, prob-
ably because of changes in internal pressure between sister cells. 
The lower pressure cell reacted by increasing its internal pres-
sure, pushing the flexible septum and changing its curvature to 
the opposite cell (Fig. 5 C, middle and bottom, arrow; Fig. S4 D,  
arrow; and Video 8). In some cases the pressure transmitted 
by the pushing septum caused pole lysis in the opposite cell  
(Fig. 5 C, middle; and Fig. S4 D), or the cells equilibrated their 
internal pressure, returning to a straight septum and causing 
lysis at the septum region in both cells (Fig. 5 C, bottom). When 
no lysis occurred, both cells alternated the septum curvature 
for at least four waving cycles (Fig. 5 D, arrows; and Video 9). 

(Psy1). CW staining shows the details of wavy PS (bottom right, wavy arrow), indicative of relaxed CAR with multiple changes in septum synthesis direction. 
Cells were grown as in Fig. 2 H and observed by time-lapse. (F) TEM details of rigid and straight WT septum formation with simultaneous PS and SS synthesis 
from the start (left). Formation in Bgs4 absence of weak twisted and misdirected (arrows) septa with no SS and defects in the last stages of PS synthesis (right). 
Cells were grown as in A. (G and H) Bgs4 is essential for coupling PS growth to CAR contraction and PM extension. (G) Magnification of septum formation 
as in F. (H) Model of advanced CAR and PM ingression uncoupled from delayed PS synthesis. A relaxed CAR devoid of tensile force causes misdirected 
septa. Arrows, CAR and PM edge; arrowheads, PS edge. AR, annular rudiment; Cw, cell wall. Bars: (cells) 5 µm; (septum details) 1 µm.
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Figure 4.  Bgs4 absence causes a slower septum formation, uncoupled from an altered and faster CAR contraction. (A and B) WT CAR contraction 
and PS synthesis are coordinated, whereas Bgs4 absence produces a slower CAR contraction and much slower PS growth. (A) Cells were grown as in 
Fig. 2 A and imaged by time-lapse. Arrowhead shows first PS signal detected (t = 2), locating in the previous image (t = 0) the simultaneous start of PS 
synthesis and coupled CAR contraction. (B) The time of CAR assembly, maturation, and contraction and of PS formation was quantified. (C–G) WT CAR 
contraction and septation are uniform and coincident. In Bgs4 absence, initial CAR contraction and PS formation are strongly impaired (red bracket), 
but ensuing CAR contraction proceeds faster than in WT and uncoupled from a slower PS formation. (C) Kymographs of the time-lapses of A. (D) Scheme 
of CAR and PS progression in the kymographs. White arrows show asymmetric septum synthesis start. Arrowhead shows end of CAR contraction (green) 
and PS formation (blue). Rectangle marks interval (t = 22–26) of growing PS but complete CAR contraction. (E) The slow CAR contraction is coincident 
with a defective PS synthesis start (arrows). Cells were grown as in A. (F) Detail of defective growing PS uncoupled from complete PM extension.  
(G) Rates of CAR contraction and PS synthesis (2–6, 6–12, and 12–18 min). Error bars indicate SD. Bars, 1 µm.
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Figure 5.  Bgs4 (1,3)glucan confers the septum strength needed for a rigid straight septum. (A and B) Absence of Bgs4 generates curved (A) and defec-
tive septa with no CW-stained PS at the septum base (B). Details of PS (arrows) retracted from the cell wall (B, right). Cells were grown as in Fig. 1 B.  
Arrows, cell wall; arrowheads, CW-stained PS base. Error bars indicate SD. (C and D) Bgs4 absence generates flexible curved septa, oscillating according 
to the changes in internal pressure between sister cells. Cells were grown in MM+S+T for 9 h and visualized by time-lapse. (C) WT rigid straight septum 
formation and progressive cell separation (top). Flexible curved septa with two oscillating cycles (arrow), ending with cell lysis in one (middle) or both cells 
(bottom). (D) Kymograph of a flexible curved septum with four waving cycles (arrow). Bars: (cells) 5 µm; (septum details) 1 µm.
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To know the precise timing of cell lysis, the process was 
analyzed by time-lapse. After septum completion and matura-
tion, an abrupt cell wall and PM rupture released the cytoplas-
mic material from either one or both cells (Fig. 7 D, arrow; Fig. 
S4 E, arrow; and Video 10). No cell separation was detected, 
indicating that lysis occurred just after septum maturation and 
before or at the start of cell separation.

To know the structure and/or process that fails, leading to 
lysis, septum maturation and cell lysis were studied by TEM (Fig. 7,  
E and F). In the WT after SS thickening, a new ring structure of 
dense material spanning from the PS and MTD to the wall surface 
appeared. We termed this structure dense ring (DR; Fig. 7 E, 
left). Cell separation started by controlled DR degradation, fol-
lowed by gradual PS degradation, leaving a residual MTD called  
fuscannel (Johnson et al., 1973). The turgor pressure led the 
released SS to adopt the most stable spherical conformation  
(Fig. 7 E, left). In the absence of Bgs4, cell separation started with 
an uncontrolled cell wall degradation, probably because of 
a thick diffuse DR, leaving the PM exposed to the medium 
(Fig. 7 E, right). The exposed PM could not counteract the high 
internal pressure, causing the PM rupture and release of cytoplasm 
(Fig. 7 F, arrows). In no case was PS degradation detected, indicat-
ing that lysis occurs during cell wall degradation and before or at 
the start of PS degradation. These results show that Bgs4 is required 
for a correct septum–cell wall structure and to protect the cell 
from an excess of wall degradation at the start of cell separation.

Bgs4 is required to maintain the cell  
wall thickness and integrity during  
polarized growth
The pole lysis generated by Bgs4 absence occurred in both 
interphase and septated cells (Fig. 8 A, arrows), indicating a 
weakness of the pole wall that persists during cytokinesis. Inter-
phase pole lysis was examined by CW staining and GFP-Bgs1 
localization, which permitted discrimination of the growing 
poles. The lysis occurred at the old end (OE) during both mo-
nopolar and bipolar growth (Fig. 8, B [arrows] and C). The OE 
was located as the pole distant from the fission scar (Fig. 8 B). 
The OE supports most of the cell elongation, and hence the 
cell wall defect at this pole is stronger. The OE weakness also 
results in lysis after septation, probably because of the increase 
in the turgor pressure of the healthiest cell, transmitting the 
pressure to the sister cell, which will eventually lyse (Fig. 8 D, 
red arrowheads).

WT cells examined by TEM showed a uniform wall at 
both poles (Fig. 8 E). The absence of Bgs4 generated a very thin 
cell wall at the pole region (Fig. 8 F, red arrows). The thinness 
of the tip wall was restricted by its capacity to maintain the cell 
integrity. As a result, a thinner tip wall could not support the 
cell internal pressure, resulting in the cell wall and PM rupture 
and cytoplasm release (Fig. 8 F, right, red arrows).

The aforementioned cytokinesis and cell integrity de-
fects were examined in the Bgs4-defective cwg1-1 and cwg1-2 

Figure 6.  Bgs4 is responsible for the SS formation and necessary for the integrity of the PS base needed for its anchorage into the cell wall. (A) TEM details 
of septum maturation. WT complete septa are straight and increase in thickness by a second round of SS synthesis (left). Bgs4 absence causes the total 
absence of SS. The complete septa are twisted and the middle region is extremely thin as a result of the defect in PS completion. During maturation, the thin 
central region is repaired by addition of new PS (right). Cells were grown as in Fig. 2 A. (B) Details of PS anchorage or retraction during septum maturation. 
WT PS starts in the cell wall (Cw) surface. During septum growth and maturation the PS is progressively anchored into the cell wall (top). In Bgs4 absence, 
the defective PS progressively retracts from the cell wall, leaving a space filled by MD (bottom). Bars: (A) 1 µm; (B) 0.5 µm.

http://www.jcb.org/cgi/content/full/jcb.201304132/DC1
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the possible suppression of defects by overproduction of other 
GS was analyzed in both Bgs4-depleted and -defective strains. 
In no case did the overproduction of any other GS suppress 

point mutants. As expected, loss of Bgs4 function led to phe-
notypes similar to those of Bgs4 absence (Fig. S5, A–E). Be-
cause other GS collaborate in SS, PS, and cell wall synthesis, 

Figure 7.  Bgs4 is essential to protect the cell integrity from an excess of cell wall degradation at the start of cell separation. (A–D) Bgs4 absence causes 
cell lysis and release of cytoplasm after septum maturation from either one or both sister cells. (A) The lysis in one cell (left) appears earlier, later increasing 
in both cells (right). Cells were grown as in Fig. 1 B. (B) Percentage of each cell lysis. Error bars indicate SD. (C) Model of differential cell lysis in one or 
both sister cells. The extension of asymmetric cell wall weakness caused by asymmetric cell growth (red arrows) and the septum position determine lysis 
(arrowheads) in one or both cells. (D) Cell lysis and cytoplasm release (arrow) from either one (left) or both (right) cells. Cells were grown as in Fig. 1 B 
and imaged by time-lapse. (E and F) TEM details of cell separation. (E) Controlled WT cell wall DR degradation and gradual PS degradation (left). Bgs4 
absence causes an excess of cell wall degradation, leaving the PM exposed to the medium (right). (F) Cell lysis and cytoplasm release (arrow) at the start 
of cell separation, before PS degradation is detected. Cells were grown as in D. F, fuscannel; FS, fission scar. Bars: (cells) 5 µm; (septum details) 1 µm.
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2007; Cortés et al., 2012). Fission yeast contains different 
essential GS with specific roles in cytokinesis. However, the role 
of Bgs4 in the cell wall and septum remains unknown (Cortés  
et al., 2005). We have studied the septation process of S. pombe 
in depth and found interesting remedial septation mecha-
nisms for cell survival (Fig. 9 A). Cell separation is critical 
and hence the result will differ, depending on the septation 
mechanism (Fig. 9 B).

Bgs4 (1,3)glucan is necessary for correct 
CAR positioning in the cell middle and for 
coupling septum synthesis to PM extension 
and CAR contraction
Our data show for the first time that extracellular B-BG has a 
role in the CAR function. In the absence of B-BG the CAR is 
often oblique assembled, sliding in the cell middle until septum 

the phenotypes promoted by the Bgs4 B-BG absence, and it  
even increased the lethality of cwg1-1 and cwg1-2 mutants  
(Fig. S5 F). This suggests that no other glucan can compen-
sate the defect because of B-BG absence. However, the fact 
that compensatory mechanisms were able to form remedial SS 
and stable survivors (unpublished data) suggests that a specific 
induction and/or repression level of combined GS could com-
pensate the lethal Bgs4 B-BG absence.

Discussion
CAR contraction is a well conserved process in fungi and ani-
mal cells (Bathe and Chang, 2010; Lee et al., 2012). How fun-
gal CAR constriction is coordinated with the late cytokinesis 
steps of septum synthesis and how the synthases cooperate to 
assemble the septum have just started to be understood (Sipiczki, 

Figure 8.  Bgs4 is essential to maintain cell wall thickness and integrity at the poles. (A) Bgs4 absence generates cell lysis and cytoplasm release from 
the poles (arrow) either during polar growth (top) or after septation (bottom). (B and C) Pole lysis occurs at the OE (arrow) during monopolar and bipolar 
growth. (A and B) Cells were grown as in Fig. 1 B. (C) Percentage lysis at each pole. Error bars indicate SD. (D) Model of lysis at the OE. Cell growth 
(red arrow) is mainly at the OE. The new defective cell wall cannot stand the internal pressure (arrowhead), resulting in pole lysis. After septum formation, 
the increase in internal pressure in a cell generates pole lysis of the sister cell. (E and F) Absence of Bgs4 causes a large pole cell wall thinning and lysis 
at the pole tip. (E) WT cell morphology and cell wall structure. (F) Bgs4 absence generates a thin cell wall (red arrow) in both new end (close to FS) and 
OE. A thinner tip wall results in cell lysis and cytoplasm release (right, red arrow). Cells were grown as in A. FS, fission scar; NE, new end. Bars: (A and 
B) 5 µm; (E and F) 1 µm.
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and CAR, and here we show that B-BG is crucial for this inter-
action. As B-BG is external, the CAR must interact with B-BG 
through PM proteins connecting both sides. Bgs and Ags1 pro-
teins cannot be candidates for such an interaction because all 
appear in the middle much later than the time of CAR defects. 
Candidates could be the scaffold protein anillin, G protein–
coupled receptors, or ECM proteins, as suggested in animal 
cells (Almonacid and Paoletti, 2010; Hynes and Naba, 2012; Liu  
et al., 2012; Lu et al., 2012; Rincón and Paoletti, 2012; Zhang  
et al., 2012). In fact, proteins and polysaccharides of the animal 
ECM (functional equivalent of fungal cell wall) have been shown 
to be critical for cytokinesis (Hwang et al., 2003; Mizuguchi 
et al., 2003; Olson et al., 2006; Izumikawa et al., 2010; Jordan 
et al., 2011; Xu and Vogel, 2011). However, how the ECM is 
coupled to the CAR and how it affects the CAR function remain 
largely unknown.

Our results show a surprising separation between slower 
PS synthesis and faster CAR and PM ingression, indicating that 
the pushing force of PS synthesis is not necessary for CAR and 

synthesis initiation fixes CAR and septum position to the cell 
wall. We discarded a Bgs4 defect because it is not present dur-
ing CAR positioning and sliding, appearing after septum initia-
tion (Cortés et al., 2005). However, the cell wall B-BG absence 
generated in previous cycles is a defect present during CAR 
formation and sliding. CAR sliding has been described in the 
combined absence of microtubules or anillin-like Mid1 function 
with the absence of septum synthesis start (Pardo and Nurse, 
2003; Huang et al., 2008). In these cases the defect was caused 
in the CAR, whereas in our case the defect is caused by cell wall 
B-BG absence. Supporting our finding of the important role of 
cell wall B-BG in CAR function, spherical protoplasts devoid of 
cell wall show unstable CAR sliding toward the poles (Mishra  
et al., 2012), whereas spherical mutants with cell wall form stable 
CAR and septa (Chang et al., 1994; Verde et al., 1995; Sipiczki 
et al., 2000).

Despite our knowledge of cytokinesis, little is known 
about how extracellular signals communicate with intracellular 
events. The extracellular cell wall must be connected to the PM 

Figure 9.  Models of the septation process and 
alternative septations of fission yeast. (A) WT 
septation (top). Simultaneous coordinated syn-
thesis (arrow) of PS (perpendicular to cell wall) 
and SS (parallel to PS) form a three-layered 
septum. Septum maturation proceeds by PS  
anchorage into the cell wall (yellow arrow)  
and a second round of SS synthesis. (middle) 
Septation in Bgs1 absence. The SS is synthe-
sized parallel to the cell wall. The septum grows 
by successive parallel SS depositions (orange 
arrow). The MTD changes to a septum me-
dial position, forming a dotted line of MD 
in the SS layers (Cortés et al., 2007). (bottom) 
Septation in Bgs4 absence. CAR and septum 
are oblique positioned in the cell middle. The 
septum grows as a weak twisted and misdi-
rected PS (wavy arrows) that is delayed and 
uncoupled from CAR and PM ingression (red 
arrows). After septum completion, the defective 
middle region is repaired with new PS (orange 
arrows) and the PS is retracted from the cell 
wall. (B) WT cell separation (top). Controlled 
cell wall DR and PS degradation (arrow) and 
the osmotic pressure that curves the SS to the 
stable conformation ensure a safe separation. 
In Bgs1 absence, there is no cell separation 
(middle). Cell separation and lysis in Bgs4 
absence (bottom). Uncontrolled cell wall DR 
degradation (arrow) leaves the PM exposed to 
the medium. Then the turgor pressure gener-
ates the PM rupture and cytoplasm release. F, 
fuscannel; FS, fission scar; Pr, turgor pressure. 
Bars, 1 µm.
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during cytokinesis and ECM polysaccharides required for ani-
mal cytokinesis (White and Bednarek, 2003; Mizuguchi et al., 
2003; Olson et al., 2006; Izumikawa et al., 2010), suggesting 
that the extracellular cell wall is an evolutionarily highly con-
served component of eukaryotic cytokinesis.

Bgs4 is essential for SS formation  
and PS completion
We found that Bgs4 B-BG is responsible for SS assembly  
(Fig. 9 A). A similar function has been described for Ags1 (Cortés 
et al., 2012), indicating that both B-BG and -glucan are neces-
sary but not sufficient for SS formation. Analysis of revert-
ing protoplasts suggests that the primary wall formation step is  
the assembly of -glucan microfibrils, whereas -glucan might 
be involved in glucan bundle formation (Osumi et al., 1989;  
Konomi et al., 2003). In fact, -glucan is required for adhesion 
(Cortés et al., 2012). Also, Bgs4 or Ags1 absence causes the induc-
tion of remedial SS and cell survival (Cortés et al., 2012; unpub-
lished data). However, remedial SS appear later in the absence of 
Bgs4, suggesting different compensatory mechanisms. In fact, Rho1 
GTPase regulates both - and -glucan synthesis, whereas Rho2 
mainly regulates -glucan synthesis (Pérez and Cansado, 2010; 
Perez and Rincón, 2010). Evaluation of the compensatory mech-
anisms will require further analysis of Ags1 and Bgs subunits.

We show that although the L-BG is responsible for the PS 
structure, it needs the participation of B-BG. Absence of Bgs4 
causes PS thinning in the last stages of PS synthesis, indicating that 
B-BG is needed to reinforce the growing PS edge. In this sense, 
Bgs4 absence generates flexible oscillating septa. This flexibility is 
not caused by the absence of SS because it is not observed in the 
absence of Ags1 (Cortés et al., 2012), indicating that B-BG specifi-
cally confers the septum rigidity. Similarly to Saccharomyces cere-
visiae chitin, S. pombe B-BG could provide the septum rigidity by 
binding to L-BG or -glucan (Hartland et al., 1994). Indeed, it has 
been suggested that L-BG association with B-BG or -glucan is 
critical for PS assembly (Cortés et al., 2007).

Bgs4 is essential for cell integrity at the 
start of cell separation
S. pombe is an excellent model for cell integrity studies because 
of its critical cell separation process (Roncero and Sánchez, 
2010; Cortés et al., 2012). Cell separation starts by controlled 
cell wall degradation and the DR could be important for this 
process (Fig. 9 B). L-BG has been shown to be essential for cell 
separation (Cortés et al., 2007). Thus, the DR could be a struc-
ture rich in L-BG, directing the degradation to this structure, 
whereas B-BG could accumulate around the DR to protect the 
cell wall. Ags1-depleted cells also display cell lysis during cell 
separation (Cortés et al., 2012). It will be interesting to evaluate 
whether Bgs4 and Ags1 cooperate in safe cell separation.

Materials and methods
Strains and culture conditions
The S. pombe strains used in this study are listed in Table S1. bgs4::ura4+ 
p81XH-bgs4+ strain 498 (his3+ selection) has been described previously 
(Cortés et al., 2005). This strain contains bgs4+ expressed under the con-
trol of the 81X version (low expression) of the thiamine-repressible nmt1+ 
promoter (Moreno et al., 2000).

PM progression (Johnson et al., 2005). More surprisingly, the 
contraction rate of uncoupled CAR and PM is faster than normal, 
suggesting that in normal coupled cytokinesis the synthesis rate 
of attached PS restricts CAR and PM ingression rates. Moreover, 
our data show that septation can progress with a defective CAR 
pulling force. In the absence of B-BG, the initial septa are twisted 
and bent and larger septa appear misdirected, indicating a relaxed 
CAR without the tensile pulling force necessary to maintain the 
growing septum straight. These results suggest that cytokinesis 
can progress and be completed without or with a defective push-
ing force of septum synthesis and/or pulling force of CAR con-
traction, with the help of PM extension by the addition of 
membrane vesicles. In fact, it has been described that cytoki-
nesis can be completed with defective CAR, but to date this has 
not been reported with delayed PS deposition (Pollard, 2010; 
Balasubramanian et al., 2012; Proctor et al., 2012).

It has been suggested that septum synthesis provides the 
primary force for the last cytokinesis steps based on the fact that 
in LatA-treated cells, septum synthesis can continue and be com-
pleted without the CAR (Proctor et al., 2012). However, only 
septa above 50% in length progress and complete septation, and 
the progression rate decreases to 30%, thus suggesting an impor-
tant role for the CAR in the overall septum ingression process. 
In addition, it is possible that in these LatA-treated cells other 
CAR components more stable than actin could maintain a resid-
ual CAR that might help in the final septum progression (Naqvi  
et al., 1999; Wu et al., 2003). In Bgs4-depleted cells, the CAR 
structure is not altered but Bgs4 B-BG and septum are, indicat-
ing that when the CAR is intact the septum pushing force is not 
so critical. However, the misdirected CAR and PM progression 
suggests that not only the PS pushing force but also the CAR con-
traction force is defective, unable to maintain a straight septum 
progression. In these conditions, the PM and CAR ingression rate 
increased to 127% of WT, suggesting that when detached from 
the PS, the PM advance proceeds faster, whereas the attached 
CAR cannot constrict at similar rate, resulting in a larger and re-
laxed misdirected CAR structure, in agreement with the proposed 
low contractile force of the CAR (Proctor et al., 2012). That the 
septa are always completed indicates that the CAR constriction 
force is still able to finally correct the misdirected progression. 
In the absence of B-BG, the septa present a very sharp PM tip, 
suggesting that if some material is deposited between PM and 
PS the septum pushing force would be limited. In addition, the 
observation of septa with advancing PS but complete PM with no 
space for deposited material (Fig. 4 F) suggests that the PM can 
progress without pushing septum material. Collectively, these re-
sults suggest that both CAR and septum synthesis collaborate in 
a normal septum formation. Septum progression is necessary to 
complete a septum wall structure, and the CAR is essential for 
septation start and at least first-half progression and as a safety 
closing belt mechanism for a straight progression.

Previously, we have found interesting the convergent sim-
ilarities between the structure and function of fission yeast PS 
and plant cell plate during cytokinesis (Cortés et al., 2007, 
2012). Our current observations reveal important convergent 
similarities between fungal and animal cytokinesis, with a fun-
gal cell wall B-BG required for connecting cell wall and CAR 
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displayed a lethal lytic phenotype under repressed conditions (presence of 
thiamine) and the WT phenotype in induced conditions (absence of thia-
mine). The bgs4+ shut-off phenotype of strains containing multicopy p81XH-
bgs4+ was heterogeneous and the appearance of revertant or attenuated 
clones was detected. To obtain a strain with a more uniform, more stable, 
and faster bgs4+ shut-off phenotype, which could be useful to study the 
Bgs4 absence effect, a bgs4 strain with an integrated 81X-bgs4+ single 
copy was made (see previous section). As expected, lysis and cell growth 
arrest appeared earlier in the 81X-bgs4+ strain because of its reduced bgs4+ 
expression and still maintained the WT phenotype in induced conditions.

p81XH-GFP-bgs4+ is pJR2-81XH containing the XhoI-PstI GFP-bgs4+ 
ORF with the GFP inserted in-frame at base 970 (amino acid 324), as de-
scribed previously to obtain a functional GFP-Bgs4 fusion (Cortés et al., 
2005). Likewise, a bgs4 strain with an integrated 81X-GFP-bgs4+ single 
copy was made (see previous section). The lysis and cell growth arrest of 
81X-GFP-bgs4+ strain was similar to that of 81X-bgs4+.

Plasmids pJK-GFP-bgs1+, pJK-GFP-bgs3+, pJK-GFP-bgs4+, and pJK-
ags11-6267-GFP have been described elsewhere (Cortés et al., 2002, 2005, 
2007, 2012). These plasmids are the integrative plasmid pJK148 (leu1+ selec-
tion) with a 9.6-kb ApaI-SpeI GFP-bgs1+, 10.4-kb SpeI-SpeI GFP-bgs3+, 9.6-kb 
PstI-NheI GFP-bgs4+, and 9.9-kb EcoRI-NheI ags11-6267-GFP fragment, respec-
tively. pJK-2xGFP-bgs1+ contains a 10.3-kb 2xGFP-bgs1+ fragment with a 1.5-kb 
tandem of two GFP sequences cloned in-frame and separated by a 12-alanine 
linker to make a more flexible 2xGFP epitope. pJK-2xRFP-bgs1+ contains a 
10.2-kb 2xRFP-bgs1+ fragment with the 1.4-kb tandem dimer tdTomato variant 
of the monomeric mRFP1 protein (Shaner et al., 2005; provided by R.Y. Tsien, 
University of California, San Diego, La Jolla, CA).

Plasmids pAL-bgs1+ and pAL-bgs4+ have been described previously 
(Cortés et al., 2002, 2005). These plasmids are the multicopy plasmid 
pAL-KS+ (S. cerevisiae LEU2 selection) with a 7.2-kb HindIII–SpeI bgs1+ 
and an 8.8-kb PstI–NheI bgs4+ fragment, respectively. Similarly, pAL-bgs3+ 
and pAL-ags1+ contain a 9.7-kb SpeI–SpeI bgs3+ and an 11.2-kb EcoRI–
NruI fragment, respectively (Cortés et al., 2007, 2012). These multicopy 
plasmids contain the corresponding ORF and its native promoter sequence, 
and were used for overexpression studies.

Plasmids p41X-bgs1+, p41X-bgs3+, p41X-bgs4+, and p41X-ags1+ 
are the multicopy thiamine-repressible plasmid pJR-41XL (Moreno et al., 
2000) with the 5.2-kb bgs1+ ORF, 5.5-kb bgs3+ ORF, 5.9-kb bgs4+ ORF, 
and 7.2-kb ags1+ ORF sequence, respectively. Induced and repressed ex-
pression levels of the 41X plasmid are 10–50-fold higher than those of the 
81X version and 5–20-fold lower than those of the 3X version. Higher 
overexpression of these ORFs with the 3X version is toxic for the cell. There-
fore, the 41X plasmid was selected for overexpression studies at both in-
duced and repressed expression levels.

Immunoblot analysis
Early log-phase cells (109 cells) expressing the different tagged proteins 
were harvested (1,500 g, 5 min, 4°C), washed twice with cold buffer  
(1 mM EDTA and 1.2 M sorbitol, 4°C), suspended in 100 µl of lysis buffer 
(50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 0.1% Triton X-100 
containing 1 mM phenylmethylsulphonylfluoride, and 2 µg/ml aprotinin, 
leupeptin, and pepstatin), and broken with glass beads (FastPrep FP120, 
3 × 15 s, speed of 5.5 [MP Biomedicals; Thermo Fisher Scientific]). The 
total cell extracts were collected by bottom-tube perforation and centrifuga-
tion (5,000 g, 20 s, 4°C). The cell extracts were resuspended, centrifuged 
(21,000 g, 5 min, 4°C), and homogenized again in the same supernatant. 
This step improved the disaggregation and immunodetection of membrane 
proteins from total cell extracts. Finally, samples were diluted with 2× load-
ing buffer (2× is 100 mM Tris-HCl, pH 6.8, 2% SDS, 2% 2-mercaptoethanol, 
25 mM EDTA, 20% glycerol, and 0.05% bromophenol blue) and stored at 
80°C. The protein concentration of the loading samples was quantified 
by the Bradford assay (Bio-Rad Laboratories). Samples (80 µg of total pro-
tein) were heated at 65°C for 5 min and centrifuged (20,000 g, 20 s) 
to precipitate the insoluble material. Proteins were subjected to 3–8% 
Tris-Acetate SDS-PAGE (NuPAGE; Invitrogen), blotted onto Immobilon-P 
membranes (EMD Millipore), and probed with monoclonal JL-8 anti-GFP 
(1:2,000; Living colors; Takara Bio Inc.) or monoclonal B-5-1-2 anti–-
tubulin (1:10,000; Sigma-Aldrich) antibodies. Immunodetection was per-
formed with anti–mouse horseradish-conjugated antibody (1:10,000) and 
the ECL detection kit (GE Healthcare). Protein amounts were quantified by 
chemiluminescence with a ChemiDoc XRS System (Bio-Rad Laboratories) 
and Quantity One software (Bio-Rad Laboratories). Total cell extracts and 
Western blots were repeated from three to five times for each experiment. 
The data from the Western blots were quantified and the mean values of 
the relative amount of each protein were calculated from three to five inde-
pendent total cell extracts.

81X-bgs4+ strain 1288 (Leu, Ura+, and His+) contains the bgs4::
ura4+ deletion and a single p81XH-bgs4+ copy integrated adjacent to the 
his3-1 locus. This strain was generated from strain bgs4::ura4+ p81XH-
bgs4+ by continuous growth in minimal medium (MM) with histidine, col-
ony isolation, and selection of clones that maintain the His+ phenotype. 
Next, the selected clones were analyzed by genetic cross with strain 285 
(WT, Leu, Ura, and His) and tetrads analysis. Clones that segregated 
2His+:2His, indicative of 81XH-bgs4+ integration, were selected. Finally, 
these clones were analyzed by genetic cross with strain 420 (WT, Leu, 
Ura, and His+) and tetrad analysis. The clones that showed a 4His+:0His 
segregation, indicative of a correct 81XH-bgs4+ integration adjacent to the 
his3-1 locus, were selected. All the 81X-bgs4+ clones exhibited a strong 
lytic phenotype in the presence of thiamine (repressed conditions) and  
a WT phenotype in its absence (induced conditions). Other 81X-bgs4+ 
strains were made from strain 1288 either by tetrad dissection or by ran-
dom spore analysis by selecting against the corresponding parental auxot-
rophies. 81X-GFP-bgs4+ strain 1493 (Leu, Ura+, His+, and Ade) contains 
the bgs4::ura4+ deletion and a single p81XH-GFP-bgs4+ copy integrated 
adjacent to the his3-1 locus. This strain was made following a protocol 
similar to that described for strain 81X-bgs4+.

GFP-bgs1+, GFP-bgs3+, GFP-bgs4+, and ags1+-GFP strains 520, 
1217, 561, and 3166, respectively, have already been described (Cortés 
et al., 2002, 2005, 2007, 2012). These strains contain the bgs1::ura4+, 
bgs3::ura4+, bgs4::ura4+, and ags1 3UTRags1+::ags13704-7233:ura4+ 
deletions and an integrated copy of SmaI-cut pJK-GFP-bgs1+, PacI-cut pJK-
GFP-bgs3+, StuI-cut pJK-GFP-bgs4+, and AgeI-cut pJK-ags11-6267-GFP (leu1+ 
selection), which direct their integrations at the SmaI site of the bgs1+ pro-
moter sequence (nt 748) adjacent to bgs1::ura4+, the PacI site of the 
bgs3+ promoter sequence (nt 1857) adjacent to bgs3::ura4+, the StuI 
site of the bgs4+ promoter sequence (nt 1320) adjacent to bgs4::ura4+, 
and the AgeI site of the ags1+ coding sequence (nt 6025) in ags1 
3UTRags1+::ags13704-7233:ura4+, respectively. 2xGFP-bgs1+ strain 1731 was  
made as described for the GFP-bgs1+ strain (Cortés et al., 2002) and con-
tains an integrated copy of SmaI-cut pJK-2xGFP-bgs1+ (leu1+ selection), 
which directs its integration at the SmaI site adjacent to bgs1::ura4+, at 
position 748 of the bgs1+ promoter sequence. Likewise, 2xRFP-bgs1+ 
strain 1780 contains an integrated copy of SmaI-cut pJK-2xRFP-bgs1+ (td-
Tomato variant [Shaner et al., 2005]) at position 748 of the bgs1+ pro-
moter sequence. 2xRFP-bgs1+ GFP-bgs3+ strain 3332 was made by a 
genetic cross between strains 1780 (2xRFP-bgs1+, Leu+, Ura+, and His) 
and 1217 (GFP-bgs3+, Leu+, Ura+, and His), tetrad dissection, and analy-
sis of RFP-Bgs1 and GFP-Bgs3 localizations.

2xGFP-bgs1+ 81X-bgs4+ strain 2300 was made by a genetic cross 
between strains 1731 (2xGFP-bgs1+, Leu+, Ura+, His, and Ade+) and 
1366 (81X-bgs4+, Leu, Ura+, His+, and Ade) and random spore selec-
tion of Leu+ (2xGFP-bgs1+), Ura+ (bgs1::ura4+ and bgs4::ura4+), and 
His+ (81X-bgs4+) clones, followed by analysis of GFP-Bgs1 localization 
and lysis promoted by bgs4+ repression in the presence of thiamine. Simi-
larly, other 81X-bgs4+ strains were made by genetic cross between the 
corresponding parental strains, random spore selection of Leu+ (GFP- or 
RFP-tagged proteins), Ura+ (bgs4::ura4+ and other ura4+ deletions), and 
His+ (81X-bgs4+) clones, and analysis of the corresponding GFP or RFP 
localization and lysis induced by bgs4+ repression.

Standard complete yeast growth (YES), selective (MM) with the ap-
propriate supplements, and sporulation media (Egel, 1984; Alfa et al., 
1993) have been described. Cell growth was monitored by measuring the 
A600 of early log-phase cell cultures in a Junior II spectrophotometer (A600 
0.15 = 1 × 107 cells/ml; Coleman). The determinations were performed in 
two different clones of the same strain in three independent experiments. For 
serial dilution drop tests of growth, early log-phase cells growing at 25 or 
30°C were adjusted to 107 cells/ml and then serially diluted 1:10. The dif-
ferent dilutions were spotted onto MM, YES, and MM + thiamine plates, in-
cubated for 2–4 d at the indicated temperatures, and photographed. The test 
was repeated in two independent experiments. General procedures for 
yeast and bacterial culture and genetic manipulations (genetic crosses, tet-
rad dissection and analysis, random spore selection and analysis, yeast and 
bacterial transformations, plasmid manipulations, etc.) were performed as 
described previously (Moreno et al., 1991; Sambrook and Russell, 2001).

Plasmids and DNA techniques
p81XH-bgs4+ has been described previously (Cortés et al., 2005). This 
plasmid contains the bgs4+ ORF with XhoI and PstI sites inserted by site-
directed mutagenesis just before the start codon and just after the TAG stop 
codon of bgs4+, respectively, cloned into XhoI-PstI of pJR2-81XH (his3+ se-
lection and 81X version of the thiamine-repressible nmt1+ promoter; 
Moreno et al., 2000). The resulting S. pombe strain bgs4 p81XH-bgs4+ 
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Deconvolution (conservative ratio; 10 iterations and medium noise filter-
ing) through SoftWoRx imaging software. Subsequently, images were pro-
cessed (color, brightness, contrast, and/or sharpness) with ImageJ (National 
Institutes of Health) and Photoshop CS2 software. All the time-lapses were 
repeated in two to three independent experiments. The data were calcu-
lated from two to three independent experiments. The number of experi-
ments and of total cells analyzed is shown in each case.

TEM
Early log-phase cells were fixed with 2% glutaraldehyde EM (GA; Electron 
Microscopy Science) in 50 mM phosphate buffer, pH 7.2, and 150 mM NaCl 
(PBS) for 2 h at 4°C, post-fixed with 2% potassium permanganate for 1 h at 
room temperature, dehydrated in acetone, and embedded in epoxy resin. 
Ultrathin sections were examined with a Jam-1010 electron microscope (Jeol).

Online supplemental material
Fig. S1 shows that absence of Bgs4 promotes cell lysis and cytoplasm 
release during both cytokinesis and polarized growth. Fig. S2 shows that 
Bgs4 is required for CW-stained PS completion but not for CAR contraction 
and septum PM closure. Fig. S3 shows that Bgs4 and its (1,3)glucan are 
required for correct and stable CAR positioning in the cell middle and for 
correct straight CAR constriction and septum ingression. Fig. S4 shows 
that Bgs4 is essential for coupling septum formation to CAR contraction, 
to confer the septum rigidity, and to protect the cell integrity at the start of 
cell separation. Fig. S5 shows that the Bgs4-defective cwg1-1 and cwg1-2 
mutants show defects as those in the absence of Bgs4. The defects can-
not be compensated by any other GS. Video 1 shows the formation of 
an oblique CAR and septum of two dividing Bgs4-depleted cells. Video 
2 shows the formation of an altered CAR but normal septum of two di-
viding Bgs4-depleted cells. Video 3 shows the formation of an oblique 
CAR and septum of four cells expressing the cwg1-2 mutation of bgs4+. 
Video 4 shows the formation of a misdirected CAR and septum of five 
cells expressing the cwg1-1 mutation of bgs4+. Video 5 shows the co-
ordinated CAR contraction and septum formation of a WT cell. Video 6 
shows the uncoupling between CAR contraction and the slower septum 
formation of three Bgs4-depleted cells. Video 7 shows the formation of 
a rigid and straight septum and the progressive cell separation of two 
WT cells. Videos 8 and 9 show the formation of a flexible and oscillat-
ing curved septum with two and four waving cycles, respectively, of four 
Bgs4-depleted cells. Video 10 shows the cell lysis and release of cytoplasm 
from either one or both sister cells at the start of cell separation of three 
dividing Bgs4-depleted cells. Table S1 lists the fission yeast strains used in 
this study. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201304132/DC1.
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Figure S1.  Absence of Bgs4 promotes cell 
lysis and cytoplasm release during both cytoki-
nesis and polarized growth. (A) Sorbitol par-
tially suppresses the cell growth arrest (arrow) 
promoted by bgs4+ repression. 81X-bgs4+ cells 
were grown in MM either without or with thia-
mine (T, induced; +T, repressed) and 1.2 M 
sorbitol (S). Cell growth was monitored at the 
indicated times (n = 2), from 0 to 14 h and 
from 10 to 22 h. Cell growth arrest was more 
apparent from 10 to 22 h, probably because 
of the diluted cell density and the differences in 
cell wall composition between early and late 
log-phase cells, in which the cell wall may 
change to a more rigid cell wall of stationary 
phase cells (not depicted). The data shown are 
from a single representative experiment out of 
six repeats (two different 81X-bgs4+ strains an-
alyzed in three independent experiments). (B) 
The absence of Bgs4 promotes cell lysis (ar-
rows) before cell growth arrest is detected. 
Cells were grown in MM+S+T as in A and visu-
alized. A similar cell lysis earlier than cell 
growth arrest, at 5–6 h of bgs4+ repression, 
was also observed in the absence of sorbitol 
(not depicted). (C) Bgs4 absence causes an ar-
rest in the increase in cell number (arrow) coin-
cident with the start of cell lysis observed in B. 
The discrepancy between absorbance and cell 
number arrests could be caused by an addi-
tional absorbance of lysed cells, released cyto-
plasmic material, or changes in cell shape, 
volume, density, cell wall thickness, or cell wall 
composition. Cells were grown as in B and the 
cell number was monitored at the indicated 
times (n = 2; four fields per data). (D) Absence 
of Bgs4 promotes cell lysis (arrow) mainly at 
the septum and some at the poles. Cells were 
grown as in B. (E) Bgs4 depletion causes a pro-
gressive decrease in cell wall total -glucan (B-
BG, L-BG, and (1,6)glucan) and a concomitant 
increase in cell wall -glucan. Cells were 
grown as in B, maintained in the early log-
phase by the corresponding dilution of the cell 
culture, and collected at the indicated times. 
[14C]Glucose was added 4 h before harvesting 
in each case. Incorporation of [14C]glucose 
into cell wall polysaccharides was analyzed as 
indicated (see Materials and methods). (F and 
G) Bgs4 is the most abundant GS (F; native 
promoters) and decreases drastically during 
bgs4+ repression (G; nmt1+-81X repressible 
promoter). Proteins from total cell extracts (80 
µg) were separated in 3–8% SDS-PAGE, blot-
ted, and probed with monoclonal anti-GFP or 

anti–-tubulin antibody. Relative amounts of protein were quantified in comparison with tubulin. (G) Lane –, control without GFP tag; lane C, control of 
Bgs4 expressed from its native promoter; arrow, cell lysis start. Black lines in F indicate the removal of intervening lanes for presentation purposes. (H) 
GFP-Bgs4 localization is undetectable after 8 h of bgs4+ repression. Cells were grown as in B and imaged. The number of experiments and total cells ana-
lyzed is shown in each case. Bars, 5 µm.
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Figure S2.  Bgs4 is required for CW-stained PS completion but not for CAR contraction and septum PM closure. (A) The defect in CW-stained open 
PS does not correspond to a general defect in septum formation. The progression (brackets) of CW-stained PS is coincident with that of WT septum 
membrane proteins (Bgs1 and Bgs3), but not in the absence of Bgs4. (B) The defect in CW-stained open PS does not correspond to a general defect 
in CAR contraction. The progression (brackets) of CW-stained PS is coincident with that of WT CAR proteins (Cdc15 and Rlc1) but not in the absence 
of Bgs4. Early log-phase WT and 81X-bgs4+ cells expressing GFP-bgs1+, GFP-bgs3+, GFP-cdc15+, or rlc1+-GFP were grown in MM+S+T for 10 h at 
30°C and visualized. Bars, 1 µm.
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Figure S3.  Bgs4 and its (1,3)glucan are required for correct and stable CAR positioning in the cell middle and for correct straight CAR constriction and 
septum ingression. (A) The defect in Bgs4 function (shown in the cwg1-2 mutant allele) causes oblique positioning and ingression of CAR and septa (dotted 
line) similar to those observed in the absence of Bgs4. During CAR and septum ingression, the CAR (Rlc1-RFP) remains attached to the septum membrane 
(GFP-Psy1), whereas the CW-stained septum formation is uncoupled and delayed (dashed rectangle). (B) The defect in Bgs4 function (shown in the cwg1-1 
mutant allele) produces misdirected CAR contraction and septum progression (arrows) similar to those observed in the absence of Bgs4. During misdirected 
CAR contraction and septum ingression, the CAR (Rlc1-RFP) stays attached to the septum membrane (GFP-Psy1) and the CW-stained septum formation is de-
layed. CW staining shows the details of wavy septa, indicative of relaxed CAR with multiple changes in the direction of septum synthesis. Early log-phase 
cwg1-2 GFP-psy1+ rlc1+-RFP (A) and cwg1-1 GFP-psy1+ rlc1+-RFP (B) cells grown in YES medium at 25°C were shifted to 37°C for 5–6 h and visualized by 
time-lapse CW staining (5 µg/ml) and GFP and RFP fluorescence microscopy. Elapsed time is shown in minutes. Bars, 5 µm.
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Figure S4.  Bgs4 is essential for coupling septum formation to CAR contraction. After septum completion, Bgs4 is also required to confer the septum rigidity 
necessary to withstand the internal turgor pressure and to protect the cell integrity at the start of cell separation. (A–C) Bgs4 absence originates an uncou-
pling between CAR contraction and the slower CW-stained septum formation. (A) Early log-phase WT rlc1+-GFP and 81X-bgs4+ rlc1+-GFP cells were grown 
in MM+S+T for 8 h at 30°C and visualized by time-lapse CW staining (5 µg/ml) and GFP fluorescence microscopy. Green double arrow, time interval of 
CAR formation, CAR maintenance, and CAR contraction; blue double arrow, time interval of septum formation; blue arrowhead, first image where the CW-
stained septum is detected (t = 2), considering the previous image as the start (t = 0) of septum synthesis. Elapsed time is shown in minutes. (B) Bgs4 absence 
originates a defective initial slow CAR contraction and a constantly slower septum synthesis, uncoupling CAR contraction from septum formation. Kymo-
graphs of the CAR contraction and CW-stained septum formation observed in A. Black arrow (t = 2), first image where the CW-stained septum is detected; 
arrowhead, end of CAR contraction (green; t = 22) and septum formation (blue; t = 28); red bracket, interval (first 4–6 min) of defective initial slow CAR 
contraction (dotted line) and septum formation (solid line); white arrows, asymmetric septum synthesis coincident with defective slow CAR contraction. 
Elapsed time is shown in minutes. The rates of CAR contraction and septum formation (intervals 2–6, 6–12, and 12–18 min) were calculated and are shown 
in nanometers per minute. The 6–18-min interval shows the mean of the 6–12- and 12–18-min intervals. (C) Scheme of CAR contraction and septum forma-
tion in the kymographs of the Bgs4-depleted cell shown in B and a WT cell (see Fig. 4, C and D). Bgs4 absence originates a defective initial slow CAR con-
traction and septum formation (red brackets). The rest of CAR contraction proceeds even faster than that of WT cells. However, the defect in septum 
formation continues, increasing the time required for septum completion. Numbers indicate the time needed for completion of CAR contraction and septum 
formation in each case. (D) In the absence of Bgs4 the septum becomes flexible and curved, swinging according to the changes in internal turgor pressure 
in the sister cells. Small and large arrows represent the gradual increase in internal turgor pressure in the corresponding cell, promoting the curvature of 
the septum. Then, the opposite cell reacts and increases its internal pressure above that of the sister cell, originating septum oscillation. Two waving cycles 
until cell lysis appears are shown (see also Fig. 5, C and D). (E) After septum synthesis and maturation, the absence of Bgs4 promotes cell lysis and the re-
lease of cytoplasmic material (arrow) from the division site when cell separation begins, resulting in the death of either one or both sister cells (see also Fig. 
7 D). Early log-phase 81X-bgs4+ cells were grown in MM+S+T for 9 (D) or 10 (E) h at 30°C and visualized by time-lapse phase-contrast and CW staining 
(5 µg/ml) microscopy. Elapsed time is shown in minutes. Bars: (cells) 5 µm; (septum details) 1 µm.
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Video 1.  Formation of an oblique CAR and septum of two dividing Bgs4-depleted cells. 81X-bgs4+ rlc1+-GFP cells were grown 
in the presence of thiamine and 1.2 M sorbitol for 10 h at 28°C and imaged by time-lapse Rlc1-GFP and CW staining (5 µg/ml) 
fluorescence microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system (Applied 
Precision). Cells were observed for 180 min. Frames of selected cells were taken every 3 min. To decrease the movie length, 
the frames only show the stages of CAR formation and the beginning of CAR contraction and septum formation (t = 39 min).  
Videos 3, 4 (cells 3 and 4, right), 8, 9, and 10 (cells 1 and 2) also show the formation of oblique CAR and septa.

Video 2.  Formation of an altered CAR but normal septum of two dividing Bgs4-depleted cells. An oblique CAR slides to a 
perpendicular position and a perpendicular CAR slides along the PM before the start of perpendicular septation. 81X-bgs4+ 
rlc1+-GFP cells were grown in the presence of thiamine and 1.2 M sorbitol for 10 h at 28°C and imaged by time-lapse Rlc1-GFP 
and CW staining (5 µg/ml) fluorescence microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal 
DeltaVision system (Applied Precision). Cells were observed for 180 min. Frames of selected cells were taken every 3 min. To 
decrease the movie length, the frames only show the stages of CAR formation and the beginning of CAR contraction and septum 
formation (t = 33 and 42 min).

Video 3.  Formation of an oblique CAR and septum of four S. pombe cells expressing the cwg1-2 thermosensitive mutant al-
lele of bgs4+. During CAR and septum ingression, the CAR (Rlc1-RFP) remains attached to the septum membrane (GFP-Psy1), 
whereas the CW-stained septum formation is uncoupled and delayed. Early log-phase cwg1-2 GFP-psy1+ rlc1+-RFP cells grown 
in YES medium at 25°C were shifted to 37°C for 5–6 h and imaged by time-lapse GFP-Psy1, Rlc1-RFP, and CW staining (5 
µg/ml) fluorescence microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system 
(Applied Precision). Cells were observed for 120 min. Frames of selected cells were taken every 2 min. To decrease the movie 
length, the frames only show the stages of CAR positioning and contraction and septum formation (t = 24, 26, and 28 min).

Figure S5.  The Bgs4-defective cwg1-1 and cwg1-2 thermosensitive mutants show the same cytokinesis and cell integrity defects as those observed in 
the absence of Bgs4. The defects in septum synthesis and cell integrity promoted by the absence of or defective Bgs4 function cannot be compensated by 
the function of any other GS. (A–D) The Bgs4-defective cwg1-1 and cwg1-2 mutants present (A) defective CW-stained open septa (bracket) in septa with 
advanced and complete CAR (Rlc1-GFP and Rlc1-RFP) and septum membranes (RFP-Bgs1 and GFP-Psy1). (B) Oblique positioning and ingression (dotted 
line) of nodes, CAR (Rlc1-GFP and Rlc1-RFP), septum membranes (RFP-Bgs1 and GFP-Psy1), and septum walls (CW staining). (C) Misdirected (arrows) 
CAR contraction (Rlc1-GFP and Rlc1-RFP) and septum membrane and wall progression (RFP-Bgs1, GFP-Psy1, and CW-staining), observed in cells and in 
magnified septa showing the details of CW-stained wavy septa, indicative of relaxed CAR with multiple changes in the direction of septum synthesis. (D) 
Curved (arrow) complete septa (RFP-Bgs1 and GFP-Psy1) caused by the differences in internal turgor pressure between sister cells. In all cases, during CAR 
and septum ingression the CAR (Rlc1-GFP and Rlc1-RFP) stays attached to the septum membrane (RFP-Bgs1 and GFP-Psy1), whereas in many of these cells 
the CW-stained septum formation is uncoupled and delayed. Early log-phase Bgs4-defective cwg1-1 and cwg1-2 mutants expressing either RFP-bgs1+ 
rlc1+-GFP or GFP-psy1+ rlc1+-RFP and grown in YES medium at 25°C were shifted to 37°C for 5–7 h and examined by CW staining (50 µg/ml) and GFP 
and RFP fluorescence microscopy. (E) The Bgs4-defective cwg1-1 and cwg1-2 mutants are also involved in cell integrity maintenance. Both mutant alleles 
promote major cell lysis after septum maturation from either one (left) or both (middle) sister cells, and a minor cell lysis and cytoplasm release from the 
poles (right). Early log-phase cwg1-1 and cwg1-2 mutant cells were grown as in A–D and visualized by phase-contrast microscopy. Although all the Bgs4 
absence phenotypes are present in both cwg1-1 and cwg1-2 mutants, the amount of each type of defect differs between the cwg1-1 and cwg1-2 mutant 
alleles. Misdirected CAR and septa are much more abundant and aggravated in cwg1-1 cells, whereas oblique CAR and septa and cell lysis defects, 
especially the pole lysis, are more abundant in cwg1-2 cells (not depicted). (F) The increase in the function of any other GS (Ags1, Bgs1, and Bgs3) is 
unable to suppress the cytokinesis and cell integrity defects promoted by Bgs4 absence or Bgs4-defective cwg1-1 or cwg1-2 mutations. 81X-bgs4+ strains 
transformed with multicopy pAL plasmid, either empty (negative control) or expressing ags1+, bgs1+, bgs3+, or bgs4+ (positive control) from their native 
promoters, were analyzed on MM-T (81X-bgs4+ induced) and MM+T (81X-bgs4+ repressed) plates at 28°C. The cwg1-1 and cwg1-2 thermosensitive 
mutants transformed with the overexpression plasmid p41X, either empty (negative control) or expressing ags1+, bgs1+, bgs3+, or bgs4+ (positive control) 
from the nmt1+-41X promoter, were analyzed on MM+T (41X lower expression) and MM-T (41X overexpression; OvE) plates at 25, 28, 32, 35, and 
37°C. In all cases, a WT strain was used as control. Early log-phase cells were adjusted to 107 cells/ml, 1:10 serial diluted, spotted onto MM-T and MM+T 
plates, and incubated at the indicated temperatures for 3–4 d. The data shown are from a single representative experiment out of two repeats. The plates 
displaying differences in growth are shown. All the Bgs4-depleted or -defective cwg1-1 or cwg1-2 strains show the same cell lysis and growth arrest as 
those of the negative control strain (dashed rectangle). In addition, Bgs1 overproduction is deleterious when Bgs4 function is compromised, promoting in 
both cwg1-1 and cwg1-2 mutants a constitutive lytic defect at any temperature (dotted rectangle). Similarly, other defects in cytokinesis caused byBgs4 
absence or Bgs4-defective cwg1-1 or cwg1-2 mutations are not suppressed by the overexpression of any other GS (not depicted). Bars: (cells) 5 µm;  
(septum details) 1 µm.
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Video 4.  Formation of a misdirected CAR and septum of a S. pombe cell and magnification of the region of the division site 
during the formation of a misdirected CAR and septum of four cells expressing the cwg1-1 thermosensitive mutant allele of 
bgs4+. During misdirected CAR contraction and septum ingression, the CAR (Rlc1-RFP) remains attached to the septum mem-
brane (GFP-Psy1). CW staining shows the details of wavy septa, indicative of relaxed CAR with multiple changes in the direc-
tion of septum synthesis. Early log-phase cwg1-1 GFP-psy1+ rlc1+-RFP cells grown in YES medium at 25°C were shifted to 37°C 
for 5 h and imaged by time-lapse GFP-Psy1, Rlc1-RFP, and CW staining (5 µg/ml) fluorescence microscopy, using an inverted 
microscope (IX71; Olympus) equipped with a Personal DeltaVision system (Applied Precision). Cells were observed for 120 
min. Frames of selected cells were taken every 60 s. To decrease the movie length, the frames only show the stages of CAR 
contraction and septum formation (cell, t = 17 min; septum details, t = 12, 15, 16, and 28 min).

Video 5.  Coordinated CAR contraction and septum formation of a S. pombe WT cell. WT rlc1+-GFP cells were grown in the 
presence of thiamine and 1.2 M sorbitol for 8 h at 30°C and imaged by time-lapse Rlc1-GFP and CW staining (5 µg/ml) 
fluorescence microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system (Applied 
Precision). Cells were observed for 180 min. Frames of selected cells were taken every 2 min. A magnification of the region of 
the division site is shown. To decrease the movie length, the frames only show the stages of CAR formation and contraction and 
septum formation from min 24 to 26. The start of septum synthesis (t = 0) was considered as the image before the first one 
where the CW-stained septum was detected (t = 2).

Video 6.  Uncoupling between CAR contraction and slower septum formation of three S. pombe Bgs4-depleted cells. 81X-bgs4+ 
rlc1+-GFP cells were grown in the presence of thiamine and 1.2 M sorbitol for 8 h at 30°C and imaged by time-lapse Rlc1-GFP 
and CW staining (5 µg/ml) fluorescence microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal 
DeltaVision system (Applied Precision). Cells were observed for 180 min. Frames of selected cells were taken every 2 min.  
A magnification of the region of the division site is shown. To decrease the movie length, the frames only show the stages of 
CAR formation and contraction and septum formation from min 24 to 32. The start of septum synthesis (t = 0) was considered 
as the image before the first one where the CW-stained septum was detected (t = 2).

Video 7.  Formation of a rigid and straight septum and progressive cell separation of two dividing S. pombe WT cells. WT cells 
were grown in the presence of thiamine and 1.2 M sorbitol for 9 h at 30°C and imaged by time-lapse phase-contrast and CW 
staining (5 µg/ml) microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system 
(Applied Precision). Cells were observed for 180 min. Frames of selected cells were taken every 20 s. To decrease the movie 
length, the frames only show the stages of septum formation and cell separation (t = 37 min).

Video 8.  Formation of a flexible and oscillating curved septum with two waving cycles caused by the alternating changes in 
internal turgor pressure in the sister cells and ending with cell lysis of three dividing Bgs4-depleted cells. 81X-bgs4+ cells were 
grown in the presence of thiamine and 1.2 M sorbitol for 9 h at 30°C and imaged by time-lapse phase-contrast and CW 
staining (5 µg/ml) microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system 
(Applied Precision). Cells were observed for 180 min. Frames of selected cells were taken every 20 s. To decrease the movie 
length, the frames only show the stages of septum formation, septum swinging with two waving cycles, and cell lysis (t = 87, 
100 and, 117 min).
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Video 9.  Formation of a flexible and oscillating curved septum with four waving cycles owing to the alternating changes in in-
ternal turgor pressure in the sister cells of a dividing Bgs4-depleted cell. 81X-bgs4+ cells were grown in the presence of thiamine 
and 1.2 M sorbitol for 9 h at 30°C and imaged by time-lapse phase-contrast and CW staining (5 µg/ml) microscopy, using an 
inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system (Applied Precision). Cells were observed 
for 180 min. Frames of selected cells were taken every 20 s. To decrease the movie length, the frames only show the stages of 
septum formation and septum swinging with four waving cycles (t = 166 min).

Video 10.  Formation and maturation of a septum followed by cell lysis and release of cytoplasmic material from either one 
or both sister cells at the start of cell separation of three dividing Bgs4-depleted cells. 81X-bgs4+ cells were grown in the pres-
ence of thiamine and 1.2 M sorbitol for 10 h at 30°C and imaged by time-lapse phase-contrast and CW staining (5 µg/ml) 
microscopy, using an inverted microscope (IX71; Olympus) equipped with a Personal DeltaVision system (Applied Precision). 
Cells were observed for 180 min. Frames of selected cells were taken every 20 s. To decrease the movie length, the frames 
only show septum formation, cell lysis, and the release of cytoplasmic material from either one (cells 1 and 3) or both sister 
cells (cell 2) at the start of cell separation (t = 40 and 42 min). Video 9 also shows the cell lysis of both sister cells at the start of 
cell separation (cell 2), and the cell lysis at the pole of one sister cell (cells 1 and 3) caused by the increased internal pressure 
generated by the curved septum.
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Table S1.  Fission yeast strains used in this study

Strain Genotype Source

33 972 h P. Munza

132 cwg1-1 leu1-32 h J. Ribas
296 cwg1-1 ura4-18 h+ J. Ribas
105 cwg1-2 leu1-32 ura4-18 h+ J. Ribas
156 cwg1-2 leu1-32 h J. Ribas
419 leu1-32 ura4-18 h J. Ribas
420 leu1-32 ura4-18 h+ J. Ribas
284 leu1-32 ura4-18 his3-1 h J. Ribas
285 leu1-32 ura4-18 his3-1 h+ J. Ribas
251 leu1-32 ura4-18 his3-1 ade6-M210 h+ J. Ribas
252 leu1-32 ura4-18 his3-1 ade6-M210 h J. Ribas
498 leu1-32 ura4-18 his3-1 bgs4::ura4+ h p81XH-bgs4+ J. Ribas
1288 leu1-32 ura4-18 his3-1 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
1366 leu1-32 ura4-18 his3-1 ade6-M210 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
1368 leu1-32 ura4-18 his3-1 ade6-M210 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+ This study
1493 leu1-32 ura4-18 his3-1 ade6-M210 bgs4::ura4+ Pnmt1+-81X-GFP-bgs4+:his3+ h This study
1757 leu1-32 ura4-18 ade6-M210 GFP-cdc15+:KanMX6 h T. Pollardb

1777 leu1-32 ura4-18 his3-1 ade6-M210 GFP-cdc15+:KanMX6 h+ J. Ribas
1756 leu1-32 ura4-18 rlc1+-GFP:KanMX6 h V. Simanisc

1793 leu1-32 ura4-18 his3-1 ade6-M210 rlc1+-GFP:KanMX6 h+ J. Ribas
1522 leu1-32 ura4-18 his3-1 myo2+-GFP:ura4+ h+ M. Balasubramaniand

1520 leu1-32 ura4-18 ade6-M210 myo3+-GFP:KanMX6 h+ T. Pollard
1873 leu1-32 ura4-18 GFP-rho2+:KanMX6 h+ P. Pérez
1874 leu1-32 ura4-18 GFP-rho3+:KanMX6 h+ P. Pérez
1912 leu1-32 ura4-18 rho4::KanMX6 GFP-rho4+:leu1+ h+ P. Pérez
1949 leu1-32 ura4-18 rho5::KanMX6 GFP-rho5+:leu1+ h+ P. Pérez
1878 leu1-32 ura4-18 GFP-cdc42+:KanMX6 p41X-HA-cdc42+ h+ P. Pérez
2143 leu1-32 ura4-18 his3-1 rgf1+-GFP:leu1+ h+ Y. Sáncheze

2129 leu1-32 ura4-18 his3-1 rgf3::ura4+ rgf3+-GFP:leu1+ h Y. Sánchez
520 leu1-32 ura4-18 his3-1 bgs1::ura4+ Pbgs1+::GFP-bgs1+:leu1+ h+ J. Ribas
4868 leu1-32 ura4-18 his3-1 ade6-M? rlc1+-2xRFP:NatMX6 h P. Pérez
5016 leu1-32 GFP-psy1+:leu1+ h90 C. Shimodaf

5045 leu1-32 ura4-18 rlc1+-2xRFP:NatMX6 GFP-psy1+:leu1+ h+ R. Martín-Garcíae

1217 leu1-32 ura4-18 his3-1 bgs3::ura4+ Pbgs3+::GFP-bgs3+:leu1+ h+ J. Ribas
561 leu1-32 ura4-18 his3-1 bgs4::ura4+ Pbgs4+::GFP-bgs4+:leu1+ h J. Ribas
1731 leu1-32 ura4-18 his3-1 bgs1::ura4+ Pbgs1+::2xGFP-bgs1+:leu1+ h+ This study
1780 leu1-32 ura4-18 his3-1 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ h This study
3166 leu1-32 ura4-18 his3-1 ade6-M210 ags1 3UTRags1+::ags1+-GFP:leu1+:ura4+ h J. Ribas
3169 leu1-32 ura4-18 his3-1 ags1 3UTRags1+::ags1+-GFP:leu1+:ura4+ h+ J. Ribas
3332 leu1-32 ura4-18 his3-1 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ 

bgs3::ura4+ Pbgs3+::GFP-bgs3+:leu1+ h

This study

3311 leu1-32 ura4-18 his3-1 rlc1+-GFP:KanMX6 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ h This study
2112 leu1-32 ura4-18 his3-1 ade6-M210 GFP-cdc15+:KanMX6 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2209 leu1-32 ura4-18 his3-1 ade6-M210 rlc1+-GFP:KanMX6 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2308 leu1-32 ura4-18 his3-1 myo2+-GFP:ura4+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2166 leu1-32 ura4-18 his3-1 ade6-M210 myo3+-GFP:KanMX6 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2093 leu1-32 ura4-18 his3-1 ade6-M210 GFP-rho2+:KanMX6 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+ This study
2095 leu1-32 ura4-18 his3-1 ade6-M210 GFP-rho3+:KanMX6 bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2097 leu1-32 ura4-18 his3-1 ade6-M210 rho4::KanMX6 GFP-rho4+:leu1+  

bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+
This study

2488 leu1-32 ura4-18 his3-1 rho5::KanMX6 GFP-rho5+:leu1+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+ This study
2168 leu1-32 ura4-18 his3-1 ade6-M210 GFP-cdc42+:KanMX6

bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2304 leu1-32 ura4-18 his3-1 rgf1+-GFP:leu1+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2306 leu1-32 ura4-18 his3-1 rgf3::ura4+ rgf3+-GFP:leu1+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2300 leu1-32 ura4-18 his3-1 bgs1::ura4+ Pbgs1+::2xGFP-bgs1+:leu1+

bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+ This study
2503 leu1-32 ura4-18 his3-1 ade6-M210 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ bgs4::ura4+ Pnmt1+-81X-

bgs4+:his3+ h

This study
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Table S1.  Fission yeast strains used in this study (Continued)

Strain Genotype Source

1362 leu1-32 ura4-18 his3-1 bgs3::ura4+ Pbgs3+::GFP-bgs3+:leu1+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h This study
2158 leu1-32 ura4-18 his3-1 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ bgs3::ura4+ Pbgs3+::GFP-bgs3+:leu1+ 

bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+
This study

3181 leu1-32 ura4-18 his3-1 ags1 3UTRags1+::ags1+-GFP:leu1+:ura4+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+ This study
5202 leu1-32 ura4-18 his3-1 rlc1+-2xRFP:NatMX6 GFP-psy1+:leu1+ bgs4::ura4+ Pnmt1+-81X-bgs4+:his3+ h+ This study
5195 cwg1-1 leu1-32 ura4-18 rlc1+-GFP:KanMX6 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ h This study
5215 cwg1-2 leu1-32 ura4-18 his3-1 rlc1+-GFP:KanMX6 bgs1::ura4+ Pbgs1+::2xRFP-bgs1+:leu1+ h This study
5218 cwg1-1 leu1-32 ura4-18 rlc1+-2xRFP:NatMX6 GFP-psy1+:leu1+ h+ This study
5220 cwg1-2 leu1-32 ura4-18 rlc1+-2xRFP:NatMX6 GFP-psy1+:leu1+ h+ This study
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