
53

The General Philosophy
of Artificial Adaptive Systems (AAS)

1. Artificial Adaptive Systems

Artificial Adaptive Systems (AAS) form part of the vast world of Natural
Computation (NC) which is itself a subset of the Artificial Sciences. Artificial
Sciences are those sciences for which an understanding of Natural and/or
Cultural processes is achieved by the recreation of those processes through
automatic models. We shall use an analogy to explain the difference between
Artificial Science and natural language; the computer is to the Artificial Sci-
ences as writing is to natural language. That is, the AS consists of a formal
algebra used for the generation of artificial models which are composed of
structures and processes, and natural languages are composed of semantics,
syntax and pragmatics for the generation of texts.

Through each of these very different systems a level of independence is
created; in natural languages the utterances of sounds are fully dependent on
the time in which the utterances are made, but by representing those utterances
with writing they become independent from time, for written documents (in
the form of books, manuscripts, typewritten pages, computer generated Out-
put in the form of both digital and hardcopy, etc.) exist outside the dimension
of time. They exist in the spatial dimension. Similarly, the computer achieves
independence from the physical system through the creation of a model. Such
models are automations of the original system and permit one to study the
natural/physical system at any time, even if the original system no longer exists.

An example of such a system is the active eruption of a volcano or the
tremors of an earthquake. Through extensive measurements of variables a
model can be constructed that permits researchers to recreate the original
volcanic activity or earthquake in a completely controlled environment by
which variables of choice can be controlled. By using writing as an extension
of a natural language permits the creation of cultural objects that, before on-
set of writing, were unthinkable. Such cultural objects are stories, legal texts,
manuals, historical records, etc. In a similar manner the AS can create models
of complexity that, before the construction of computers, were unthinkable.
Natural languages and Artificial Sciences, in the absence of writing and the
computer, are therefore limited. But a written document not based on a natural
language, or an automatic model not generated by formal algebra, are little
more than a set of scribbles (Fig. 1).

In the Artificial Sciences, the understanding of any natural and/or
cultural process occurs in a way that is proportional to the capacity of the

Archeologia e Calcolatori
Supplemento 6, 2014, 53-84

P.M. Buscema

54

automatic artificial model to recreate that process. The more positive the
outcome of a comparison between an original process and the generated
model, the more likely it is that the artificial model has correctly explained
the functioning rules of the original process. However, this comparison can-
not be made simple-mindedly. Sophisticated analytical tools are needed to
make a reliable and correct comparison between an original process and an
artificial model. Most of the analytical tools useful for this comparison consist
of comparing the dynamics of the original process and the dynamics of the
artificial model when the respective conditions in the surroundings are varied.
In sum, it could be argued that:

1) on varying the conditions in the surroundings, yields a greater variety of
response dynamics obtained both in the original process and in the resulting
artificial model; and
2) the more these dynamics between the original process and the resulting
artificial model are homologous, we can therefore conclude
3) the more probable it is that the artificial model is a good explanation of
the original process.

In Fig. 2, we propose a taxonomic tree for characterization of the dis-
ciplines that, through NC and Classic Computation, make up the Artificial
Sciences system. NC refers to that part of the Artificial Sciences responsible
for the construction of automatic models of Natural and/or Cultural Processes

Fig. 1 – The diagram shows how the analysis of Natural and/or Cultural Processes,
that need to be understood, starts from a theory which, adequately formalized
(Formal Algebra), is able to generate Automatic Artificial Models of those Natural
and/or Cultural Processes. Lastly, the generated Automatic Artificial Models must
be compared with the Natural and/or Cultural Processes of which they profess to
be the model and the explanation.

The general philosophy of Artificial Adaptive Systems (AAS)

55

through the local interaction of non-isomorphic micro processes. In NC, it
is therefore assumed that:

1) every process is, more or less, contingent on the result of more basic pro-
cesses that tend to self-organize in time and space;
2) none of the micro processes are themselves informative concerning the
function that they will assume with respect to others, nor the global process
of which it will be part.

This computational philosophy, very economic for the creation of simple
models, can be used effectively to create any type of process or model that is
inspired by complex processes. NC in fact deals with the construction of arti-
ficial models that do not simulate the complexity of Natural and/or Cultural
Processes through rules, but rather, through commitments that, depending
on the space and time through which the process takes form, autonomously

Fig. 2 – Taxonomic tree of the disciplines that make up the Artificial Sciences system.

P.M. Buscema

56

create a set of contingent and approximate rules. NC does not try to recreate
Natural and/or Cultural Processes by analyzing the rules which make them
function, and thus formalizing them into an artificial model.

On the contrary, NC tries to recreate Natural and/or Cultural Processes
by constructing artificial models able to create local rules dynamically and
therefore capable of change in accordance with the process itself. The links
that enable NC models to generate rules dynamically are similar to the
Kantian transcendental rules: these are rules that establish the conditions
of possibility of other rules. In NC, dynamics such as learning to learn are
implicit in the artificial models themselves, whilst in Classical Computation
additional rules are required (Fig. 3). NC can be decomposed into the fol-
lowing:

Fig. 3 – The diagram shows in more detail the formalization, automation and comparison between
Natural and/or Cultural Processes and Automatic Artificial Models seen from two points of view
(Classical Computation and NC). Each point of view can be seen as a cycle that can repeat itself
several times. This allows one to deduce that the human scientific process characterizing both the
cycles resembles more the NC than the Classical Computation one.

The general philosophy of Artificial Adaptive Systems (AAS)

57

– Descriptive Systems (DS): are derived from disciplines that have developed,
whether or not intentionally, a formal algebra that has proved particularly
effective in drawing up appropriate functioning links of artificial models
generated within NC (for example: the Theory of the Dynamic Systems, the
Theory of Autopoietic Systems, Fuzzy Logic, etc.).
– Generative Systems (GS): theories of NC that have explicitly provided a
formal algebra aimed at generating artificial models of Natural and/or Cul-
tural Processes through links that create dynamic rules in space and in time.
In turn, Generative Systems can be broken down into:
– Physical Systems (PS): a grouping of those theories of NC whose genera-
tive algebra creates artificial models comparable to physical and/or cultural
processes, only when the artificial model reaches given evolutionary stages
(limit cycles type). Whilst not necessarily the route through which the links
generate the model, it is itself a model of the original process. In brief, in
these systems in which the generation time of the model is not necessarily
an artificial model of the evolution of the process time (for example: Fractal
Geometry, etc.).
– Artificial Adaptive Systems (AAS): theories of NC whose generative algebra
creates artificial models of Natural and/or Cultural Processes, whose birth

Fig. 4 – Artificial Adaptive Systems: general diagram.

P.M. Buscema

58

process is itself an artificial model comparable to the birth of the original
process. They are therefore theories assuming the emergence time in the model
as a formal model of the process time itself.

In short: for these theories, each phase of artificial generation is a model
comparable to a Natural and/or Cultural process. Artificial Adaptive Systems
in turn comprise (Fig. 4):

– Learning Systems (Artificial Neural Networks – ANNs): these are algorithms
for processing information that allow for the reconstruction, in a particularly
effective way, of the approximate rules relating to a set of “explanatory”
data concerning the considered problem (the Input), with a set of data (the
Output) for which it is requested to make a correct forecast or reproduction
in conditions of incomplete information.
– Evolutionary Systems (ES): the generation of adaptive systems changing their
architecture and their functions over time in order to adapt to the environment
into which they are integrated, or comply with the links and rules that define
their environment and, therefore, the problem to be simulated. Basically, these
are systems that are developed to find data and/or optimum rules within the
statically and dynamically determined links and/or rules. The development
of a genotype from a time ti to a time t (i+n) is a good example of the devel-
opment over time of the architecture and functions of an adaptive system.

2. A brief introduction to Artificial Neural Networks

2.1 Architecture

ANNs are a family of methods inspired to the human brain learning
capability.

ANNs are scientifically used in three different epistemological direc-
tions:

1) To understand the working of human brain, by simulation;
2) To optimize parallel computation research (human brain emulation);
3) To understand the transition from individual to collective behavior (Data
Analysis, Data Mining and the research on Complex Systems are part of this
point).

Currently ANNs comprise a range of very different models, but they
all share the following characteristics:

1) The fundamental elements of each ANN are the Nodes, also known as
Processing Elements (PE), and their Connections.
2) Each node in an ANN has its own Input, through which it receives com-
munications from the other nodes or from the environment; and its own
Output, through which it communicates with other nodes or with the en-

The general philosophy of Artificial Adaptive Systems (AAS)

59

vironment. Finally it has a function, f(•), by which it transforms its global
Input into Output.
3) Each Connection is characterized by the force with which the pair of nodes
excites or inhibits each other: positive values indicate excitatory connections
and negative ones indicate inhibitory connections.
4) Connections between nodes may change over time. This dynamic triggers
a learning process throughout the entire ANN. The way (the law by which)
the connections change in time is called the “Learning Equation”.
5) The overall dynamic of an ANN is linked to time: in order for the con-
nections of the ANN to properly change, the environment must act on the
ANN several times.
6) When ANNs are used to process data, these latter are their environment.
Thus, in order to process data, these latter data must be subjected to the
ANN several times.
7) The overall dynamic of an ANN depends exclusively on the local interaction
of its nodes. The final state of the ANN must, therefore, evolve spontaneously
from the interaction of all of its components (nodes).
8) Communications between nodes in every ANN tend to occur in parallel.
This parallelism may be synchronous or asynchronous and each ANN may
emphasize it in a different way. However, an ANN must present some form
of parallelism in the activity of its nodes.

From a theoretical viewpoint this parallelism does not depend on the
hardware on which the ANNs are implemented. Every ANN must present
the following architectural components:

1) Type and number of nodes and their corresponding properties;
2) Type and number of connections and their corresponding location;
3) Type of Signal Flow Strategy;
4) Type of Learning Strategy.

2.2 The nodes

There can be three types of ANN nodes, depending on the position they
occupy within the ANN:

1) Input nodes: the nodes that (also) receive signals from the environment
outside the ANN.
2) Output nodes: the nodes whose signal (also) acts on the environment
outside the ANN.
3) Hidden nodes: the nodes that receive signals only from other nodes in the
ANN and send their signal only to other nodes in the ANN.

The number of input nodes depends on the way the ANN is intended
to read the environment. The input nodes are the ANN’s sensors. When the

P.M. Buscema

60

ANN’s environment consists of data the ANN should process, the input node
corresponds to a sort of data variable. The number of Output nodes depends
on the way one wants the ANN to act on the environment. The Output nodes
are the effectors of the ANN. When the ANN’s environment consists of data
to process, the Output nodes represent the variables sought or the results of
the processing that occurs within the ANN. The number of hidden nodes
depends on the complexity of the function one intends to map between the
Input nodes and the Output nodes. The nodes of each ANN may be grouped
into classes of nodes sharing the same properties. Normally these classes are
called layers. Various types can be distinguished:

1) Monolayer ANNs: all nodes of the ANN have the same properties.
2) Multilayer ANNs: the ANN nodes are grouped in functional classes;
for example, nodes that (a) share the same signal transfer functions or (b)
receive the signal only from nodes of other layers and send them only to
new layers.
3) Nodes Sensitive ANNs: each node is specific to the position it occupies
within the ANN; e.g. the nodes closest together communicate more intensely
than they do with those further away.

2.3 The connections

There may be various types of connections: Mono-Directional, Bi-
directional, Symmetrical, Anti-Symmetrical and Reflexive (Fig. 5). The num-
ber of connections is proportional to the memory capabilities of the ANN.
Positioning the connections may be useful as methodological preprocessing
for the problem to be solved, but it is not necessary. An ANN in which the
connections between nodes or between layers are not all enabled is called
an ANN with Dedicated Connections; otherwise it is known as a maximum
gradient ANN. In each ANN the connections may be:

1) Adaptive: they change depending on the learning equation.
2) Fixed: they remain at fixed values throughout the learning process.
3) Variable: they change deterministically as other connections change.

Fig. 5 – Types of possible connections.

The general philosophy of Artificial Adaptive Systems (AAS)

61

2.4 The signal flow

In every ANN the signal may proceed in a direct fashion (from In-
put to Output) or in a complex fashion. Thus we have two types of Flow
Strategy:

1) Feed forward ANN: the signal proceeds from the Input to the Output
of the ANN passing all nodes only once.
2) ANN with Feedback: the signal proceeds with specific feedbacks, deter-
mined beforehand, or depending on the presence of particular conditions.

The ANNs with Feedback are also known as Recurrent ANNs, and
are the most plausible from a biological point of view. They are often
used to process timing signals and they are the most complex to deal with
mathematically. In an industrial context, therefore, they are often used
with feedback conditions determined a priori (in order to ensure stability).

3. Learning in the Artificial Neural Network

Every ANN can learn, over some period of time, the properties of
the environment in which it is immersed or the characteristics of the data
which it presents. This is accomplished in basically one of two ways (or
mixture of both):

1) By reconstructing approximately the probability density function of the
data received from the environment, compared with preset constraints.
2) By reconstructing approximately the parameters which solve the equation
relating the Input data to the Output data, compared with preset constraints.

The first method is known in the context of ANNs as Vector Quan-
tization; the second method is Gradient Descent. The Vector Quantization
method articulates the Input and Output variables in hyperspheres of a
defined range. The Gradient Descent method articulates the Input and Out-
put variables in hyperplanes. The difference between these two methods
becomes evident in the case of a feed forward ANN with at least one hidden
unit layer. With Vector Quantization the hidden units encode locally the
more relevant traits of the Input vector. At the end of the learning process,
each hidden unit will be a Prototype representing one or more relevant
traits of the Input vector in definitive and exclusive form. With Gradient
Descent, the hidden units encode in a distributed manner the most relevant
characteristics of the Input vector. At the end of the learning process, each
hidden unit will tend to represent the relevant traits of the Input in a fuzzy
and non-exclusive fashion. Summing up, the Vector Quantization develops
a local learning, and the Gradient Descent develops a distributed or vecto-
rial learning. Considerable differences exist between the two approaches:

P.M. Buscema

62

1) Distributed learning is computationally more efficient than local learning.
It may also be more biologically plausible (not always nor in every case).
2) When the function that connects Input to Output is nonlinear, distributed
learning may “jam” on local minimums due to the use of the Gradient De-
scent technique.
3) Local learning is often quicker than distributed learning.
4) The regionalization of Input on Output is more sharply defined when using
Vector Quantization than when using Gradient Descent.
5) When interrogating an ANN trained with Vector Quantization, the ANN
responses cannot be different from those given during learning; in the case of
an ANN trained with Gradient Descent the responses may be different from
those obtained during the learning phase.
6) This feature is so important that families of ANNs treating the signal in 2
steps have been designed: first with the Quantization method and then with
the Gradient method.
7) Local learning helps the researcher to understand how the ANN has in-
terpreted and solved the problem; distributed learning makes this task more
complicated (though not impossible).
8) Local learning is a competitive type; distributed learning presents aspects
of both competitive and cooperative behavior between the nodes.

4. Artificial Neural Network typology

Traditionally ANNs are divided into two families: Supervised ANNs
and Unsupervised ANNs. But from a theoretical point of view this distinction
could be superficial. An interesting viewpoint on this theoretical debate can
be gained by noting that, from the point of view of the energy function that
is being calculated by an unsupervised vs. a supervised ANN, it is easy to
subsume both approaches into a common framework. The energy function
for a supervised ANN can be written as its Mean Square Error:

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural

network is represented by the following equation:

where

𝑤𝑤𝑖𝑖,𝑗𝑗 = trained weights from input j to input i

But if we assume that equation (1) represents the mean error of a linear perceptron, then we can

develop equation (1) as follows:

Setting all targets to 0, as in the case of unsupervised neural networks, we have:

At this point it is easy to derive:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (1)

𝐸𝐸𝐸𝐸 = 1
2 ∑ ∑ ∑(𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (2)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2 = 1
2

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
∙ ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖 − ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2
=

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (3)

 12 ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖
2 − 2 ∙ 𝑡𝑡𝑝𝑝,𝑖𝑖 ∙ ∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 + (∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2𝑁𝑁

𝑗𝑗
)

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2

=
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (4)

1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) =

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

1
2 ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
(∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

(1)

Whereas, traditionally, the energy minimization function in an unsuper-
vised auto-associative neural network is represented by the following equation:

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural

network is represented by the following equation:

where

𝑤𝑤𝑖𝑖,𝑗𝑗 = trained weights from input j to input i

But if we assume that equation (1) represents the mean error of a linear perceptron, then we can

develop equation (1) as follows:

Setting all targets to 0, as in the case of unsupervised neural networks, we have:

At this point it is easy to derive:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (1)

𝐸𝐸𝐸𝐸 = 1
2 ∑ ∑ ∑(𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (2)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2 = 1
2

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
∙ ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖 − ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2
=

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (3)

 12 ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖
2 − 2 ∙ 𝑡𝑡𝑝𝑝,𝑖𝑖 ∙ ∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 + (∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2𝑁𝑁

𝑗𝑗
)

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2

=
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (4)

1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) =

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

1
2 ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
(∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

(2)

where

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural

network is represented by the following equation:

where

𝑤𝑤𝑖𝑖,𝑗𝑗 = trained weights from input j to input i

But if we assume that equation (1) represents the mean error of a linear perceptron, then we can

develop equation (1) as follows:

Setting all targets to 0, as in the case of unsupervised neural networks, we have:

At this point it is easy to derive:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (1)

𝐸𝐸𝐸𝐸 = 1
2 ∑ ∑ ∑(𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (2)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2 = 1
2

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
∙ ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖 − ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2
=

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (3)

 12 ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖
2 − 2 ∙ 𝑡𝑡𝑝𝑝,𝑖𝑖 ∙ ∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 + (∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2𝑁𝑁

𝑗𝑗
)

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2

=
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (4)

1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) =

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

1
2 ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
(∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

 = trained weights from Input j to Input i.

The general philosophy of Artificial Adaptive Systems (AAS)

63

But if we assume that equation (1) represents the mean error of a linear
perceptron, then we can develop equation (1) as follows:

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural

network is represented by the following equation:

where

𝑤𝑤𝑖𝑖,𝑗𝑗 = trained weights from input j to input i

But if we assume that equation (1) represents the mean error of a linear perceptron, then we can

develop equation (1) as follows:

Setting all targets to 0, as in the case of unsupervised neural networks, we have:

At this point it is easy to derive:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (1)

𝐸𝐸𝐸𝐸 = 1
2 ∑ ∑ ∑(𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (2)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2 = 1
2

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
∙ ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖 − ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2
=

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (3)

 12 ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖
2 − 2 ∙ 𝑡𝑡𝑝𝑝,𝑖𝑖 ∙ ∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 + (∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2𝑁𝑁

𝑗𝑗
)

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2

=
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (4)

1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) =

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

1
2 ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
(∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

(3)

Setting all targets to 0, as in the case of unsupervised neural networks,
we have:

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural

network is represented by the following equation:

where

𝑤𝑤𝑖𝑖,𝑗𝑗 = trained weights from input j to input i

But if we assume that equation (1) represents the mean error of a linear perceptron, then we can

develop equation (1) as follows:

Setting all targets to 0, as in the case of unsupervised neural networks, we have:

At this point it is easy to derive:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (1)

𝐸𝐸𝐸𝐸 = 1
2 ∑ ∑ ∑(𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (2)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑(𝑡𝑡𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑝𝑝,𝑖𝑖)

2 = 1
2

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
∙ ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖 − ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2
=

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (3)

 12 ∑ ∑ (𝑡𝑡𝑝𝑝,𝑖𝑖
2 − 2 ∙ 𝑡𝑡𝑝𝑝,𝑖𝑖 ∙ ∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 + (∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2𝑁𝑁

𝑗𝑗
)

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

2

=
𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
 (4)

1
2 ∑ ∑ (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) (∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
) =

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝

1
2 ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
(∑ 𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗
)

(4)

At this point it is easy to derive:

And equation (5) is the energy function for an unsupervised ANN (see equation (2).

Therefore:

We can thus in principle regard unsupervised ANN learning as a conceptually more economical

approach than supervised learning in that it entails doing away with some free parameters, namely,

targets. Or, on the other hand, we can make a case for supervised learning, i.e. for the inclusion of the

extra free parameters, as a way to focus the learning model upon a more clear-cut task. Adopting this

point of view ANNs can be classified into three sub families:

1) Supervised ANNs;
2) Unsupervised Auto Associative Memories;
3) Unsupervised Autopoietic ANNs.

Furthermore, a unique pseudo code can be used as general framework to build any kind of ANN

(Supervised and Unsupervised):

1. Design of the Architecture of the Network
2. Initialization of Weights
3. Do Epochs

 {
 do Cycles
 {

a. Presentation of one Pattern as Input Vector
b. Signal Transfer up to the Output layer
c. Error Computation for each Node and Weight
d. Weights and/or Nodes updating
e. Possible Recurrence

 } Until (all Patterns are presented)
} Until (Cost Function is Optimized)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙

𝑁𝑁

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 (5)

𝐸𝐸𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0) (6)

(5)

and equation (5) is the energy function for an unsupervised ANN (see equa-
tion (2).

Therefore:

And equation (5) is the energy function for an unsupervised ANN (see equation (2).

Therefore:

We can thus in principle regard unsupervised ANN learning as a conceptually more economical

approach than supervised learning in that it entails doing away with some free parameters, namely,

targets. Or, on the other hand, we can make a case for supervised learning, i.e. for the inclusion of the

extra free parameters, as a way to focus the learning model upon a more clear-cut task. Adopting this

point of view ANNs can be classified into three sub families:

1) Supervised ANNs;
2) Unsupervised Auto Associative Memories;
3) Unsupervised Autopoietic ANNs.

Furthermore, a unique pseudo code can be used as general framework to build any kind of ANN

(Supervised and Unsupervised):

1. Design of the Architecture of the Network
2. Initialization of Weights
3. Do Epochs

 {
 do Cycles
 {

a. Presentation of one Pattern as Input Vector
b. Signal Transfer up to the Output layer
c. Error Computation for each Node and Weight
d. Weights and/or Nodes updating
e. Possible Recurrence

 } Until (all Patterns are presented)
} Until (Cost Function is Optimized)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2 ∑ ∑ ∑ 𝑢𝑢𝑝𝑝,𝑖𝑖 ∙

𝑁𝑁

𝑗𝑗

𝑁𝑁

𝑖𝑖

𝐾𝐾

𝑝𝑝
𝑢𝑢𝑝𝑝,𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗 (5)

𝐸𝐸𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0) (6) (6)

We can thus in principle regard unsupervised ANN learning as a
conceptually more economical approach than supervised learning in that it
entails doing away with some free parameters, namely, targets. Or, on the
other hand, we can make a case for supervised learning, i.e. for the inclusion
of the extra free parameters, as a way to focus the learning model upon a
more clear-cut task. Adopting this point of view ANNs can be classified into
three sub families:

P.M. Buscema

64

1) Supervised ANNs;
2) Unsupervised Auto Associative Memories;
3) Unsupervised Autopoietic ANNs.

Furthermore, a unique pseudo code can be used as general framework
to build any kind of ANN (Supervised and Unsupervised):

1. Design of the Architecture of the Network
2. Initialization of Weights
3. Do Epochs

{
do Cycles
{
a. Presentation of one Pattern as Input Vector
b. Signal Transfer up to the Output layer
c. Error Computation for each Node and Weight
d. Weights and/or Nodes updating
e. Possible Recurrence	
} Until (all Patterns are presented)

} Until (Cost Function is Optimized)

At this point we can describe from a didactic standpoint three families of
different problem and consequently the three more famous families of ANNs.

4.1 Supervised ANNs

The first type of problem with which an ANN can deal is expressed
as follows: given N variables, about which it is easy to gather data, and
M variables, which differ from the first and about which it is difficult and
costly to gather data, assess whether it is possible to predict the values of the
M variables on the basis of the N variables. This family of ANNs is named
Supervised ANNs (SV) and their prototypical equation is:

At this point we can describe from a didactic standpoint three families of different problem and

consequently the three more famous families of ANNs.

4.1 Supervised ANNs

The first type of problem with which an ANN can deal is expressed as follows: given N

variables, about which it is easy to gather data, and M variables, which differ from the first and about

which it is difficult and costly to gather data, assess whether it is possible to predict the values of the

M variables on the basis of the N variables. This family of ANNs is named Supervised ANNs (SV)

and their prototypical equation is:

where y is the vector of the M variables to predict and/or to recognize (target), x is the vector of N

variables working as networks inputs, w is the set of parameters to approximate and f () is a non-

linear and composed function to model. When the M variables occur in time subsequent to the N

variables, the problem is described as a prediction problem; when the M variables depend on some

sort of typology, the problem is described as one of recognition and/or classification (this is also

sometimes referred to as the proscription problem).

Conceptually it is the same kind of problem: using values for some known variables to predict

the values of other unknown variables. In order to correctly apply an ANN to this type of problem we

need to run a validation protocol. We must start with a good sample of cases, in each of which the N

variables (known) and the M variables (to be discovered) are both known and reliable. The sample of

complete data is needed in order to:

1) train the ANN;
2) assess its predictive performance.

The validation protocol uses part of the sample to train the ANN (Training Set), whilst the

remaining cases are used to assess the predictive capability of the ANN (Testing Set or Validation

𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝑤𝑤∗) (7) (7)

where y is the vector of the M variables to predict and/or to recognize (target),
x is the vector of N variables working as networks Inputs, w is the set of
parameters to approximate and f () is a non-linear and composed function to
model. When the M variables occur in time subsequent to the N variables, the
problem is described as a prediction problem; when the M variables depend on
some sort of typology, the problem is described as one of recognition and/or
classification (this is also sometimes referred to as the proscription problem).

Conceptually it is the same kind of problem: using values for some
known variables to predict the values of other unknown variables. In order to
correctly apply an ANN to this type of problem we need to run a validation

The general philosophy of Artificial Adaptive Systems (AAS)

65

protocol. We must start with a good sample of cases, in each of which the N
variables (known) and the M variables (to be discovered) are both known
and reliable. The sample of complete data is needed in order to:

1) train the ANN, and
2) assess its predictive performance.

The validation protocol uses part of the sample to train the ANN (Train-
ing Set), whilst the remaining cases are used to assess the predictive capability
of the ANN (Testing Set or Validation Set). In this way we are able to test the
reliability of the ANN in tackling the problem before putting it into operation.
Now we provide some example of Supervised ANNs.

4.2 The Multi-Layer Perceptron

Back Propagation (BP for short) refers to a broad family of Multi-Layer
Perceptron, whose architecture consists of different interconnected layers
[1-4]. The BP ANNs represents a kind of supervised ANN, whose learning’s
algorithm is based on the Deepest-Descent technique. If provided with an
appropriate number of Hidden units, they will also be able to minimize the
error of nonlinear functions of high complexity (Fig. 6).

Theoretically, a BP provided with a simple layer of Hidden units is
sufficient to map any function y = f (x). Practically, it is often necessary to
provide these ANNs with at least 2 layers of Hidden units, when the func-
tion to compute is particularly complex, or when the chosen data, in order
to train the BP, are not particularly reliable, and a level filter is necessary on
the features of Input. The BP are networks, whose learning function tends to
“distribute itself” on the connections, just for the specific correction algorithm
of the weights that is utilized. This means that, in the case of BP, provided
with at least one layer of Hidden units, these units tend to distribute among
themselves the codification of each feature of the Input vector.

This makes the learning more compact and efficient, but it is more
complex to know the “reasoning” which brings a BP, in the testing process, to
answer in a certain way. In brief, it is difficult to explain the implicit knowl-
edge acquired by these ANNs in the training process.

A second theoretical and operative difficulty raised by BP concerns the
minimum number of Hidden units that are necessary for these ANNs in order
to compute a function. In fact, it is known that if the function is not linear,
at least one layer of Hidden units will be necessary. But, at the moment, the
exact minimum number of Hidden units needed to compute a non-linear
function is unknown. In these cases, we base our work on experience and on
some heuristics.

Experience advises us to use a minimum number of Hidden units in
a first time training of an ANN. If the training succeeds, an analysis of the

P.M. Buscema

66

sensitivity will normally allow us to understand the singularity number that
each Input node determines on the Output, and, consequently, it will be able
to deduce the degree of freedom needed by the ANN to resolve the equa-
tion, and then to express these latter under the form of Hidden units. This
procedure is not guaranteed; during the training process the BP can become
trapped in local’s minima.

This is because of the relation between the morphology complexity
of the hyper surface that characterizes the function and the weights’ values,
randomly set and placed before the training.

The dilemma of BP is that for a prior, unknown minimum number of
Hidden units useful to compute a function, if too many are created, the BP
can create during some forms of training a condition of over fitting, which
causes a worsening of its generalization capacities in the testing process. If
not too many are created, the BP can have difficulty learning either because
the function is too complex, or because the BP randomly falls into a local
minimum. The BP’s family includes both Feed Forward ANN and Feedback
ANN, also known as Recurrent Networks (Chauvin, Rumelhart 1995).

Fig. 6 – Example of Multi-Layer Perceptron.

The general philosophy of Artificial Adaptive Systems (AAS)

67

4.3 The Conic Net

The Conic Net is a supervised ANN, designed by P.M. Buscema in 2013
and never published before. The architecture is similar to that of a Multilayer
Perceptron, but its hidden layer is completely different. Each traditional node
of the classic Hidden layer in the case of the Conic Net (CN) is decomposed in
3 sub nodes connected by 6 weights, according to Fig. 7a. This topology aims
to transform each complex hidden node into a quadratics equation, whose
parameters have to be learned during the training phase (Fig. 7b).

The singularity of Conic Net in relation to the other and more classic
MLP is its complex hidden layer structure: two sub nodes receiving their
weights vectors independently from the same Input vector and one sub node
working as Output node, receiving the 6 parameters from the quadratics
equation, including the two previous sub nodes as X and Y of the conic func-
tion. Further, it is interesting to note that the two X and Y sub nodes modify
their incoming weights each one according to two different and independent
learning laws: the gradient descent (the X sub node) and the quantization
algorithm (the Y sub node).

The following equations show how the signals flow from Input layer
to Output layer in the Conic Net:

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(8)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(9)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(10)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(11)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(12)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(13)

where:

u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer

P.M. Buscema

68

Fig. 7b – Close up of one macro hidden node of a Conic Net.

Fig. 7a – Topology of Conic Net (in blue the Hidden layer).

The general philosophy of Artificial Adaptive Systems (AAS)

69

C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(14)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16)

(15)

Where:
u = Input Vector
N = Number of Inputs
Qx = Output of the X sub node of the CN hidden layer
Qy = Output of the Y sub node of the CN hidden layer
C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9)

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10)

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁) (11)

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 + 2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12)

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13)

𝛿𝛿𝑖𝑖
 [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
 [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14)

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15)

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

 [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16) (16)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(17)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(18)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(19)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(20)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(21)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(22)

where:

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

 = error of the next layer calculated BP delta rule

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

 = the weights matrix of the next layer

And, finally, the equations by means we correct the Input weights and
the quadratics weights (parameters) of the CN:

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(23)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(24)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(25)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(26)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(27)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(28)

P.M. Buscema

70

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30)

(29)

Where:

 𝛿𝛿𝑗𝑗

 [𝑛𝑛+1] = error of the next layer calculated BP delta rule
𝑤𝑤𝑗𝑗𝑗𝑗

 [𝑛𝑛+1] = the weights matrix of the next layer

And, finally, the equations by means we correct the input weights and the quadratics weights

(parameters) of the CN:

The CN presents also many suitable features that in this paper are not pertinent to describe into

details.

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17)

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18)

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19)

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20)

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21)

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
 [𝑛𝑛] ∙ 𝜀𝜀 (22)

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23)

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
 (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24)

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25)

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) + 𝑤𝑤∆𝑏𝑏 (26)

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) + 𝑤𝑤∆𝑐𝑐 (27)

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) + 𝑤𝑤∆𝑑𝑑 (28)

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) + 𝑤𝑤∆𝑒𝑒 (29)

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) + 𝑤𝑤∆𝑓𝑓 (30) (30)

The CN presents also many suitable features that in this paper are not
pertinent to describe into details.

4.4 The Supervised Contractive Map

The Supervised Contractive Map (SVCM for short) was designed by
M. Buscema in 1999 (Buscema, Benzi 2011). This ANN calculates two
net Inputs for each node: a classic weighted Input (see Equation 31) and a
contractive Input (see Equation 32). This second net Input tends to decay or
to increase when the positive or negative value of the weight (w) becomes
close to a specific constant (C). Equation 33 activates each node according
to a sine function of the two net Inputs (the contractive Input works as a
harmonic modulation of the weighted Input). The vantages and the disad-
vantages of sine transfer function to work properly into the topology of
Multilayer Perceptron were already analyzed in the scientific literature (Le
Cun et al. 1991).

4.4 The Supervised Contractive Map

The Supervised Contractive Map (SVCM for short) was designed by M. Buscema in 1999

(BUSCEMA, BENZI 2011). This ANN calculates two net inputs for each node: a classic weighted input

(see Equation 31) and a contractive input (see Equation 32). This second net input tends to decay or

to increase when the positive or negative value of the weight (w) becomes close to a specific constant

(C). Equation 33 activates each node according to a sine function of the two net inputs (the contractive

input works as a harmonic modulation of the weighted input). The vantages and the disadvantages of

sine transfer function to work properly into the topology of Multilayer Perceptron were already

analyzed in the scientific literature (LE CUN et al. 1991).

Equation 34 shows a typical error calculation using the distance between the desiderate output and

the estimated output, times the first derivative of sine transfer function. Equation 35 works in the

same way of Equation 34, but using the chain rule to calculate the local error of each hidden unit.

Equation 36 updates the weight matrices, using typical back error propagation, with a contractive

factor useful to limit an extreme growing of each weight value.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1])
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
 (31)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙] (32)

𝑢𝑢𝑖𝑖
 [𝑙𝑙] = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [𝑙𝑙] ∙ (1 − sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙])

𝐶𝐶[𝑙𝑙−1])) (33)

𝛿𝛿𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] = (𝑡𝑡𝑖𝑖 − 𝑢𝑢𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜) ∙ cos (𝐼𝐼𝐼𝐼𝑒𝑒𝑡𝑡𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] ∙ (1 −

sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜])

𝐶𝐶[𝑜𝑜𝑜𝑜𝑜𝑜−1])) (34)

(31)

4.4 The Supervised Contractive Map

The Supervised Contractive Map (SVCM for short) was designed by M. Buscema in 1999

(BUSCEMA, BENZI 2011). This ANN calculates two net inputs for each node: a classic weighted input

(see Equation 31) and a contractive input (see Equation 32). This second net input tends to decay or

to increase when the positive or negative value of the weight (w) becomes close to a specific constant

(C). Equation 33 activates each node according to a sine function of the two net inputs (the contractive

input works as a harmonic modulation of the weighted input). The vantages and the disadvantages of

sine transfer function to work properly into the topology of Multilayer Perceptron were already

analyzed in the scientific literature (LE CUN et al. 1991).

Equation 34 shows a typical error calculation using the distance between the desiderate output and

the estimated output, times the first derivative of sine transfer function. Equation 35 works in the

same way of Equation 34, but using the chain rule to calculate the local error of each hidden unit.

Equation 36 updates the weight matrices, using typical back error propagation, with a contractive

factor useful to limit an extreme growing of each weight value.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1])
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
 (31)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙] (32)

𝑢𝑢𝑖𝑖
 [𝑙𝑙] = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [𝑙𝑙] ∙ (1 − sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙])

𝐶𝐶[𝑙𝑙−1])) (33)

𝛿𝛿𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] = (𝑡𝑡𝑖𝑖 − 𝑢𝑢𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜) ∙ cos (𝐼𝐼𝐼𝐼𝑒𝑒𝑡𝑡𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] ∙ (1 −

sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜])

𝐶𝐶[𝑜𝑜𝑜𝑜𝑜𝑜−1])) (34)

(32)

4.4 The Supervised Contractive Map

The Supervised Contractive Map (SVCM for short) was designed by M. Buscema in 1999

(BUSCEMA, BENZI 2011). This ANN calculates two net inputs for each node: a classic weighted input

(see Equation 31) and a contractive input (see Equation 32). This second net input tends to decay or

to increase when the positive or negative value of the weight (w) becomes close to a specific constant

(C). Equation 33 activates each node according to a sine function of the two net inputs (the contractive

input works as a harmonic modulation of the weighted input). The vantages and the disadvantages of

sine transfer function to work properly into the topology of Multilayer Perceptron were already

analyzed in the scientific literature (LE CUN et al. 1991).

Equation 34 shows a typical error calculation using the distance between the desiderate output and

the estimated output, times the first derivative of sine transfer function. Equation 35 works in the

same way of Equation 34, but using the chain rule to calculate the local error of each hidden unit.

Equation 36 updates the weight matrices, using typical back error propagation, with a contractive

factor useful to limit an extreme growing of each weight value.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1])
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
 (31)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙] (32)

𝑢𝑢𝑖𝑖
 [𝑙𝑙] = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [𝑙𝑙] ∙ (1 − sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙])

𝐶𝐶[𝑙𝑙−1])) (33)

𝛿𝛿𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] = (𝑡𝑡𝑖𝑖 − 𝑢𝑢𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜) ∙ cos (𝐼𝐼𝐼𝐼𝑒𝑒𝑡𝑡𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] ∙ (1 −

sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜])

𝐶𝐶[𝑜𝑜𝑜𝑜𝑜𝑜−1])) (34)

(33)

Equation 34 shows a typical error calculation using the distance
between the desiderate Output and the estimated Output, times the first
derivative of sine transfer function. Equation 35 works in the same way of
Equation 34, but using the chain rule to calculate the local error of each hid-
den unit. Equation 36 updates the weight matrices, using typical back error
propagation, with a contractive factor useful to limit an extreme growing
of each weight value.

4.4 The Supervised Contractive Map

The Supervised Contractive Map (SVCM for short) was designed by M. Buscema in 1999

(BUSCEMA, BENZI 2011). This ANN calculates two net inputs for each node: a classic weighted input

(see Equation 31) and a contractive input (see Equation 32). This second net input tends to decay or

to increase when the positive or negative value of the weight (w) becomes close to a specific constant

(C). Equation 33 activates each node according to a sine function of the two net inputs (the contractive

input works as a harmonic modulation of the weighted input). The vantages and the disadvantages of

sine transfer function to work properly into the topology of Multilayer Perceptron were already

analyzed in the scientific literature (LE CUN et al. 1991).

Equation 34 shows a typical error calculation using the distance between the desiderate output and

the estimated output, times the first derivative of sine transfer function. Equation 35 works in the

same way of Equation 34, but using the chain rule to calculate the local error of each hidden unit.

Equation 36 updates the weight matrices, using typical back error propagation, with a contractive

factor useful to limit an extreme growing of each weight value.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1])
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
 (31)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
 [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

 [𝑙𝑙−1] ∙
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙] (32)

𝑢𝑢𝑖𝑖
 [𝑙𝑙] = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [𝑙𝑙] ∙ (1 − sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑙𝑙])

𝐶𝐶[𝑙𝑙−1])) (33)

𝛿𝛿𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] = (𝑡𝑡𝑖𝑖 − 𝑢𝑢𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜) ∙ cos (𝐼𝐼𝐼𝐼𝑒𝑒𝑡𝑡𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜] ∙ (1 −

sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
 [𝑜𝑜𝑜𝑜𝑜𝑜])

𝐶𝐶[𝑜𝑜𝑜𝑜𝑜𝑜−1])) (34)
(34)

The general philosophy of Artificial Adaptive Systems (AAS)

71

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37)

(35)

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37)

(36)

where:

[l] = number or name of the ANN layer;

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37)

 = values of the all i-th nodes of the l-th layer;

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37)

 = weight matrix connecting the layer [l-1] to the layer [l];

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37)

 : number of nodes of the l-th layer;

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37)

: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-
linear and complex interpolation with excellent results (Buscema, Benzi
2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as
follows: given N variables defining a dataset, find out its optimal connections
matrix able to define each variable in terms of the others and consequently to
approximate the hyper-surface on which each data-point is located.

This second sub-family of ANNs is named Dynamic Associative Memo-
ries (DAM). The specificity of these ANNs is incomplete pattern reconstruc-
tion, dynamic scenario simulation and possible situations prototyping. Their
representative equation is:

Where:

[l] = number or name of the ANN layer;
𝑢𝑢𝑗𝑗

 [𝑙𝑙]= values of the all i-th nodes of the l-th layer;
𝑤𝑤𝑖𝑖,𝑗𝑗

 [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l];
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer;
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable;
LCoef = ANN learning rate.

The SVCM is been already tested for the approximation of highly non-linear and complex

interpolation with excellent results (BUSCEMA, BENZI 2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as follows: given N variables

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the

others and consequently to approximate the hyper-surface on which each data-point is located. This

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations

prototyping. Their representative equation is:

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix

approximating the parameters of the hyper-surface representing the dataset, and f () is some suitable

non-linear and eventually composed function governing the process. DAM ANNs after the training

𝛿𝛿𝑖𝑖
 [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]

𝑘𝑘
∙ cos (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1])) (35)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
 [𝑙𝑙] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝛿𝛿𝑖𝑖

 [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
 [𝑙𝑙−1] ∙ (1 −

𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36)

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37) (37)

where x[n] is the N variables evolving in the ANNs internal time, w* is
the connection matrix approximating the parameters of the hyper-surface
representing the dataset, and f() is some suitable non-linear and eventually
composed function governing the process. DAM ANNs after the training
phase need to be submitted to a validation protocol named “Data Recon-
struction Blind Test”. In this test the capability of a DAM ANN to rebuild
complete data from uncompleted ones is evaluated from a quantitative point
of view. Now we describe briefly some type of Auto-Associative Memory
ANN.

P.M. Buscema

72

4.6 AutoContractive Map

The AutoContractive Map neural network (Auto-CM for short) was
designed by P. M. Buscema in 1999 and its learning law was improved up
to 2013. Auto-CM was explained in different papers and it was applied in
many fields with promising results (Buscema 2007a, 2007b; Buscema et al.
2008a, 2008b, 2010; Buscema, Sacco 2010; Licastro et al. 2010; Grossi
et al. 2011). The software implementing Auto-CM is developed by Semeion
Research Center in Rome and it is available free for academic applications.
Auto-CM has an architecture based on three layers of nodes: an Input layer
that captures the signal from the environment, a hidden layer which modulates
the signal within the network, and an Output layer which returns a response
to the environment on the basis of the processing that occurred. The three
layers have the same number N of nodes.

The connections between the Input layer and the hidden one are mono-
dedicated, whereas those between this hidden layer and the Output layer are
completely connected. Each connection is assigned a weight: vi for connections
between the ith Input node and the corresponding hidden node, wi,j for those
between the generic jth node of the hidden layer and the ith node of the Output
layer (Fig. 8). For the training, datasets are scaled between zero and one and
all weights are initialized beforehand to the same positive value close to zero.

Fig. 8 – AutoContractive Map.

The general philosophy of Artificial Adaptive Systems (AAS)

73

Symbol Meaning
p
ix

ith input node of the pth pattern

 nh p
i ith hidden node of the pth pattern during the nth time

 ny p
i ith node in the output of the pth pattern during the nth epoch

 nvi weight of the connection between the ith input node and in the ith hidden
node during the nth epoch

 nw ji, weight of the connection between the jth hidden node and the ith output
node during the nth epoch

N the number of nodes per layer

M the number of patterns

 constant learning rate

C constant greater than one,
typically NC 

Table 1 Notation for AutoCM neural network Tab. 1 – Notation for Auto-CM Neural Network.

Then the network must undergo a series of epochs. In each of them, all
the Input patterns must be presented one after another to the network, and a
calculation made for the appropriate equations with the corresponding Output
value and a measure of error with respect to the desired value. In accordance
with the principle of batch update, the corrections accumulated for an epoch
must be applied at the end. The equations of training of the network make
reference to the quantities shown below (Tab. 1).

At the nth epoch of training, out of each Input pattern a value is calcu-
lated for the hidden layer, through a contraction, that reduces the Input value
in proportion to the mono-dedicated weight.

Table 1

The algorithm then calculates the value on the output layer through a “double conceptual

passage”. For each output node, an initial operation saves the net input calculation, that is to say, the

reduction (contraction) of all the hidden nodes through the weights between the hidden layer and

output layer (Equation 39).

A second operation calculates the output value by further contracting the corresponding value

of the hidden node thorough the previously calculated net input for the output node:

During the training that occurs in every epoch, in addition to the calculation of the output values

(40), for each pattern presented in input the algorithm calculates the correction quantity of the

weights, summed and applied at the end of the epoch.

For the N-mono dedicated layers between the input and hidden layers, the algorithm considers

the contraction, based on the weight being examined, of the difference between the values of the

corresponding input and hidden nodes, further modulated for the input node itself.

ℎ𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 𝑥𝑥𝑖𝑖

[𝑝𝑝] ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (38)

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
[𝑝𝑝](𝑛𝑛) =∑ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶)

𝑁𝑁

𝑗𝑗=1
 (39)

𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) = ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ∙ (1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
[𝑝𝑝](𝑛𝑛)
𝐶𝐶

(40)

(38)

The algorithm then calculates the value on the Output layer through
a “double conceptual passage”. For each Output node, an initial operation
saves the net Input calculation, that is to say, the reduction (contraction) of all
the hidden nodes through the weights between the hidden layer and Output
layer (Equation 39).

Table 1

The algorithm then calculates the value on the output layer through a “double conceptual

passage”. For each output node, an initial operation saves the net input calculation, that is to say, the

reduction (contraction) of all the hidden nodes through the weights between the hidden layer and

output layer (Equation 39).

A second operation calculates the output value by further contracting the corresponding value

of the hidden node thorough the previously calculated net input for the output node:

During the training that occurs in every epoch, in addition to the calculation of the output values

(40), for each pattern presented in input the algorithm calculates the correction quantity of the

weights, summed and applied at the end of the epoch.

For the N-mono dedicated layers between the input and hidden layers, the algorithm considers

the contraction, based on the weight being examined, of the difference between the values of the

corresponding input and hidden nodes, further modulated for the input node itself.

ℎ𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 𝑥𝑥𝑖𝑖

[𝑝𝑝] ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (38)

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
[𝑝𝑝](𝑛𝑛) =∑ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶)

𝑁𝑁

𝑗𝑗=1
 (39)

𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) = ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ∙ (1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
[𝑝𝑝](𝑛𝑛)
𝐶𝐶

(40)

(39)

P.M. Buscema

74

A second operation calculates the Output value by further contracting
the corresponding value of the hidden node thorough the previously calculated
net Input for the Output node:

Table 1

The algorithm then calculates the value on the output layer through a “double conceptual

passage”. For each output node, an initial operation saves the net input calculation, that is to say, the

reduction (contraction) of all the hidden nodes through the weights between the hidden layer and

output layer (Equation 39).

A second operation calculates the output value by further contracting the corresponding value

of the hidden node thorough the previously calculated net input for the output node:

During the training that occurs in every epoch, in addition to the calculation of the output values

(40), for each pattern presented in input the algorithm calculates the correction quantity of the

weights, summed and applied at the end of the epoch.

For the N-mono dedicated layers between the input and hidden layers, the algorithm considers

the contraction, based on the weight being examined, of the difference between the values of the

corresponding input and hidden nodes, further modulated for the input node itself.

ℎ𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 𝑥𝑥𝑖𝑖

[𝑝𝑝] ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (38)

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
[𝑝𝑝](𝑛𝑛) =∑ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶)

𝑁𝑁

𝑗𝑗=1
 (39)

𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) = ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ∙ (1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
[𝑝𝑝](𝑛𝑛)
𝐶𝐶

(40) (40)

During the training that occurs in every epoch, in addition to the cal-
culation of the Output values (40), for each pattern presented in Input the
algorithm calculates the correction quantity of the weights, summed and ap-
plied at the end of the epoch. For the N-mono dedicated layers between the
Input and hidden layers, the algorithm considers the contraction, based on
the weight being examined, of the difference between the values of the corre-
sponding Input and hidden nodes, further modulated for the Input node itself.

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47)

(41)

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47)

(42)

Similarly, for N2 weights between the hidden and Output layers the
algorithm calculates the contraction, based on the weight being considered,
between the corresponding hidden and Output nodes.

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47)

(43)

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47)

(44)

The equations immediately illustrate how the contractions establish a
relationship of order between the layers:

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47)

(45)

As we can easily observe during the training, the mono-dedicated weights
vi grow monotonically, and with different speeds asymptotically towards the
constant C:

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47)

(46)

Similarly, for N2 weights between the hidden and output layers the algorithm calculates the

contraction, based on the weight being considered, between the corresponding hidden and output

nodes.

The equations immediately illustrate how the contractions establish a relationship of order

between the layers:

As we can easily observe during the training, the mono-dedicated weights vi grow monotonically,

and with different speeds asymptotically towards the constant C:

just like the values of hidden nodes tend to cancel themselves out:

∆𝑣𝑣𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
𝑥𝑥𝑖𝑖
[𝑝𝑝] − ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 − 𝑣𝑣𝑖𝑖(𝑛𝑛)
𝐶𝐶) (41)

𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) = 𝑣𝑣𝑖𝑖(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (42)

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = ∑(
𝑀𝑀

𝑝𝑝=1
ℎ𝑖𝑖
[𝑝𝑝] − 𝑦𝑦𝑖𝑖

[𝑝𝑝](𝑛𝑛)) ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
𝐶𝐶) ∙ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) (43)

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) + 𝛼𝛼 ∙ ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)
 (44)

𝑥𝑥𝑖𝑖
[𝑝𝑝] ≥ ℎ𝑖𝑖

[𝑝𝑝](𝑛𝑛) ≥ 𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) (45)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖(𝑛𝑛) = 0 (46)

lim
𝑥𝑥→∞

𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝐶𝐶 (47) (47)

just like the values of hidden nodes tend to cancel themselves out:

The general philosophy of Artificial Adaptive Systems (AAS)

75

along with those of the output units:

while the corrections of the full set of weights diminish:

The process of cancelling the above quantity occurs with speed modulated by the input patterns

and leaves its specific sign in the matrix between the hidden and the output layer.

4.7 Autopoietic ANNs

The third type of ANNs can be described as follows: given N variables defining M records in a

dataset, evaluate how these variables are distributed and how these records are naturally clustered in

a small projection space K (K<<N) according to their most important relationships. These ANNs are

named Autopoietic ANNs. Their specificity is the nonlinear extraction of the similarities among

records in a database, using all the variables at the same time.

One important feature of these ANNs is also the possibility that some of them have to visualize

in a 2 or 3 dimensional map the geographical similarities among records and among variables. The

prototypical equation of the Autopoietic ANNs is:

where y is the projection result along the time, x is the input vector (independent variables) and w is

the set of parameters (codebooks) to be approximated. In Autopoietic ANNs, the codebooks (w) after

the training phase represent an interesting case of cognitive abstraction: in each codebook the ANN

lim
𝑥𝑥→∞

ℎ𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 0 (48)

lim
𝑎𝑎→∞

𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 0 (49)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) = 0 (50)

𝑦𝑦[𝑛𝑛+1] = 𝑓𝑓(𝑦𝑦[𝑛𝑛], 𝑥𝑥, 𝑤𝑤∗) (51)

 (48)

along with those of the Output units:

 (49)

while the corrections of the full set of weights diminish:

along with those of the output units:

while the corrections of the full set of weights diminish:

The process of cancelling the above quantity occurs with speed modulated by the input patterns

and leaves its specific sign in the matrix between the hidden and the output layer.

4.7 Autopoietic ANNs

The third type of ANNs can be described as follows: given N variables defining M records in a

dataset, evaluate how these variables are distributed and how these records are naturally clustered in

a small projection space K (K<<N) according to their most important relationships. These ANNs are

named Autopoietic ANNs. Their specificity is the nonlinear extraction of the similarities among

records in a database, using all the variables at the same time.

One important feature of these ANNs is also the possibility that some of them have to visualize

in a 2 or 3 dimensional map the geographical similarities among records and among variables. The

prototypical equation of the Autopoietic ANNs is:

where y is the projection result along the time, x is the input vector (independent variables) and w is

the set of parameters (codebooks) to be approximated. In Autopoietic ANNs, the codebooks (w) after

the training phase represent an interesting case of cognitive abstraction: in each codebook the ANN

lim
𝑥𝑥→∞

ℎ𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 0 (48)

lim
𝑎𝑎→∞

𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 0 (49)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) = 0 (50)

𝑦𝑦[𝑛𝑛+1] = 𝑓𝑓(𝑦𝑦[𝑛𝑛], 𝑥𝑥, 𝑤𝑤∗) (51)

(50)

The process of cancelling the above quantity occurs with speed modu-
lated by the Input patterns and leaves its specific sign in the matrix between
the hidden and the Output layer.

4.7 Autopoietic ANNs

The third type of ANNs can be described as follows: given N variables
defining M records in a dataset, evaluate how these variables are distributed
and how these records are naturally clustered in a small projection space K
(K<<N) according to their most important relationships. These ANNs are
named Autopoietic ANNs. Their specificity is the nonlinear extraction of the
similarities among records in a database, using all the variables at the same time.

One important feature of these ANNs is also the possibility that some
of them have to visualize in a 2 or 3 dimensional map the geographical simi-
larities among records and among variables. The prototypical equation of
the Autopoietic ANNs is:

along with those of the output units:

while the corrections of the full set of weights diminish:

The process of cancelling the above quantity occurs with speed modulated by the input patterns

and leaves its specific sign in the matrix between the hidden and the output layer.

4.7 Autopoietic ANNs

The third type of ANNs can be described as follows: given N variables defining M records in a

dataset, evaluate how these variables are distributed and how these records are naturally clustered in

a small projection space K (K<<N) according to their most important relationships. These ANNs are

named Autopoietic ANNs. Their specificity is the nonlinear extraction of the similarities among

records in a database, using all the variables at the same time.

One important feature of these ANNs is also the possibility that some of them have to visualize

in a 2 or 3 dimensional map the geographical similarities among records and among variables. The

prototypical equation of the Autopoietic ANNs is:

where y is the projection result along the time, x is the input vector (independent variables) and w is

the set of parameters (codebooks) to be approximated. In Autopoietic ANNs, the codebooks (w) after

the training phase represent an interesting case of cognitive abstraction: in each codebook the ANN

lim
𝑥𝑥→∞

ℎ𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 0 (48)

lim
𝑎𝑎→∞

𝑦𝑦𝑖𝑖
[𝑝𝑝](𝑛𝑛) = 0 (49)

lim
𝑥𝑥→∞

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛) = 0 (50)

𝑦𝑦[𝑛𝑛+1] = 𝑓𝑓(𝑦𝑦[𝑛𝑛], 𝑥𝑥, 𝑤𝑤∗) (51) (51)

where y is the projection result along the time, x is the Input vector (independ-
ent variables) and w is the set of parameters (codebooks) to be approximated.
In Autopoietic ANNs, the codebooks (w) after the training phase represent
an interesting case of cognitive abstraction: in each codebook the ANN tends
to develop its abstract cognitive representation of some of the data which it
learnt. Self-Organizing Map (SOM) is a known example of Autopoietic ANN.

4.8 Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is a neural network attributed to Teuvo
Kohonen (1982, 1984, 1990, 1995), who developed it between 1979 and
1982. It is an unsupervised type of network which offers a classification of the
Input vectors creating a prototype of the classes and a projection of the proto-

P.M. Buscema

76

types on a two-dimensional map (but n-dimensional maps are also possible)
able to record the relative proximity (or neighborhood) between the classes.
Therefore, the network offers important synthetic information on the Input:

1) It operates a classification of the Input vectors on the basis of their vector
similarity and assigns them to a class;
2) It creates a prototypical model of the classes with the same cardinality
(number of variables) as the Input vector;
3) It provides a measurement, expressed as a numerical value, of the distance/
proximity of the various classes;
d. It creates a relational map of the various classes, placing each class on the
map itself;
4) It provides a measurement of the distance/proximity existing between the
Input vectors from the class they belong to and between the Input vectors
and other classes.

The relative simplicity of the network architecture allowed its dissemina-
tion in terms of how successfully its implementation could be replicated (Fig.

Fig. 9 – Example of Unsupervised ANN for natural clustering – Self-Organizing Map.

The general philosophy of Artificial Adaptive Systems (AAS)

77

Fig. 10 – SOM with n-nodes of Input, with (mrmc) units of Kohonen’s layer. This architecture
allows the Inputs to be classified into m2 classes, each being a subclass represented by a codebook.

9). A typical SOM network is made up of 2 layers of units: a one-dimensional
Input (n-cardinality vector) and a two-dimensional Output layer (lines (r) ×
columns (c)), also known as Kohonen’s map (M matrix of mr x mc dimen-
sions). A matrix of the weights records the relation between each unit of the
Output layer and each unit of the Input layer (W matrix of (mr × mc × n)
dimensions). The weight vector connecting each Output unit to an Input unit
is called a “code-book” (vector wrc of n-cardinality) (Fig. 10).

Within the SOM network each Output unit can be interpreted as a class
whose codebook represents the prototype. The SOM algorithm is based on a
competitive algorithm founded on the vector quantification principle: at each
cycle of life in the network, the unit from Kohonen’s layer whose codebook is
most similar to the Input wins. This unit is given the name of Winner Unit (WU).
Consequently, the WU codebook is modified to get it even closer to the Input.
The codebooks belonging to the units that are physically near the WU (which
are part of the neighborhood) are also put closer to the Input of a given delta.

The algorithm calculates a first stage during which the parameters of
neighborhood and corrections of weights are set and the codebook initiali-
zation is carried out; this stage is followed by the cyclic stage of codebook
adjustment. In this stage the codebooks are modified for the network to clas-
sify the Input records. In short, the SOM algorithm is organized as follows:

P.M. Buscema

78

Initialization stage:

1) Layering of the Input vectors;
2) Definition of the dimensions (rows x columns) of the matrix which, in its
turn, determines the number of classes and therefore of prototypes (codebook);
3)Initialization of the codebooks: the values of the vectors of each codebook
are random;
4) Definition of the function (Gaussian, Mexican hat, etc.) and of the pa-
rameters regulating the neighborhood of the Winner Unit and of the weight
correction delta.

Cyclic calibration stage:

1) Presentation of the Input vectors (pattern) in a random and cyclic way.
2) Calculation of the d-activation of the K units of Kohonen’s layer: the
activation is calculated as vector distance between the Input vector X and
the weight vector Wj (mj codebook) which links the K unit to the Input
nodes.

The classic way to calculate the Euclidean distance between the vec-
tors is:

belonging to the units that are physically near the WU (which are part of the neighborhood) are also

put closer to the input of a given delta.

The algorithm calculates a first stage during which the parameters of neighborhood and

corrections of weights are set and the codebook initialization is carried out; this stage is followed by

the cyclic stage of codebook adjustment. In this stage the codebooks are modified for the network to

classify the input records. In short, the SOM algorithm is organized as follows:

Initialization stage:

1) Layering of the input vectors;
2) Definition of the dimensions (rows x columns) of the matrix which, in its turn, determines the
number of classes and therefore of prototypes (codebook);
3)Initialization of the codebooks: the values of the vectors of each codebook are random;
4) Definition of the function (Gaussian, Mexican hat, etc.) and of the parameters regulating the
neighborhood of the Winner Unit and of the weight correction delta.

Cyclic calibration stage:

1) Presentation of the input vectors (pattern) in a random and cyclic way;
2) Calculation of the d-activation of the K units of Kohonen’s layer: the activation is calculated as
vector distance between the input vector X and the weight vector Wj (mj codebook) which links the
K unit to the input nodes.

The classic way to calculate the Euclidean distance between the vectors is:

3) Determination of the winning unit WU: the node of the K layer whose activation is less:

𝑑𝑑𝑗𝑗 = ‖𝑋𝑋 −𝑊𝑊𝑗𝑗‖ = √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑖𝑖=1
 (52)

𝑊𝑊𝑊𝑊 = 𝑑𝑑𝑤𝑤 = min
𝑗𝑗∈[1,𝑀𝑀]

{

𝑑𝑑𝑗𝑗‖𝑋𝑋 −𝑊𝑊𝑗𝑗‖ = √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)2

𝑁𝑁

𝑖𝑖=1 }

 (53)

(52)

3) Determination of the winning unit WU: the node of the K layer whose
activation is less:

belonging to the units that are physically near the WU (which are part of the neighborhood) are also

put closer to the input of a given delta.

The algorithm calculates a first stage during which the parameters of neighborhood and

corrections of weights are set and the codebook initialization is carried out; this stage is followed by

the cyclic stage of codebook adjustment. In this stage the codebooks are modified for the network to

classify the input records. In short, the SOM algorithm is organized as follows:

Initialization stage:

1) Layering of the input vectors;
2) Definition of the dimensions (rows x columns) of the matrix which, in its turn, determines the
number of classes and therefore of prototypes (codebook);
3)Initialization of the codebooks: the values of the vectors of each codebook are random;
4) Definition of the function (Gaussian, Mexican hat, etc.) and of the parameters regulating the
neighborhood of the Winner Unit and of the weight correction delta.

Cyclic calibration stage:

1) Presentation of the input vectors (pattern) in a random and cyclic way;
2) Calculation of the d-activation of the K units of Kohonen’s layer: the activation is calculated as
vector distance between the input vector X and the weight vector Wj (mj codebook) which links the
K unit to the input nodes.

The classic way to calculate the Euclidean distance between the vectors is:

3) Determination of the winning unit WU: the node of the K layer whose activation is less:

𝑑𝑑𝑗𝑗 = ‖𝑋𝑋 −𝑊𝑊𝑗𝑗‖ = √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑖𝑖=1
 (52)

𝑊𝑊𝑊𝑊 = 𝑑𝑑𝑤𝑤 = min
𝑗𝑗∈[1,𝑀𝑀]

{

𝑑𝑑𝑗𝑗‖𝑋𝑋 −𝑊𝑊𝑗𝑗‖ = √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)2

𝑁𝑁

𝑖𝑖=1 }

 (53) (53)

4) Correction of the codebook (matrix of the Wij weights) of the winning
unit and the units adjacent to the winning unit in relation to the function set
to determine the level of weight correction according to the Input and the
proximity to the WU.
5) Updating of the factors determining the proximity and layering of the delta
correction of the codebooks.

The distinctive characteristic of the SOM is mainly related to the up-
dating of the weights, carried out not only on those related to the WU but
also, according to the chosen function, on the weights be-longing to the units
which are physically close to it.

The general philosophy of Artificial Adaptive Systems (AAS)

79

Fig. 12 – Example of the topology of the neighborhood space with matrix K (8r × 8c), where the
WU is the K55 unit. The first matrix shows a neighborhood in a square while the second a nei-
ghborhood in a rhomb. We can notice from the illustration that, for example, while in the matrix
to the left the v distance of the K66 unit to the WU is 1, in the matrix to the right the v distance of
the K66 unit to the WU is 2.

Fig. 11 – Topology of the neighborhood Space of a Winner Unit in a square
and in a rhomb; in the illustration v is the degree of proximity of the K units
to the WU.

P.M. Buscema

80

This characteristic also allows the SOM to show the position occupied
by the class within the matrix in relation to the position occupied by the other
classes. This type of topological mapping, able to organize the classes through
spatial relations, has been given the name of Feature Mapping.

4.9 Topology of the neighborhood

The neighborhood of a WU is defined by the degree of physical proxim-
ity (v) existing between the WU and the other K units. Each unit of Kohonen’s
layer occupies a position on the matrix of the co-ordinates (r, c) for which
the neighborhood is indexed with a scalar degree from 1 to the maximum
line and column dimension.

4) Correction of the codebook (matrix of the Wij weights) of the winning unit and the units adjacent
to the winning unit in relation to the function set to determine the level of weight correction according
to the input and the proximity to the WU;
5) Updating of the factors determining the proximity and layering of the delta correction of the
codebooks.

The distinctive characteristic of the SOM is mainly related to the updating of the weights,

carried out not only on those related to the WU but also, according to the chosen function, on the

weights be-longing to the units which are physically close to it.

This characteristic also allows the SOM to show the position occupied by the class within the

matrix in relation to the position occupied by the other classes. This type of topological mapping, able

to organize the classes through spatial relations, has been given the name of Feature Mapping.

4.9 Topology of the neighborhood

The neighborhood of a WU is defined by the degree of physical proximity (v) existing between

the WU and the other K units. Each unit of Kohonen’s layer occupies a position on the matrix of the

co-ordinates (r, c) for which the neighborhood is indexed with a scalar degree from 1 to the maximum

line and column dimension.

i iv r OR v c   

where max i = max r OR max c

Function h(v) regulates the size of the neighborhood and the extent of the corrections which

need to be made on the codebooks of the units close to the WU. With the passing of time (cycles

during which all the training set models are viewed) the neighborhood is reduced until it disappears;

in this case the only unit to which the codebook is corrected is the WU. Since the codebooks are set

during the initialization stage with random values within the layering range, the proximity of the WU

at the beginning of the learning stage is regulated with a maximum size in order to allow all the

codebooks to be modified and put closer to the input vectors. The reduced proximity with wide

matrices can determine the fact that some areas of the K matrix remain isolated because the codebooks

where max i = max r OR max c

Function h(v) regulates the size of the neighborhood and the extent of
the corrections which need to be made on the codebooks of the units close
to the WU. With the passing of time (cycles during which all the training set
models are viewed) the neighborhood is reduced until it disappears; in this
case the only unit to which the codebook is corrected is the WU. Since the
codebooks are set during the initialization stage with random values within
the layering range, the proximity of the WU at the beginning of the learning
stage is regulated with a maximum size in order to allow all the codebooks
to be modified and put closer to the Input vectors. The reduced proximity
with wide matrices can determine the fact that some areas of the K matrix
remain isolated because the codebooks are too different from the Input vec-
tors. Function h(v) must also allow the extent of the correction to be bigger
for the units close to the WU, and therefore to decrease when v is larger. The
Gaussian function has been shown to meet these needs remarkably well:

are too different from the input vectors. Function h(v) must also allow the extent of the correction to

be bigger for the units close to the WU, and therefore to decrease when v is larger. The Gaussian

function has been shown to meet these needs remarkably well:

h (v): = EXP(-(SQR (v) / σ));

where d is the physical proximity of the unit to the Wu and σ is a parameter which linearly decreases

by a Δ as time increases, thereby modifying the width of the curve (bell), thus the extent of the

neighborhood. Figures 11 and 12 show examples of Neighborhood Space topologies:

4.10 Correction of the codebook

The rate of correction a codebook undergoes is determined by various factors:

1) Difference (d) existing between the vector codebook and the input vector;
2) Physical distance to the WU (v);
3) Function of the neighborhood h (v) which determines a Δ σ;
4) Function of weight layering in relation to the period of life of the network which determines a Δ
α.

In a SOM the codebooks are moved closer to the input vector, therefore for each generic

codebook W the distance existing between the corresponding weights wij and the variables xi of the

generic input vector X is calculated. On the basis of the function h (v) of the neighborhood, the Δ σ

is therefore calculated in relation to the value of the parameter K

to the WU.Δ σ is the measure which assumes y in the function h(v) when x= v. In the case in which

function h(v) is the Gaussian curve, then the Δ σ will be calculated in the following way (Fig. 13):

  

2v

evh


 (54) (54)

h (v): = EXP(-(SQR (v) / σ))

where d is the physical proximity of the unit to the Wu and σ is a parameter
which linearly decreases by a Δ as time increases, thereby modifying the width
of the curve (bell), thus the extent of the neighborhood. Figures 11 and 12
show examples of Neighborhood Space topologies:

4.10 Correction of the codebook

The rate of correction a codebook undergoes is determined by various
factors:

The general philosophy of Artificial Adaptive Systems (AAS)

81

1) Difference (d) existing between the vector codebook and the Input vector;
2) Physical distance to the WU (v);
3) Function of the neighborhood h (v) which determines a Δ σ;
4) Function of weight layering in relation to the period of life of the network
which determines a Δ α.

In a SOM the codebooks are moved closer to the Input vector, therefore
for each generic codebook W the distance existing between the corresponding
weights wij and the variables xi of the generic Input vector X is calculated.
On the basis of the function h (v) of the neighborhood, the Δ σ is therefore
calculated in relation to the value of the parameter s and the proximity (v)
of the unit K to the WU.Δ σ is the measure which assumes y in the function
h(v) when x= v. In the case in which function h(v) is the Gaussian curve, then
the Δ σ will be calculated in the following way (Fig. 13):

The Δσ is calculated as a factor of a linear function decreasing in relation to the time the network

is alive. Therefore, the function of correction of the codebooks is as follows:

5. A NEURAL NETWORKS THEORY

ANNs still need a general theory able:

1) to explain which is the place that ANNs have in the general framework of the natural sciences and
2) to explain which are the basic and atomic features we need to assemble in order to build new Neural
Networks;

We can try to give a first and an approximate answer to these questions. ANNs belong to the

field of Artificial Sciences. Artificial Sciences are a new and a special branch of Natural Sciences.

Artificial Sciences are the new computerized laboratories through which researchers try to simulate

natural processes, in order to explain their complex and hidden laws. More specifically, ANNs are a

special type of computerized laboratories able to reproduce adaptive natural processes. Under this

respect, data represent a statistical sample of the natural process we intend to understand. From

historical point of view ANNs have shown three different targets:

1) To understand deeply the human brain work by means of its artificial simulation. In these
researches, the comprehension of human brain physiology remains the main goal and ANNs are
important simulation tools;

∆𝜎𝜎 = 𝑒𝑒−
𝑣𝑣2
𝜎𝜎

(55)

𝑓𝑓(𝑤𝑤) = 𝛼𝛼 ∙ 𝑒𝑒−
𝑣𝑣2
𝜎𝜎 √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)

2
𝑁𝑁

𝑖𝑖=1
 (56)

𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝛼𝛼(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗 (57)

(55)

The Δσ is calculated as a factor of a linear function decreasing in rela-
tion to the time the network is alive. Therefore, the function of correction of
the codebooks is as follows:

Fig. 13 – The illustration shows how, when the parameter ∆σ(1, 2, 3) changes – parameter that
determines the correction curve of the neighborhood function – the number of units that are part
of the neighborhood and the extent of the correction (v1, v2, v3) made on the weights also change.

P.M. Buscema

82

The Δσ is calculated as a factor of a linear function decreasing in relation to the time the network

is alive. Therefore, the function of correction of the codebooks is as follows:

5. A NEURAL NETWORKS THEORY

ANNs still need a general theory able:

1) to explain which is the place that ANNs have in the general framework of the natural sciences and
2) to explain which are the basic and atomic features we need to assemble in order to build new Neural
Networks;

We can try to give a first and an approximate answer to these questions. ANNs belong to the

field of Artificial Sciences. Artificial Sciences are a new and a special branch of Natural Sciences.

Artificial Sciences are the new computerized laboratories through which researchers try to simulate

natural processes, in order to explain their complex and hidden laws. More specifically, ANNs are a

special type of computerized laboratories able to reproduce adaptive natural processes. Under this

respect, data represent a statistical sample of the natural process we intend to understand. From

historical point of view ANNs have shown three different targets:

1) To understand deeply the human brain work by means of its artificial simulation. In these
researches, the comprehension of human brain physiology remains the main goal and ANNs are
important simulation tools;

∆𝜎𝜎 = 𝑒𝑒−
𝑣𝑣2
𝜎𝜎

(55)

𝑓𝑓(𝑤𝑤) = 𝛼𝛼 ∙ 𝑒𝑒−
𝑣𝑣2
𝜎𝜎 √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)

2
𝑁𝑁

𝑖𝑖=1
 (56)

𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝛼𝛼(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗 (57)

(56)

The Δσ is calculated as a factor of a linear function decreasing in relation to the time the network

is alive. Therefore, the function of correction of the codebooks is as follows:

5. A NEURAL NETWORKS THEORY

ANNs still need a general theory able:

1) to explain which is the place that ANNs have in the general framework of the natural sciences and
2) to explain which are the basic and atomic features we need to assemble in order to build new Neural
Networks;

We can try to give a first and an approximate answer to these questions. ANNs belong to the

field of Artificial Sciences. Artificial Sciences are a new and a special branch of Natural Sciences.

Artificial Sciences are the new computerized laboratories through which researchers try to simulate

natural processes, in order to explain their complex and hidden laws. More specifically, ANNs are a

special type of computerized laboratories able to reproduce adaptive natural processes. Under this

respect, data represent a statistical sample of the natural process we intend to understand. From

historical point of view ANNs have shown three different targets:

1) To understand deeply the human brain work by means of its artificial simulation. In these
researches, the comprehension of human brain physiology remains the main goal and ANNs are
important simulation tools;

∆𝜎𝜎 = 𝑒𝑒−
𝑣𝑣2
𝜎𝜎

(55)

𝑓𝑓(𝑤𝑤) = 𝛼𝛼 ∙ 𝑒𝑒−
𝑣𝑣2
𝜎𝜎 √∑(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗)

2
𝑁𝑁

𝑖𝑖=1
 (56)

𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝛼𝛼(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗 (57) (57)

5. A Neural Networks Theory

ANNs still need a general theory able:

1) to explain which is the place that ANNs have in the general framework
of the natural sciences, and
2) to explain which are the basic and atomic features we need to assemble in
order to build new Neural Networks.

We can try to give a first and an approximate answer to these questions.
ANNs belong to the field of Artificial Sciences. Artificial Sciences are a new and
a special branch of Natural Sciences. Artificial Sciences are the new computer-
ized laboratories through which researchers try to simulate natural processes,
in order to explain their complex and hidden laws. More specifically, ANNs
are a special type of computerized laboratories able to reproduce adaptive
natural processes. Under this respect, data represent a statistical sample of
the natural process we intend to understand. From historical point of view
ANNs have shown three different targets:

1) To understand deeply the human brain work by means of its artificial
simulation. In these researches, the comprehension of human brain physiology
remains the main goal and ANNs are important simulation tools;
2) To develop new computation algorithms, inspired to human brain archi-
tecture, able to processes information, more effective and fast way. In this
field the main goal is to define new algorithms, and the human brain structure
represents only a milestone for emulation activities.
3) To understand in every natural process how the transformation works from
individual behaviors to collective behaviors. In other words, how the transition
works in nature from the simple and local processes to the global and com-
plex processes. In this case the main target of the scientist is the discovery of
natural laws and the ANNs represent a set of new algorithms with which we
can implement the correct experiments to control our hypothesis. In this case
ANN algorithms represent a powerful experimental framework for science.

These three different fields, and especially the last one, need a general
theory able to explain how to build these algorithms and/or tools in a math-

The general philosophy of Artificial Adaptive Systems (AAS)

83

ematical and physical correct way. For these reasons we are thinking to a
general theory of Artificial Adaptive System.

But, it is also important to elaborate a generative model able to explain
how to build new ANNs, starting from the reasoned assembly of ANNs’
atomic components. For this reason we propose a bottom-up theoretical
process, composed of three steps (a basic layer, a central layer, and a complex
layer) and two components for each step (semantics and syntax):

1. Basic layer:
I. Semantics: Node
II. Syntax: Weighted Connection.

2. Central layer:
I. Semantics: Nodes & Connections =Networks
II. Syntax: Nodes & Connections updating under specific Learning Laws and
Constraints.

3. Complex layer:
I. Semantics: Organism = Networks assembly
II. Syntax: Networks interaction under specific Signal Flow rules.

Each component of this theoretical framework needs to be analyzed in
details, as we tried to do in a provisory way in a previous paper (Buscema 1998);
for example: the morphology of the Node and the typology of the Connections.
But this could be the main goal of a next analytical and experimental research.

Paolo Massimo Buscema
Semeion Research Center

Center for Computational and Mathematical Biology
University of Colorado at Denver

References

Buscema P.M. 1998, Artificial Neural Networks and Complex Social Systems. Theory, «Sub-
stance Use and Misuse (SUM)», 33/1, 17-199.

Buscema P.M. 2007a, A Novel Adapting Mapping Method for Emergent Properties Discovery
in Data Bases: Experience in Medical Field, in Institute of Electrical and Electronics
Engineers International Conference on Systems, Man and Cybernetics (SMC 2007)
(Montreal, Canada 2007), 7-10.

Buscema P.M. 2007b, Squashing Theory and Contractive Map Network, Semeion Technical
Paper # 32, Rome.

Buscema P.M., Benzi R. 2011, Quakes Prediction Using a Highly Non Linear System and a
Minimal Dataset, in Buscema, Ruggieri 2011, 41-66.

Buscema P.M., Helgason C., Grossi E. 2008, Auto-Contractive Maps, H Function and Ma-
ximally Regular Graph: Theory and Applications, Special Session on Artificial Adaptive
Systems, Medicine: applications in the real world (New York 2008), North American
Fuzzy Information Processing Society 2008 (Institute of Electrical and Electronics
Engineers).

P.M. Buscema

84

Buscema P.M., Ruggieri M. (eds.) 2011, Advanced Networks, Algorithms and Modeling for
Earthquake Prediction, River Publisher Series in Information Science and Technology,
Aalborg, Danmark, River Publisher.

Buscema P.M., Sacco P.L. 2010, Auto-contractive Maps, the H Function, and the Maximally
Regular Graph (MRG): A New Methodology for Data Mining, in Capecchi et al.
2010, 227-310.

Buscema P.M. et al. 2008, Auto-Contractive Maps, An Artificial Adaptive System for Data Mi-
ning. An Application to Alzheimer Disease, «Current Alzheimer Research», 5, 481-498.

Buscema P.M., Massini G., Newman F., Grossi E., Tasle W. 2010, Application of Adaptive
Systems Methodology to Radiotherapy, in Annual Meeting of the North American
Fuzzy Information Processing Society, Fuzzy Information Processing Society NAFIPS
(Canada 2010), Institute of Electrical and Electronics Engineers, Toronto, 1-8.

Capecchi V., Buscema P.M., Contucci P., D’Amore B. (eds.) 2010, Applications of Ma-
thematics in Models, Artificial Neural Networks and Arts, New York-Berlin, Springer.

Chauvin Y., Rumelhart D.E. 1995, Backpropagation: Theory, Architectures, and Applications,
Lawrence Erlbaum Associates, New Jersey, Inc. Publishers 365 Brodway-Hillsdale.

Grossi E. et al. 2011, The Interaction Between Culture, Health and Psychological Well-Being:
Data Mining from the Italian Culture and Well-Being Project, J Happiness Studies,
Springer.

Kohonen T. 1982, Self-organized formation of topologically correct feature maps, «Biological
Cybernetics» 43, 59-69, reprinted from Anderson J.A., Rosenfeld E. (eds.), Neuro-
computing Foundations of Research, Cambridge, The MIT Press.

Kohonen T. 1984, Self-Organization and Associative Memories, Vol. 8, Springer Series in
Information Sciences, Berlin, Springer-Verlag.

Kohonen T. 1990, The Self-Organizing Map, Proceedings Institute of Electrical and Electronics
Engineers, 78, 1464-1480.

Kohonen T. 1995, Self-Organizing Maps, Berlin, Springer-Verlag.
Le Cun Y., Kanter L., Solla S.A. 1991, Second Order Properties of Error Surface Learning

Time and Generalization, Advances in Neural Information Processing Systems, Vol. 3,
918-924, San Mateo, CA, Morgan Kauffmann.

Licastro F. et al. 2010, Multi Factorial Interactions in the Pathogenesis Pathway of Alzheimer
Disease: a New Risk Charts for Prevention of Dementia, «Immunity & Ageing», 7,
Suppl. 1, S4.

Minsky M., Papert S. 1988, Perceptrons, Cambridge Ma., The MIT Press.
Rumelhart D.E., Hinton G.E., Williams R.J. 1986, Learning Internal Representations by

Error Propagation, in Rumelhart., McClelland 1986, 318-262.
Rumelhart D.E., McClelland J.L. (eds.) 1986, Parallel Distributed Processing, Vol.1 Founda-

tions, Explorations in the Microstructure of Cognition, Cambridge Ma., The MIT Press.
Werbos P. 1974, Beyond Regression: New Tools for Prediction and Analysis in Behavioral

Sciences, PhD Thesis, Harvard, Harvard University.

Abstract

This paper describes the philosophy of Artificial Adaptive Systems and compares it
with natural language, revealing some striking parallels. Artificial sciences create models of
reality, but their ability to approximate the “real world” determines their effectiveness and
usefulness. This paper provides a clear understanding of the expectations created by the use
of this technology, an evaluation of the complexities involved, and expresses the necessity of
continuing with an open mind to unexpected and still unknown potentials. Supervised and
unsupervised networks are described here.

