
53

The General Philosophy  
of Artificial Adaptive Systems (AAS)

1. Artificial Adaptive Systems

Artificial Adaptive Systems (AAS) form part of the vast world of Natural 
Computation (NC) which is itself a subset of the Artificial Sciences. Artificial 
Sciences are those sciences for which an understanding of Natural and/or 
Cultural processes is achieved by the recreation of those processes through 
automatic models. We shall use an analogy to explain the difference between 
Artificial Science and natural language; the computer is to the Artificial Sci-
ences as writing is to natural language. That is, the AS consists of a formal 
algebra used for the generation of artificial models which are composed of 
structures and processes, and natural languages are composed of semantics, 
syntax and pragmatics for the generation of texts. 

Through each of these very different systems a level of independence is 
created; in natural languages the utterances of sounds are fully dependent on 
the time in which the utterances are made, but by representing those utterances 
with writing they become independent from time, for written documents (in 
the form of books, manuscripts, typewritten pages, computer generated Out-
put in the form of both digital and hardcopy, etc.) exist outside the dimension 
of time. They exist in the spatial dimension. Similarly, the computer achieves 
independence from the physical system through the creation of a model. Such 
models are automations of the original system and permit one to study the 
natural/physical system at any time, even if the original system no longer exists. 

An example of such a system is the active eruption of a volcano or the 
tremors of an earthquake. Through extensive measurements of variables a 
model can be constructed that permits researchers to recreate the original 
volcanic activity or earthquake in a completely controlled environment by 
which variables of choice can be controlled. By using writing as an extension 
of a natural language permits the creation of cultural objects that, before on-
set of writing, were unthinkable. Such cultural objects are stories, legal texts, 
manuals, historical records, etc. In a similar manner the AS can create models 
of complexity that, before the construction of computers, were unthinkable. 
Natural languages and Artificial Sciences, in the absence of writing and the 
computer, are therefore limited. But a written document not based on a natural 
language, or an automatic model not generated by formal algebra, are little 
more than a set of scribbles (Fig. 1). 

In the Artificial Sciences, the understanding of any natural and/or 
cultural process occurs in a way that is proportional to the capacity of the 
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automatic artificial model to recreate that process. The more positive the 
outcome of a comparison between an original process and the generated 
model, the more likely it is that the artificial model has correctly explained 
the functioning rules of the original process. However, this comparison can-
not be made simple-mindedly. Sophisticated analytical tools are needed to 
make a reliable and correct comparison between an original process and an 
artificial model. Most of the analytical tools useful for this comparison consist 
of comparing the dynamics of the original process and the dynamics of the 
artificial model when the respective conditions in the surroundings are varied. 
In sum, it could be argued that:

1) on varying the conditions in the surroundings, yields a greater variety of 
response dynamics obtained both in the original process and in the resulting 
artificial model; and
2) the more these dynamics between the original process and the resulting 
artificial model are homologous, we can therefore conclude
3) the more probable it is that the artificial model is a good explanation of 
the original process.

In Fig. 2, we propose a taxonomic tree for characterization of the dis-
ciplines that, through NC and Classic Computation, make up the Artificial 
Sciences system. NC refers to that part of the Artificial Sciences responsible 
for the construction of automatic models of Natural and/or Cultural Processes 

Fig. 1 – The diagram shows how the analysis of Natural and/or Cultural Processes, 
that need to be understood, starts from a theory which, adequately formalized 
(Formal Algebra), is able to generate Automatic Artificial Models of those Natural 
and/or Cultural Processes. Lastly, the generated Automatic Artificial Models must 
be compared with the Natural and/or Cultural Processes of which they profess to 
be the model and the explanation.
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through the local interaction of non-isomorphic micro processes. In NC, it 
is therefore assumed that:

1) every process is, more or less, contingent on the result of more basic pro-
cesses that tend to self-organize in time and space;
2) none of the micro processes are themselves informative concerning the 
function that they will assume with respect to others, nor the global process 
of which it will be part.

This computational philosophy, very economic for the creation of simple 
models, can be used effectively to create any type of process or model that is 
inspired by complex processes. NC in fact deals with the construction of arti-
ficial models that do not simulate the complexity of Natural and/or Cultural 
Processes through rules, but rather, through commitments that, depending 
on the space and time through which the process takes form, autonomously 

Fig. 2 – Taxonomic tree of the disciplines that make up the Artificial Sciences system.
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create a set of contingent and approximate rules. NC does not try to recreate 
Natural and/or Cultural Processes by analyzing the rules which make them 
function, and thus formalizing them into an artificial model. 

On the contrary, NC tries to recreate Natural and/or Cultural Processes 
by constructing artificial models able to create local rules dynamically and 
therefore capable of change in accordance with the process itself. The links 
that enable NC models to generate rules dynamically are similar to the 
Kantian transcendental rules: these are rules that establish the conditions 
of possibility of other rules. In NC, dynamics such as learning to learn are 
implicit in the artificial models themselves, whilst in Classical Computation 
additional rules are required (Fig. 3). NC can be decomposed into the fol-
lowing:

Fig. 3 – The diagram shows in more detail the formalization, automation and comparison between 
Natural and/or Cultural Processes and Automatic Artificial Models seen from two points of view 
(Classical Computation and NC). Each point of view can be seen as a cycle that can repeat itself 
several times. This allows one to deduce that the human scientific process characterizing both the 
cycles resembles more the NC than the Classical Computation one.
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– Descriptive Systems (DS): are derived from disciplines that have developed, 
whether or not intentionally, a formal algebra that has proved particularly 
effective in drawing up appropriate functioning links of artificial models 
generated within NC (for example: the Theory of the Dynamic Systems, the 
Theory of Autopoietic Systems, Fuzzy Logic, etc.).
– Generative Systems (GS): theories of NC that have explicitly provided a 
formal algebra aimed at generating artificial models of Natural and/or Cul-
tural Processes through links that create dynamic rules in space and in time. 
In turn, Generative Systems can be broken down into:
– Physical Systems (PS): a grouping of those theories of NC whose genera-
tive algebra creates artificial models comparable to physical and/or cultural 
processes, only when the artificial model reaches given evolutionary stages 
(limit cycles type). Whilst not necessarily the route through which the links 
generate the model, it is itself a model of the original process. In brief, in 
these systems in which the generation time of the model is not necessarily 
an artificial model of the evolution of the process time (for example: Fractal 
Geometry, etc.).
– Artificial Adaptive Systems (AAS): theories of NC whose generative algebra 
creates artificial models of Natural and/or Cultural Processes, whose birth 

Fig. 4 – Artificial Adaptive Systems: general diagram.
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process is itself an artificial model comparable to the birth of the original 
process. They are therefore theories assuming the emergence time in the model 
as a formal model of the process time itself.

In short: for these theories, each phase of artificial generation is a model 
comparable to a Natural and/or Cultural process. Artificial Adaptive Systems 
in turn comprise (Fig. 4):

– Learning Systems (Artificial Neural Networks – ANNs): these are algorithms 
for processing information that allow for the reconstruction, in a particularly 
effective way, of the approximate rules relating to a set of “explanatory” 
data concerning the considered problem (the Input), with a set of data (the 
Output) for which it is requested to make a correct forecast or reproduction 
in conditions of incomplete information.
– Evolutionary Systems (ES): the generation of adaptive systems changing their 
architecture and their functions over time in order to adapt to the environment 
into which they are integrated, or comply with the links and rules that define 
their environment and, therefore, the problem to be simulated. Basically, these 
are systems that are developed to find data and/or optimum rules within the 
statically and dynamically determined links and/or rules. The development 
of a genotype from a time ti to a time t (i+n) is a good example of the devel-
opment over time of the architecture and functions of an adaptive system.

2. A brief introduction to Artificial Neural Networks

2.1 Architecture

ANNs are a family of methods inspired to the human brain learning 
capability.

ANNs are scientifically used in three different epistemological direc-
tions:

1) To understand the working of human brain, by simulation;
2) To optimize parallel computation research (human brain emulation);
3) To understand the transition from individual to collective behavior (Data 
Analysis, Data Mining and the research on Complex Systems are part of this 
point).

Currently ANNs comprise a range of very different models, but they 
all share the following characteristics:

1) The fundamental elements of each ANN are the Nodes, also known as 
Processing Elements (PE), and their Connections.
2) Each node in an ANN has its own Input, through which it receives com-
munications from the other nodes or from the environment; and its own 
Output, through which it communicates with other nodes or with the en-
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vironment. Finally it has a function, f(•), by which it transforms its global 
Input into Output.
3) Each Connection is characterized by the force with which the pair of nodes 
excites or inhibits each other: positive values indicate excitatory connections 
and negative ones indicate inhibitory connections.
4) Connections between nodes may change over time. This dynamic triggers 
a learning process throughout the entire ANN. The way (the law by which) 
the connections change in time is called the “Learning Equation”.
5) The overall dynamic of an ANN is linked to time: in order for the con-
nections of the ANN to properly change, the environment must act on the 
ANN several times.
6) When ANNs are used to process data, these latter are their environment. 
Thus, in order to process data, these latter data must be subjected to the 
ANN several times.
7) The overall dynamic of an ANN depends exclusively on the local interaction 
of its nodes. The final state of the ANN must, therefore, evolve spontaneously 
from the interaction of all of its components (nodes).
8) Communications between nodes in every ANN tend to occur in parallel. 
This parallelism may be synchronous or asynchronous and each ANN may 
emphasize it in a different way. However, an ANN must present some form 
of parallelism in the activity of its nodes. 

From a theoretical viewpoint this parallelism does not depend on the 
hardware on which the ANNs are implemented. Every ANN must present 
the following architectural components:

1) Type and number of nodes and their corresponding properties;
2) Type and number of connections and their corresponding location;
3) Type of Signal Flow Strategy;
4) Type of Learning Strategy.

2.2 The nodes

There can be three types of ANN nodes, depending on the position they 
occupy within the ANN:

1) Input nodes: the nodes that (also) receive signals from the environment 
outside the ANN.
2) Output nodes: the nodes whose signal (also) acts on the environment 
outside the ANN.
3) Hidden nodes: the nodes that receive signals only from other nodes in the 
ANN and send their signal only to other nodes in the ANN.

The number of input nodes depends on the way the ANN is intended 
to read the environment. The input nodes are the ANN’s sensors. When the 
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ANN’s environment consists of data the ANN should process, the input node 
corresponds to a sort of data variable. The number of Output nodes depends 
on the way one wants the ANN to act on the environment. The Output nodes 
are the effectors of the ANN. When the ANN’s environment consists of data 
to process, the Output nodes represent the variables sought or the results of 
the processing that occurs within the ANN. The number of hidden nodes 
depends on the complexity of the function one intends to map between the 
Input nodes and the Output nodes. The nodes of each ANN may be grouped 
into classes of nodes sharing the same properties. Normally these classes are 
called layers. Various types can be distinguished:

1) Monolayer ANNs: all nodes of the ANN have the same properties.
2) Multilayer ANNs: the ANN nodes are grouped in functional classes; 
for example, nodes that (a) share the same signal transfer functions or (b) 
receive the signal only from nodes of other layers and send them only to 
new layers.
3) Nodes Sensitive ANNs: each node is specific to the position it occupies 
within the ANN; e.g. the nodes closest together communicate more intensely 
than they do with those further away.

2.3 The connections

There may be various types of connections: Mono-Directional, Bi-
directional, Symmetrical, Anti-Symmetrical and Reflexive (Fig. 5). The num-
ber of connections is proportional to the memory capabilities of the ANN. 
Positioning the connections may be useful as methodological preprocessing 
for the problem to be solved, but it is not necessary. An ANN in which the 
connections between nodes or between layers are not all enabled is called 
an ANN with Dedicated Connections; otherwise it is known as a maximum 
gradient ANN. In each ANN the connections may be:

1) Adaptive: they change depending on the learning equation.
2) Fixed: they remain at fixed values throughout the learning process.
3) Variable: they change deterministically as other connections change.

Fig. 5 – Types of possible connections.
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2.4 The signal flow

In every ANN the signal may proceed in a direct fashion (from In-
put to Output) or in a complex fashion. Thus we have two types of Flow 
Strategy:

1) Feed forward ANN: the signal proceeds from the Input to the Output 
of the ANN passing all nodes only once.
2) ANN with Feedback: the signal proceeds with specific feedbacks, deter-
mined beforehand, or depending on the presence of particular conditions.

The ANNs with Feedback are also known as Recurrent ANNs, and 
are the most plausible from a biological point of view. They are often 
used to process timing signals and they are the most complex to deal with 
mathematically. In an industrial context, therefore, they are often used 
with feedback conditions determined a priori (in order to ensure stability).

3. Learning in the Artificial Neural Network

Every ANN can learn, over some period of time, the properties of 
the environment in which it is immersed or the characteristics of the data 
which it presents. This is accomplished in basically one of two ways (or 
mixture of both):

1) By reconstructing approximately the probability density function of the 
data received from the environment, compared with preset constraints.
2) By reconstructing approximately the parameters which solve the equation 
relating the Input data to the Output data, compared with preset constraints.

The first method is known in the context of ANNs as Vector Quan-
tization; the second method is Gradient Descent. The Vector Quantization 
method articulates the Input and Output variables in hyperspheres of a 
defined range. The Gradient Descent method articulates the Input and Out-
put variables in hyperplanes. The difference between these two methods 
becomes evident in the case of a feed forward ANN with at least one hidden 
unit layer. With Vector Quantization the hidden units encode locally the 
more relevant traits of the Input vector. At the end of the learning process, 
each hidden unit will be a Prototype representing one or more relevant 
traits of the Input vector in definitive and exclusive form. With Gradient 
Descent, the hidden units encode in a distributed manner the most relevant 
characteristics of the Input vector. At the end of the learning process, each 
hidden unit will tend to represent the relevant traits of the Input in a fuzzy 
and non-exclusive fashion. Summing up, the Vector Quantization develops 
a local learning, and the Gradient Descent develops a distributed or vecto-
rial learning. Considerable differences exist between the two approaches: 
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1) Distributed learning is computationally more efficient than local learning. 
It may also be more biologically plausible (not always nor in every case).
2) When the function that connects Input to Output is nonlinear, distributed 
learning may “jam” on local minimums due to the use of the Gradient De-
scent technique.
3) Local learning is often quicker than distributed learning.
4) The regionalization of Input on Output is more sharply defined when using 
Vector Quantization than when using Gradient Descent.
5) When interrogating an ANN trained with Vector Quantization, the ANN 
responses cannot be different from those given during learning; in the case of 
an ANN trained with Gradient Descent the responses may be different from 
those obtained during the learning phase.
6) This feature is so important that families of ANNs treating the signal in 2 
steps have been designed: first with the Quantization method and then with 
the Gradient method.
7) Local learning helps the researcher to understand how the ANN has in-
terpreted and solved the problem; distributed learning makes this task more 
complicated (though not impossible).
8) Local learning is a competitive type; distributed learning presents aspects 
of both competitive and cooperative behavior between the nodes. 

4. Artificial Neural Network typology

Traditionally ANNs are divided into two families: Supervised ANNs 
and Unsupervised ANNs. But from a theoretical point of view this distinction 
could be superficial. An interesting viewpoint on this theoretical debate can 
be gained by noting that, from the point of view of the energy function that 
is being calculated by an unsupervised vs. a supervised ANN, it is easy to 
subsume both approaches into a common framework. The energy function 
for a supervised ANN can be written as its Mean Square Error:

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural 

network is represented by the following equation: 
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But if we assume that equation (1) represents the mean error of a linear 
perceptron, then we can develop equation (1) as follows:

Whereas, traditionally, the energy minimization function in an unsupervised auto-associative neural 

network is represented by the following equation: 
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At this point it is easy to derive:

And equation (5) is the energy function for an unsupervised ANN (see equation (2). 

 

Therefore: 
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approach than supervised learning in that it entails doing away with some free parameters, namely, 
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extra free parameters, as a way to focus the learning model upon a more clear-cut task. Adopting this 

point of view ANNs can be classified into three sub families: 

 
1) Supervised ANNs; 
2) Unsupervised Auto Associative Memories; 
3) Unsupervised Autopoietic ANNs. 
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We can thus in principle regard unsupervised ANN learning as a 
conceptually more economical approach than supervised learning in that it 
entails doing away with some free parameters, namely, targets. Or, on the 
other hand, we can make a case for supervised learning, i.e. for the inclusion 
of the extra free parameters, as a way to focus the learning model upon a 
more clear-cut task. Adopting this point of view ANNs can be classified into 
three sub families:
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1) Supervised ANNs;
2) Unsupervised Auto Associative Memories;
3) Unsupervised Autopoietic ANNs.

Furthermore, a unique pseudo code can be used as general framework 
to build any kind of ANN (Supervised and Unsupervised):

1. Design of the Architecture of the Network
2. Initialization of Weights
3. Do Epochs

{
do Cycles
{
a. Presentation of one Pattern as Input Vector
b. Signal Transfer up to the Output layer
c. Error Computation for each Node and Weight
d. Weights and/or Nodes updating
e. Possible Recurrence	
} Until (all Patterns are presented) 

} Until (Cost Function is Optimized)

At this point we can describe from a didactic standpoint three families of 
different problem and consequently the three more famous families of ANNs.

4.1 Supervised ANNs

The first type of problem with which an ANN can deal is expressed 
as follows: given N variables, about which it is easy to gather data, and 
M variables, which differ from the first and about which it is difficult and 
costly to gather data, assess whether it is possible to predict the values of the 
M variables on the basis of the N variables. This family of ANNs is named 
Supervised ANNs (SV) and their prototypical equation is:

At this point we can describe from a didactic standpoint three families of different problem and 

consequently the three more famous families of ANNs. 

 

4.1 Supervised ANNs 

The first type of problem with which an ANN can deal is expressed as follows: given N 

variables, about which it is easy to gather data, and M variables, which differ from the first and about 

which it is difficult and costly to gather data, assess whether it is possible to predict the values of the 

M variables on the basis of the N variables. This family of ANNs is named Supervised ANNs (SV) 

and their prototypical equation is: 

 

 

where y is the vector of the M variables to predict and/or to recognize (target), x is the vector of N 

variables working as networks inputs, w is the set of parameters to approximate and f ( ) is a non-

linear and composed function to model. When the M variables occur in time subsequent to the N 

variables, the problem is described as a prediction problem; when the M variables depend on some 

sort of typology, the problem is described as one of recognition and/or classification (this is also 

sometimes referred to as the proscription problem). 

Conceptually it is the same kind of problem: using values for some known variables to predict 

the values of other unknown variables. In order to correctly apply an ANN to this type of problem we 

need to run a validation protocol. We must start with a good sample of cases, in each of which the N 

variables (known) and the M variables (to be discovered) are both known and reliable. The sample of 

complete data is needed in order to: 

 
1) train the ANN; 
2) assess its predictive performance. 
 

The validation protocol uses part of the sample to train the ANN (Training Set), whilst the 

remaining cases are used to assess the predictive capability of the ANN (Testing Set or Validation 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝑤𝑤∗) (7) (7)

where y is the vector of the M variables to predict and/or to recognize (target), 
x is the vector of N variables working as networks Inputs, w is the set of 
parameters to approximate and f ( ) is a non-linear and composed function to 
model. When the M variables occur in time subsequent to the N variables, the 
problem is described as a prediction problem; when the M variables depend on 
some sort of typology, the problem is described as one of recognition and/or 
classification (this is also sometimes referred to as the proscription problem).

Conceptually it is the same kind of problem: using values for some 
known variables to predict the values of other unknown variables. In order to 
correctly apply an ANN to this type of problem we need to run a validation 
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protocol. We must start with a good sample of cases, in each of which the N 
variables (known) and the M variables (to be discovered) are both known 
and reliable. The sample of complete data is needed in order to:

1) train the ANN, and
2) assess its predictive performance.

The validation protocol uses part of the sample to train the ANN (Train-
ing Set), whilst the remaining cases are used to assess the predictive capability 
of the ANN (Testing Set or Validation Set). In this way we are able to test the 
reliability of the ANN in tackling the problem before putting it into operation. 
Now we provide some example of Supervised ANNs.

4.2 The Multi-Layer Perceptron

Back Propagation (BP for short) refers to a broad family of Multi-Layer 
Perceptron, whose architecture consists of different interconnected layers 
[1-4]. The BP ANNs represents a kind of supervised ANN, whose learning’s 
algorithm is based on the Deepest-Descent technique. If provided with an 
appropriate number of Hidden units, they will also be able to minimize the 
error of nonlinear functions of high complexity (Fig. 6). 

Theoretically, a BP provided with a simple layer of Hidden units is 
sufficient to map any function y = f (x). Practically, it is often necessary to 
provide these ANNs with at least 2 layers of Hidden units, when the func-
tion to compute is particularly complex, or when the chosen data, in order 
to train the BP, are not particularly reliable, and a level filter is necessary on 
the features of Input. The BP are networks, whose learning function tends to 
“distribute itself” on the connections, just for the specific correction algorithm 
of the weights that is utilized. This means that, in the case of BP, provided 
with at least one layer of Hidden units, these units tend to distribute among 
themselves the codification of each feature of the Input vector. 

This makes the learning more compact and efficient, but it is more 
complex to know the “reasoning” which brings a BP, in the testing process, to 
answer in a certain way. In brief, it is difficult to explain the implicit knowl-
edge acquired by these ANNs in the training process. 

A second theoretical and operative difficulty raised by BP concerns the 
minimum number of Hidden units that are necessary for these ANNs in order 
to compute a function. In fact, it is known that if the function is not linear, 
at least one layer of Hidden units will be necessary. But, at the moment, the 
exact minimum number of Hidden units needed to compute a non-linear 
function is unknown. In these cases, we base our work on experience and on 
some heuristics.

Experience advises us to use a minimum number of Hidden units in 
a first time training of an ANN. If the training succeeds, an analysis of the 
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sensitivity will normally allow us to understand the singularity number that 
each Input node determines on the Output, and, consequently, it will be able 
to deduce the degree of freedom needed by the ANN to resolve the equa-
tion, and then to express these latter under the form of Hidden units. This 
procedure is not guaranteed; during the training process the BP can become 
trapped in local’s minima. 

This is because of the relation between the morphology complexity 
of the hyper surface that characterizes the function and the weights’ values, 
randomly set and placed before the training. 

The dilemma of BP is that for a prior, unknown minimum number of 
Hidden units useful to compute a function, if too many are created, the BP 
can create during some forms of training a condition of over fitting, which 
causes a worsening of its generalization capacities in the testing process. If 
not too many are created, the BP can have difficulty learning either because 
the function is too complex, or because the BP randomly falls into a local 
minimum. The BP’s family includes both Feed Forward ANN and Feedback 
ANN, also known as Recurrent Networks (Chauvin, Rumelhart 1995).

Fig. 6 – Example of Multi-Layer Perceptron.
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4.3 The Conic Net

The Conic Net is a supervised ANN, designed by P.M. Buscema in 2013 
and never published before. The architecture is similar to that of a Multilayer 
Perceptron, but its hidden layer is completely different. Each traditional node 
of the classic Hidden layer in the case of the Conic Net (CN) is decomposed in 
3 sub nodes connected by 6 weights, according to Fig. 7a. This topology aims 
to transform each complex hidden node into a quadratics equation, whose 
parameters have to be learned during the training phase (Fig. 7b). 

The singularity of Conic Net in relation to the other and more classic 
MLP is its complex hidden layer structure: two sub nodes receiving their 
weights vectors independently from the same Input vector and one sub node 
working as Output node, receiving the 6 parameters from the quadratics 
equation, including the two previous sub nodes as X and Y of the conic func-
tion. Further, it is interesting to note that the two X and Y sub nodes modify 
their incoming weights each one according to two different and independent 
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where:

u = Input Vector
N = Number of Inputs
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Qy = Output of the Y sub node of the CN hidden layer
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Fig. 7b – Close up of one macro hidden node of a Conic Net.

Fig. 7a – Topology of Conic Net (in blue the Hidden layer).
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C = Output of the third sub node of the CN hidden layer

The following equations show how we calculate the local error in CN:

 
Where: 
u = Input Vector 
N = Number of Inputs 
Qx = Output of the X sub node of the CN hidden layer 
Qy = Output of the Y sub node of the CN hidden layer 
C = Output of the third sub node of the CN hidden layer 

 

The following equations show how we calculate the local error in CN: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 +  𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8) 

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9) 

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10) 

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁 ) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁 ) (11) 

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 +  2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12) 

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13) 

𝛿𝛿𝑖𝑖
  [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
  [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14) 

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

  [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15) 

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

  [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16) 

(14)

 
Where: 
u = Input Vector 
N = Number of Inputs 
Qx = Output of the X sub node of the CN hidden layer 
Qy = Output of the Y sub node of the CN hidden layer 
C = Output of the third sub node of the CN hidden layer 

 

The following equations show how we calculate the local error in CN: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 +  𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8) 

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9) 

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10) 

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁 ) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁 ) (11) 

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 +  2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12) 

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13) 

𝛿𝛿𝑖𝑖
  [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
  [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14) 

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

  [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15) 

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

  [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16) 

(15)

 
Where: 
u = Input Vector 
N = Number of Inputs 
Qx = Output of the X sub node of the CN hidden layer 
Qy = Output of the Y sub node of the CN hidden layer 
C = Output of the third sub node of the CN hidden layer 

 

The following equations show how we calculate the local error in CN: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑢𝑢𝑗𝑗 ∙ 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗 +  𝜃𝜃𝑖𝑖

𝑁𝑁

𝑗𝑗
 (8) 

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

 (9) 

𝐷𝐷𝑖𝑖 = ∑(𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑖𝑖 − 1) − 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗)2
𝑁𝑁

𝑗𝑗
 (10) 

𝑄𝑄𝑄𝑄𝑖𝑖 = (1 − √𝐷𝐷𝑖𝑖
𝑁𝑁 ) ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 (− 𝐷𝐷𝑖𝑖

𝑁𝑁 ) (11) 

𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ∙ 𝑥𝑥2 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 ∙ 𝑦𝑦2 +  2𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 (12) 

𝑄𝑄𝑄𝑄𝑖𝑖 = 1
1 + 𝑒𝑒−𝐶𝐶𝑖𝑖

 (13) 

𝛿𝛿𝑖𝑖
  [𝑛𝑛] = ∑ 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] ∙ 𝑤𝑤𝑗𝑗𝑗𝑗
  [𝑛𝑛+1]

𝑁𝑁

𝑗𝑗=1
 (14) 

∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

  [𝑛𝑛] ∙ 𝑓𝑓′(𝑄𝑄𝑥𝑥𝑖𝑖) ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] ∙ 𝜀𝜀 (15) 

∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
[𝑛𝑛] = 𝛿𝛿𝑖𝑖

  [𝑛𝑛] ∙ (𝑄𝑄𝑦𝑦𝑖𝑖) ∙ (𝑁𝑁 ∙ (2 ∙ 𝑢𝑢𝑗𝑗
[𝑛𝑛−1] − 1 − 𝑤𝑤(𝑄𝑄𝑄𝑄)𝑖𝑖,𝑗𝑗) ∙ 𝜀𝜀 (16) (16)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(17)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(18)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(19)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(20)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(21)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(22)

where:
 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

 = error of the next layer calculated BP delta rule

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

 = the weights matrix of the next layer

And, finally, the equations by means we correct the Input weights and 
the quadratics weights (parameters) of the CN:

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(23)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(24)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(25)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(26)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑦𝑦2 ∙ 𝜀𝜀 (19) 

∆𝑤𝑤𝑑𝑑 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (21) 

∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) 

(27)

 
Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 

 

And, finally, the equations by means we correct the input weights and the quadratics weights 

(parameters) of the CN: 

 

The CN presents also many suitable features that in this paper are not pertinent to describe into 

details. 

∆𝑤𝑤𝑎𝑎 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝑄𝑄𝑥𝑥𝑖𝑖

2 ∙ 𝜀𝜀 (17) 

∆𝑤𝑤𝑏𝑏 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝑄𝑄𝑥𝑥𝑦𝑦 ∙ 𝜀𝜀 (18) 

∆𝑤𝑤𝑐𝑐 = 𝛿𝛿𝑖𝑖
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  (𝑡𝑡) ∙ ∆𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗

[𝑛𝑛] (23) 
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𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 
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Where: 
 
 𝛿𝛿𝑗𝑗

  [𝑛𝑛+1] = error of the next layer calculated BP delta rule 
𝑤𝑤𝑗𝑗𝑗𝑗

  [𝑛𝑛+1] = the weights matrix of the next layer 
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  [𝑛𝑛] ∙ 2 ∙ 𝑄𝑄𝑥𝑥𝑖𝑖 ∙ 𝜀𝜀 (20) 

∆𝑤𝑤𝑒𝑒 = 𝛿𝛿𝑖𝑖
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∆𝑤𝑤𝑓𝑓 = 𝛿𝛿𝑖𝑖
  [𝑛𝑛] ∙ 𝜀𝜀 (22) 

𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑥𝑥)𝑖𝑖,𝑗𝑗
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[𝑛𝑛] (23) 

𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤(𝑦𝑦)𝑖𝑖,𝑗𝑗
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[𝑛𝑛] (24) 

𝑤𝑤𝑎𝑎(𝑡𝑡 + 1) = 𝑤𝑤𝑎𝑎(𝑡𝑡) + 𝑤𝑤∆𝑎𝑎 (25) 

𝑤𝑤𝑏𝑏(𝑡𝑡 + 1) = 𝑤𝑤𝑏𝑏(𝑡𝑡) +  𝑤𝑤∆𝑏𝑏 (26) 

𝑤𝑤𝑐𝑐(𝑡𝑡 + 1) = 𝑤𝑤𝑐𝑐(𝑡𝑡) +  𝑤𝑤∆𝑐𝑐 (27) 

𝑤𝑤𝑑𝑑(𝑡𝑡 + 1) = 𝑤𝑤𝑑𝑑(𝑡𝑡) +  𝑤𝑤∆𝑑𝑑 (28) 

𝑤𝑤𝑒𝑒(𝑡𝑡 + 1) = 𝑤𝑤𝑒𝑒(𝑡𝑡) +  𝑤𝑤∆𝑒𝑒 (29) 

𝑤𝑤𝑓𝑓(𝑡𝑡 + 1) = 𝑤𝑤𝑓𝑓(𝑡𝑡) +  𝑤𝑤∆𝑓𝑓 (30) (30)

The CN presents also many suitable features that in this paper are not 
pertinent to describe into details.

4.4 The Supervised Contractive Map

The Supervised Contractive Map (SVCM for short) was designed by 
M. Buscema in 1999 (Buscema, Benzi 2011). This ANN calculates two 
net Inputs for each node: a classic weighted Input (see Equation 31) and a 
contractive Input (see Equation 32). This second net Input tends to decay or 
to increase when the positive or negative value of the weight (w) becomes 
close to a specific constant (C). Equation 33 activates each node according 
to a sine function of the two net Inputs (the contractive Input works as a 
harmonic modulation of the weighted Input). The vantages and the disad-
vantages of sine transfer function to work properly into the topology of 
Multilayer Perceptron were already analyzed in the scientific literature (Le 
Cun et al. 1991).
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Equation 34 shows a typical error calculation using the distance between the desiderate output and 

the estimated output, times the first derivative of sine transfer function. Equation 35 works in the 

same way of Equation 34, but using the chain rule to calculate the local error of each hidden unit. 

Equation 36 updates the weight matrices, using typical back error propagation, with a contractive 

factor useful to limit an extreme growing of each weight value. 
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  [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

  [𝑙𝑙−1] ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1])
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
 (31) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
  [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

  [𝑙𝑙−1] ∙
𝐶𝐶[𝑙𝑙−1]
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𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙] (32) 

𝑢𝑢𝑖𝑖
  [𝑙𝑙] = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

  [𝑙𝑙] ∙ (1 − sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
  [𝑙𝑙])

𝐶𝐶[𝑙𝑙−1] )) (33) 
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sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
  [𝑜𝑜𝑜𝑜𝑜𝑜])

𝐶𝐶[𝑜𝑜𝑜𝑜𝑜𝑜−1] )) (34) 
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Equation 34 shows a typical error calculation using the distance 
between the desiderate Output and the estimated Output, times the first 
derivative of sine transfer function. Equation 35 works in the same way of 
Equation 34, but using the chain rule to calculate the local error of each hid-
den unit. Equation 36 updates the weight matrices, using typical back error 
propagation, with a contractive factor useful to limit an extreme growing 
of each weight value.
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to increase when the positive or negative value of the weight (w) becomes close to a specific constant 

(C). Equation 33 activates each node according to a sine function of the two net inputs (the contractive 

input works as a harmonic modulation of the weighted input). The vantages and the disadvantages of 

sine transfer function to work properly into the topology of Multilayer Perceptron were already 
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Equation 34 shows a typical error calculation using the distance between the desiderate output and 

the estimated output, times the first derivative of sine transfer function. Equation 35 works in the 

same way of Equation 34, but using the chain rule to calculate the local error of each hidden unit. 

Equation 36 updates the weight matrices, using typical back error propagation, with a contractive 

factor useful to limit an extreme growing of each weight value. 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
  [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

  [𝑙𝑙−1] ∙ (1 −
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1])
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
 (31) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
  [𝑙𝑙] = ∑ 𝑢𝑢𝑗𝑗

  [𝑙𝑙−1] ∙
𝐶𝐶[𝑙𝑙−1]

𝑗𝑗
𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑙𝑙] (32) 

𝑢𝑢𝑖𝑖
  [𝑙𝑙] = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

  [𝑙𝑙] ∙ (1 − sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
  [𝑙𝑙])

𝐶𝐶[𝑙𝑙−1] )) (33) 

𝛿𝛿𝑖𝑖
  [𝑜𝑜𝑜𝑜𝑜𝑜] = (𝑡𝑡𝑖𝑖 − 𝑢𝑢𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜) ∙ cos ( 𝐼𝐼𝐼𝐼𝑒𝑒𝑡𝑡𝑖𝑖
  [𝑜𝑜𝑜𝑜𝑜𝑜] ∙ (1 −

sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
  [𝑜𝑜𝑜𝑜𝑜𝑜])

𝐶𝐶[𝑜𝑜𝑜𝑜𝑜𝑜−1] )) (34) 
(34)
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Where: 

 

[l] = number or name of the ANN layer; 
𝑢𝑢𝑗𝑗

  [𝑙𝑙]= values of the all i-th nodes of the l-th layer; 
𝑤𝑤𝑖𝑖,𝑗𝑗

  [𝑙𝑙]= weight matrix connecting the layer [l-1] to the layer [l]; 
𝐶𝐶[𝑙𝑙]: number of nodes of the l-th layer; 
𝑡𝑡𝑖𝑖: = value of the i-th of the dependent variable; 
LCoef = ANN learning rate. 
 

The SVCM is been already tested for the approximation of highly non-linear and complex 

interpolation with excellent results (BUSCEMA, BENZI 2011). 

 

4.5 Dynamic Associative Memories 

The second type of problem that an ANN raises can be expressed as follows: given N variables 

defining a dataset, find out its optimal connections matrix able to define each variable in terms of the 

others and consequently to approximate the hyper-surface on which each data-point is located. This 

second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of 

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations 

prototyping. Their representative equation is: 

 

 

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix 

approximating the parameters of the hyper-surface representing the dataset, and f ( ) is some suitable 
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𝑘𝑘
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  [ℎ𝑖𝑖𝑖𝑖] ∙ (1 −
sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

  [ℎ𝑖𝑖𝑖𝑖])
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𝑤𝑤𝑖𝑖,𝑗𝑗
[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36) 

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37) 

(35)
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The SVCM is been already tested for the approximation of highly non-linear and complex 
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The SVCM is been already tested for the approximation of highly non-
linear and complex interpolation with excellent results (Buscema, Benzi 
2011).

4.5 Dynamic Associative Memories

The second type of problem that an ANN raises can be expressed as 
follows: given N variables defining a dataset, find out its optimal connections 
matrix able to define each variable in terms of the others and consequently to 
approximate the hyper-surface on which each data-point is located. 

This second sub-family of ANNs is named Dynamic Associative Memo-
ries (DAM). The specificity of these ANNs is incomplete pattern reconstruc-
tion, dynamic scenario simulation and possible situations prototyping. Their 
representative equation is:
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second sub-family of ANNs is named Dynamic Associative Memories (DAM). The specificity of 

these ANNs is incomplete pattern reconstruction, dynamic scenario simulation and possible situations 

prototyping. Their representative equation is: 

 

 

where x[n] is the N variables evolving in the ANNs internal time, w* is the connection matrix 

approximating the parameters of the hyper-surface representing the dataset, and f ( ) is some suitable 

non-linear and eventually composed function governing the process. DAM ANNs after the training 

𝛿𝛿𝑖𝑖
  [ℎ𝑖𝑖𝑖𝑖] = ∑ (𝛿𝛿𝑘𝑘

[𝑘𝑘+1] ∙ 𝑤𝑤𝑘𝑘,𝑖𝑖
[ℎ𝑖𝑖𝑖𝑖+1])

𝑁𝑁𝑁𝑁𝑁𝑁[ℎ𝑖𝑖𝑖𝑖+1]
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∙ cos ( 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
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sin (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

  [ℎ𝑖𝑖𝑖𝑖])
𝐶𝐶[ℎ𝑖𝑖𝑖𝑖−1] )) (35) 

∆𝑤𝑤𝑖𝑖,𝑗𝑗
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  [𝑙𝑙] ∙ 𝑢𝑢𝑗𝑗
  [𝑙𝑙−1] ∙ (1 −
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[𝑙𝑙]

𝐶𝐶[𝑙𝑙−1]) (36) 

𝑥𝑥[𝑛𝑛+1] = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑤𝑤∗) (37) (37)

where x[n] is the N variables evolving in the ANNs internal time, w* is 
the connection matrix approximating the parameters of the hyper-surface 
representing the dataset, and f() is some suitable non-linear and eventually 
composed function governing the process. DAM ANNs after the training 
phase need to be submitted to a validation protocol named “Data Recon-
struction Blind Test”. In this test the capability of a DAM ANN to rebuild 
complete data from uncompleted ones is evaluated from a quantitative point 
of view. Now we describe briefly some type of Auto-Associative Memory 
ANN.
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4.6 AutoContractive Map

The AutoContractive Map neural network (Auto-CM for short) was 
designed by P. M. Buscema in 1999 and its learning law was improved up 
to 2013. Auto-CM was explained in different papers and it was applied in 
many fields with promising results (Buscema 2007a, 2007b; Buscema et al. 
2008a, 2008b, 2010; Buscema, Sacco 2010; Licastro et al. 2010; Grossi 
et al. 2011). The software implementing Auto-CM is developed by Semeion 
Research Center in Rome and it is available free for academic applications. 
Auto-CM has an architecture based on three layers of nodes: an Input layer 
that captures the signal from the environment, a hidden layer which modulates 
the signal within the network, and an Output layer which returns a response 
to the environment on the basis of the processing that occurred. The three 
layers have the same number N of nodes.

The connections between the Input layer and the hidden one are mono-
dedicated, whereas those between this hidden layer and the Output layer are 
completely connected. Each connection is assigned a weight: vi for connections 
between the ith Input node and the corresponding hidden node, wi,j for those 
between the generic jth node of the hidden layer and the ith node of the Output 
layer (Fig. 8). For the training, datasets are scaled between zero and one and 
all weights are initialized beforehand to the same positive value close to zero. 

Fig. 8 – AutoContractive Map.
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Symbol Meaning 
p
ix  

ith input node of the pth pattern 

 nh p
i  ith hidden node of the  pth pattern during the nth time 

 ny p
i  ith node in the output of the  pth pattern during the  nth epoch 

 nvi  weight of the connection between the  ith input node and in the  ith hidden 
node during the  nth epoch 

 nw ji,  weight of the connection between the jth hidden node and the  ith output 
node during the  nth epoch 

N  the number of nodes per layer 

M  the number of patterns 

  constant learning rate 

C  constant greater than one, 
typically   NC   

Table 1 Notation for AutoCM neural network Tab. 1 – Notation for Auto-CM Neural Network.

Then the network must undergo a series of epochs. In each of them, all 
the Input patterns must be presented one after another to the network, and a 
calculation made for the appropriate equations with the corresponding Output 
value and a measure of error with respect to the desired value. In accordance 
with the principle of batch update, the corrections accumulated for an epoch 
must be applied at the end. The equations of training of the network make 
reference to the quantities shown below (Tab. 1).

At the nth epoch of training, out of each Input pattern a value is calcu-
lated for the hidden layer, through a contraction, that reduces the Input value 
in proportion to the mono-dedicated weight.
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The algorithm then calculates the value on the output layer through a “double conceptual 

passage”. For each output node, an initial operation saves the net input calculation, that is to say, the 

reduction (contraction) of all the hidden nodes through the weights between the hidden layer and 

output layer (Equation 39). 
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A second operation calculates the Output value by further contracting 
the corresponding value of the hidden node thorough the previously calculated 
net Input for the Output node:

 

Table 1 
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During the training that occurs in every epoch, in addition to the cal-
culation of the Output values (40), for each pattern presented in Input the 
algorithm calculates the correction quantity of the weights, summed and ap-
plied at the end of the epoch. For the N-mono dedicated layers between the 
Input and hidden layers, the algorithm considers the contraction, based on 
the weight being examined, of the difference between the values of the corre-
sponding Input and hidden nodes, further modulated for the Input node itself.
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along with those of the output units: 

while the corrections of the full set of weights diminish: 

The process of cancelling the above quantity occurs with speed modulated by the input patterns 

and leaves its specific sign in the matrix between the hidden and the output layer. 
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records in a database, using all the variables at the same time. 

One important feature of these ANNs is also the possibility that some of them have to visualize 

in a 2 or 3 dimensional map the geographical similarities among records and among variables. The 

prototypical equation of the Autopoietic ANNs is: 
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where y is the projection result along the time, x is the Input vector (independ-
ent variables) and w is the set of parameters (codebooks) to be approximated. 
In Autopoietic ANNs, the codebooks (w) after the training phase represent 
an interesting case of cognitive abstraction: in each codebook the ANN tends 
to develop its abstract cognitive representation of some of the data which it 
learnt. Self-Organizing Map (SOM) is a known example of Autopoietic ANN.

4.8 Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is a neural network attributed to Teuvo 
Kohonen (1982, 1984, 1990, 1995), who developed it between 1979 and 
1982. It is an unsupervised type of network which offers a classification of the 
Input vectors creating a prototype of the classes and a projection of the proto-
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types on a two-dimensional map (but n-dimensional maps are also possible) 
able to record the relative proximity (or neighborhood) between the classes. 
Therefore, the network offers important synthetic information on the Input:

1) It operates a classification of the Input vectors on the basis of their vector 
similarity and assigns them to a class;
2) It creates a prototypical model of the classes with the same cardinality 
(number of variables) as the Input vector;
3) It provides a measurement, expressed as a numerical value, of the distance/
proximity of the various classes;
d. It creates a relational map of the various classes, placing each class on the 
map itself;
4) It provides a measurement of the distance/proximity existing between the 
Input vectors from the class they belong to and between the Input vectors 
and other classes.

The relative simplicity of the network architecture allowed its dissemina-
tion in terms of how successfully its implementation could be replicated (Fig. 

Fig. 9 – Example of Unsupervised ANN for natural clustering – Self-Organizing Map.
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Fig. 10 – SOM with n-nodes of Input, with (mrmc) units of Kohonen’s layer. This architecture 
allows the Inputs to be classified into m2 classes, each being a subclass represented by a codebook.

9). A typical SOM network is made up of 2 layers of units: a one-dimensional 
Input (n-cardinality vector) and a two-dimensional Output layer (lines (r) × 
columns (c)), also known as Kohonen’s map (M matrix of mr x mc dimen-
sions). A matrix of the weights records the relation between each unit of the 
Output layer and each unit of the Input layer (W matrix of (mr × mc × n) 
dimensions). The weight vector connecting each Output unit to an Input unit 
is called a “code-book” (vector wrc of n-cardinality) (Fig. 10). 

Within the SOM network each Output unit can be interpreted as a class 
whose codebook represents the prototype. The SOM algorithm is based on a 
competitive algorithm founded on the vector quantification principle: at each 
cycle of life in the network, the unit from Kohonen’s layer whose codebook is 
most similar to the Input wins. This unit is given the name of Winner Unit (WU). 
Consequently, the WU codebook is modified to get it even closer to the Input. 
The codebooks belonging to the units that are physically near the WU (which 
are part of the neighborhood) are also put closer to the Input of a given delta.

The algorithm calculates a first stage during which the parameters of 
neighborhood and corrections of weights are set and the codebook initiali-
zation is carried out; this stage is followed by the cyclic stage of codebook 
adjustment. In this stage the codebooks are modified for the network to clas-
sify the Input records. In short, the SOM algorithm is organized as follows: 
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Initialization stage:

1) Layering of the Input vectors;
2) Definition of the dimensions (rows x columns) of the matrix which, in its 
turn, determines the number of classes and therefore of prototypes (codebook);
3)Initialization of the codebooks: the values of the vectors of each codebook 
are random;
4) Definition of the function (Gaussian, Mexican hat, etc.) and of the pa-
rameters regulating the neighborhood of the Winner Unit and of the weight 
correction delta. 

Cyclic calibration stage:

1) Presentation of the Input vectors (pattern) in a random and cyclic way.
2) Calculation of the d-activation of the K units of Kohonen’s layer: the 
activation is calculated as vector distance between the Input vector X and 
the weight vector Wj (mj codebook) which links the K unit to the Input 
nodes.

The classic way to calculate the Euclidean distance between the vec-
tors is:
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4) Correction of the codebook (matrix of the Wij weights) of the winning 
unit and the units adjacent to the winning unit in relation to the function set 
to determine the level of weight correction according to the Input and the 
proximity to the WU.
5) Updating of the factors determining the proximity and layering of the delta 
correction of the codebooks. 

The distinctive characteristic of the SOM is mainly related to the up-
dating of the weights, carried out not only on those related to the WU but 
also, according to the chosen function, on the weights be-longing to the units 
which are physically close to it.
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Fig. 12 – Example of the topology of the neighborhood space with matrix K (8r × 8c), where the 
WU is the K55 unit. The first matrix shows a neighborhood in a square while the second a nei-
ghborhood in a rhomb. We can notice from the illustration that, for example, while in the matrix 
to the left the v distance of the K66 unit to the WU is 1, in the matrix to the right the v distance of 
the K66 unit to the WU is 2.

Fig. 11 – Topology of the neighborhood Space of a Winner Unit in a square 
and in a rhomb; in the illustration v is the degree of proximity of the K units 
to the WU.
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This characteristic also allows the SOM to show the position occupied 
by the class within the matrix in relation to the position occupied by the other 
classes. This type of topological mapping, able to organize the classes through 
spatial relations, has been given the name of Feature Mapping.

4.9 Topology of the neighborhood

The neighborhood of a WU is defined by the degree of physical proxim-
ity (v) existing between the WU and the other K units. Each unit of Kohonen’s 
layer occupies a position on the matrix of the co-ordinates (r, c) for which 
the neighborhood is indexed with a scalar degree from 1 to the maximum 
line and column dimension. 
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to the winning unit in relation to the function set to determine the level of weight correction according 
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matrices can determine the fact that some areas of the K matrix remain isolated because the codebooks 
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h (v): = EXP(-(SQR (v) / σ))

where d is the physical proximity of the unit to the Wu and σ is a parameter 
which linearly decreases by a Δ as time increases, thereby modifying the width 
of the curve (bell), thus the extent of the neighborhood. Figures 11 and 12 
show examples of Neighborhood Space topologies:

4.10 Correction of the codebook

The rate of correction a codebook undergoes is determined by various 
factors:
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1) Difference (d) existing between the vector codebook and the Input vector;
2) Physical distance to the WU (v);
3) Function of the neighborhood h (v) which determines a Δ σ;
4) Function of weight layering in relation to the period of life of the network 
which determines a Δ α.

In a SOM the codebooks are moved closer to the Input vector, therefore 
for each generic codebook W the distance existing between the corresponding 
weights wij and the variables xi of the generic Input vector X is calculated. 
On the basis of the function h (v) of the neighborhood, the Δ σ is therefore 
calculated in relation to the value of the parameter s and the proximity (v) 
of the unit K to the WU.Δ σ is the measure which assumes y in the function 
h(v) when x= v. In the case in which function h(v) is the Gaussian curve, then 
the Δ σ will be calculated in the following way (Fig. 13):

 

The Δσ is calculated as a factor of a linear function decreasing in relation to the time the network 

is alive. Therefore, the function of correction of the codebooks is as follows: 
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ANNs still need a general theory able: 
 
1) to explain which is the place that ANNs have in the general framework of the natural sciences and 
2) to explain which are the basic and atomic features we need to assemble in order to build new Neural 
Networks; 

 

We can try to give a first and an approximate answer to these questions. ANNs belong to the 

field of Artificial Sciences. Artificial Sciences are a new and a special branch of Natural Sciences. 

Artificial Sciences are the new computerized laboratories through which researchers try to simulate 

natural processes, in order to explain their complex and hidden laws. More specifically, ANNs are a 

special type of computerized laboratories able to reproduce adaptive natural processes. Under this 

respect, data represent a statistical sample of the natural process we intend to understand. From 

historical point of view ANNs have shown three different targets: 

 
1) To understand deeply the human brain work by means of its artificial simulation. In these 
researches, the comprehension of human brain physiology remains the main goal and ANNs are 
important simulation tools; 
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2
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𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝛼𝛼(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖,𝑗𝑗 (57) 

(55)

The Δσ is calculated as a factor of a linear function decreasing in rela-
tion to the time the network is alive. Therefore, the function of correction of 
the codebooks is as follows:

Fig. 13 – The illustration shows how, when the parameter ∆σ(1, 2, 3) changes – parameter that 
determines the correction curve of the neighborhood function – the number of units that are part 
of the neighborhood and the extent of the correction (v1, v2, v3) made on the weights also change.
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The Δσ is calculated as a factor of a linear function decreasing in relation to the time the network 

is alive. Therefore, the function of correction of the codebooks is as follows: 
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5. A Neural Networks Theory

ANNs still need a general theory able:

1) to explain which is the place that ANNs have in the general framework 
of the natural sciences, and
2) to explain which are the basic and atomic features we need to assemble in 
order to build new Neural Networks.

We can try to give a first and an approximate answer to these questions. 
ANNs belong to the field of Artificial Sciences. Artificial Sciences are a new and 
a special branch of Natural Sciences. Artificial Sciences are the new computer-
ized laboratories through which researchers try to simulate natural processes, 
in order to explain their complex and hidden laws. More specifically, ANNs 
are a special type of computerized laboratories able to reproduce adaptive 
natural processes. Under this respect, data represent a statistical sample of 
the natural process we intend to understand. From historical point of view 
ANNs have shown three different targets:

1) To understand deeply the human brain work by means of its artificial 
simulation. In these researches, the comprehension of human brain physiology 
remains the main goal and ANNs are important simulation tools;
2) To develop new computation algorithms, inspired to human brain archi-
tecture, able to processes information, more effective and fast way. In this 
field the main goal is to define new algorithms, and the human brain structure 
represents only a milestone for emulation activities.
3) To understand in every natural process how the transformation works from 
individual behaviors to collective behaviors. In other words, how the transition 
works in nature from the simple and local processes to the global and com-
plex processes. In this case the main target of the scientist is the discovery of 
natural laws and the ANNs represent a set of new algorithms with which we 
can implement the correct experiments to control our hypothesis. In this case 
ANN algorithms represent a powerful experimental framework for science.

These three different fields, and especially the last one, need a general 
theory able to explain how to build these algorithms and/or tools in a math-
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ematical and physical correct way. For these reasons we are thinking to a 
general theory of Artificial Adaptive System. 

But, it is also important to elaborate a generative model able to explain 
how to build new ANNs, starting from the reasoned assembly of ANNs’ 
atomic components. For this reason we propose a bottom-up theoretical 
process, composed of three steps (a basic layer, a central layer, and a complex 
layer) and two components for each step (semantics and syntax):

1. Basic layer:
I. Semantics: Node 
II. Syntax: Weighted Connection.

2. Central layer:
I. Semantics: Nodes & Connections =Networks
II. Syntax: Nodes & Connections updating under specific Learning Laws and 
Constraints.

3. Complex layer:
I. Semantics: Organism = Networks assembly
II. Syntax: Networks interaction under specific Signal Flow rules.

Each component of this theoretical framework needs to be analyzed in 
details, as we tried to do in a provisory way in a previous paper (Buscema 1998); 
for example: the morphology of the Node and the typology of the Connections. 
But this could be the main goal of a next analytical and experimental research.

Paolo Massimo Buscema
Semeion Research Center

Center for Computational and Mathematical Biology
University of Colorado at Denver
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Abstract

This paper describes the philosophy of Artificial Adaptive Systems and compares it 
with natural language, revealing some striking parallels. Artificial sciences create models of 
reality, but their ability to approximate the “real world” determines their effectiveness and 
usefulness. This paper provides a clear understanding of the expectations created by the use 
of this technology, an evaluation of the complexities involved, and expresses the necessity of 
continuing with an open mind to unexpected and still unknown potentials. Supervised and 
unsupervised networks are described here.


