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The Tellus airborne geophysical survey revealed sets of narrow, linear, north-east to south-
west, mostly parallel electrical conductivity (electromagnetic – EM) anomalies in the 
Longford–Down area. Subsequent geological mapping and ground geophysics have dem-
onstrated that the anomalies coincide with and match the width of bedrock outcrop of the 
Moffat Shale Group. Ground-based geophysical surveys show variations in conductivity 
with highest values corresponding to carbon-rich mudstones. These findings allow the 
regional airborne geophysics to be interpreted with greater confidence for incorporation 
into bedrock geological maps, which underpin aspects of economic and environmental 
decision making. 

Geological mapping of the Longford–Down Terrane
Geological maps underpin decision making in a diverse range of public and corporate 
applications. They are essential in the search for natural mineral resources; for planning 
new infrastructure, waste disposal and transportation; for environmental management 
and monitoring; and for the assessment of hazards such as flooding, landslides and ground 
subsidence. Geological mapping is therefore a core function of the Geological Surveys that 
underpins modern economic development and land-use management. This chapter illus-
trates how high-resolution airborne geophysics can improve geological maps, particularly 
in areas where bedrock is concealed by superficial deposits.

1  Geological Survey of Northern Ireland, Belfast.
2  Geological Survey of Ireland, Dublin.
3  University of Manchester.
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The Longford–Down area, some 6000 km2, stretches across counties Down and 
Armagh in Northern Ireland, and counties Louth, Monaghan, Cavan and Longford in 
the Republic. It is part of the Southern Uplands – Down–Longford terrane that extends 
into Scotland (Fig. 13.1). Crushed rock aggregate is widely quarried and the area is in 
places mineralised with base metals and potentially economic gold deposits. There is also 
some potential for exploiting deep geothermal energy in granitic intrusions of late Silurian 
to Devonian and Palaeogene age.

Bedrock of the Longford–Down terrane comprises packages of rock known as ‘tracts’, 
which are largely composed of turbiditic greywacke sandstones, siltstones and mudstones. 
These rocks are divided into the Ordovician Leadhills Supergroup, the Silurian Gala and 
Hawick groups, and the mudstone-dominated Moffat Shale Group (MSG), which com-
monly crops out to the north of the north-easterly striking faults that bound the tracts 
(Anderson, 2004). 

This chapter complements a previous regional scale interpretation of Tellus airborne 
EM anomalies by Beamish et al. (2010) by presenting the first results of ground investiga-
tion of selected airborne anomalies. This work includes detailed geological mapping to 
compare anomaly width with actual bedrock outcrop of MSG, and ground-based geophys-
ics to examine internal variations in the MSG that might more specifically explain the EM 
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anomalies. Th is study adds confi dence to interpretation of Tellus EM data for incorpora-
tion into geological maps that are being updated by the two Geological Surveys.

Case study area
Th e case study area selected for investigation, referred to as McCosh’s Bridge, lies immedi-
ately south-west of Newtownhamilton in County Armagh (Fig. 13.1), close to the border 
with County Monaghan. Th is location was chosen because of the clarity of the EM anom-
alies (Fig. 13.2), the presence of available bedrock exposure, and the absence of major 
sources of anthropogenic interference.

Ground investigation methods

Geological mapping
Detailed, 1:5000 scale, fi eld mapping of bedrock and superfi cial deposits was made across 
the case study area. Identifi cations of dominant lithologies and measurement of key struc-
tural data, such as strike and dip of bedding (including way-up), faults and thrusts were 
made for bedrock. Th e distribution and nature of superfi cial deposits was also mapped 
(Fig. 13.3).
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Figure 13.2. McCosh’s Bridge 
site. Above: Tellus electrical 
conductivity image showing 

three prominent parallel 
anomalies that narrow and 
weaken from south-east to 

north-west. Below: airborne 
conductivity profi le 3107, 

showing the three clear 
conductivity anomalies and a 

weaker fourth, in both the low 
and high frequency.



Ground-based geophysics
Five electrical resistivity tomography (ERT) profi les were surveyed across the bedding of 
the case study area. Th ree very low frequency electromagnetic (VLF-EM) profi les were 
acquired parallel to the ERT lines. 

VLF-EM
Th is standard electromagnetic survey maps shallow variations of electrical conductivity. 
Th e primary signal source for VLF-EM prospecting systems is radio stations that radiate 
EM waves in the VLF bands (15–30 kHz). At distances far from the transmitters the 
primary fi elds resemble plane EM waves with horizontal magnetic and vertical electric 
fi elds. Th e primary electric fi eld generates eddy currents which produce much smaller 
secondary magnetic fi elds in buried electrical conductors. Th e secondary magnetic fi eld 
comprises a component in-phase (IP) with the primary fi eld and a quadrature (Q) compo-
nent at 90°, or out-of-phase.

Responses from transmissions from three diff erent stations at three VLF frequencies 
(19.6, 20.9 and 23.4 kHz) were recorded along each of the three profi les, using a Scin-
trex ENVI system. In-phase, quadrature, total fi eld, tilt, resistivity and phase components 
were measured from the three VLF stations. Th e IP component of 19.6 kHz (Anthorn, 
Cumbria, transmitter) is presented here since it gave the strongest signal and propagates 
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more deeply than the two higher frequencies. The VLF data were filtered according to the 
method of Karous and Hjelt (1983), using KHFFILT software of Pirttijärvi (2004), which 
also generated vertical pseudo-sections showing the density of the induced eddy currents.

ERT
This standard electrical survey technique generates a vertical cross-section of the variation 
of electrical resistivity beneath a linear array of electrodes laid on the ground. A Tigre resis-
tivity system using a Wenner array setup was employed, with 5 m electrode separation. A 
small current (<50 mA) is passed between different electrodes and a resistance measured. A 
2D section of the apparent resistivity of the subsurface was then produced using the inver-
sion software Res2Dinv (Loke and Barker, 1996). The depth of penetration increases with 
the number of electrodes and length of profile. Depth penetrations of up to 50 m below 
ground level were achieved along the longest (315 m) profile.

Results of the ground surveys

Bedrock geology
Geological mapping (Fig. 13.3) revealed bedrock exposure in streams and areas of rock 
near surface associated with Tellus EM anomaly 1 (Fig. 13.2). Bedrock exposure dimin-
ished to the north-west due to the presence of thick glacial till, so the case study area was 
restricted to this anomaly. Stream section mapping in the area of anomaly 2 did however 
show the presence of dark grey, slaty mudstone at outcrop. At the north-west corner of the 
area mapped, medium–very thick bedded (1–10 m thick) greywacke sandstone is inverted, 
dips steeply to the southeast and youngs to the northwest (Location 1, Figs 13.3 and 
13.4a). Some 150 m downstream (Location 2, Fig. 13.3), the first significant mudstones 
encountered are composed of dark grey–cream, slaty mudstones and siltstones interleaved 
with dark grey, sometimes cherty, pyritic mudstones, all of which show much evidence of 
shearing and colour change or bleaching. These and other similar intervals downstream 
are interpreted as thrust packages. Further downstream (Locations 3, Fig. 13.3), dark grey 
to black laminated mudstones were found containing graptolites and bentonites. A third 
mudstone type is present at various places in the stream section (e.g. Locations 4 and 5, 
Fig. 13.3), and is composed of black–dark grey, cherty, thinly bedded–laminated, pyritic 
mudstone. The strike of bedding within mudstone was predominantly north-east to south-
west, and dips varied from vertical to moderate to the north-west and south-east. Way-up 
within the mudstones was not identifiable in the field. South-west of Location 7 (Fig. 13.3) 
greywacke sandstone returns as the dominant lithology.

In addition to the numerous sheared thrust packages (as described above for Loca-
tion 2), other strike parallel tectonic structures were observed. These include a spectacular 
dislocation surface (Location 4, Fig. 13.4b) that dips 15° to the north-west and displays 
much brecciation, gouge development, bleaching and mineralisation (quartz and pyrite) 
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related to fluid flow. Several highly altered, mica-rich, lamprophyre dykes were also identi-
fied cross-cutting the mudstones and striking west to east. These minor intrusions most 
likely belong to the Late Caledonian population present in the area and associated with 
the Newry Igneous Complex (Reynolds, 1931; Cooper and Johnston, 2004; Cooper et al., 
2013).

Superficial deposits
Glacial till is present across much of the area in the form of north-northwest to south-
southeast aligned drumlins (Greenwood and Clark, 2008). As a consequence, till tends 
to thicken rapidly away from the modern streams and rivers (Fig. 13.3). The composi-
tion of tills across Northern Ireland tends to reflect underlying bedrock (Dempster et al., 
2013) and the till here is no exception; it is a sandy, clayey silt with locally derived clasts 
of greywacke, siltstone and mudstone to boulder grade (Fig. 13.4c). An area of lacustrine 
alluvium is present at the western margin of the mapped area and is composed of clayey 
silt with thin lenses of sand and gravel. Adjacent to the streams and Tullyvallan River, 
alluvium continues to form and is composed of clasts derived from bedrock and till that 
range from boulder to silt grade (Fig. 13.4d).
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Geophysical surveys
The locations of the traverses are shown in Fig. 13.3 and the VLF and ERT sections in Figs 
13.5 and 13.6 respectively.

Fig. 13.5a. Line VLF-EM1, 435 m, lies parallel to the airborne survey line and •	
nearly perpendicular to the strike of the conductors. Two well-defined conduc-
tors (orange and red) dipping to the south-east occur at c.150 and 220 m. A third 
anomaly at c.50 m is a response from a power line. The VLF anomalies at c.150 and 
220 m correlate with black–dark grey, cherty, pyritic mudstone (Fig. 13.3). Field 
observation shows that the black mudstones contain graphite, which is conduc-
tive and easily mapped by VLF. In contrast, more resistive responses (blue and 
green) correlate with the grey slaty mudstones and the dark grey–black, laminated 
mudstones. 
Fig. 13.5b. Line VLF-EM2, 210 m, crosses elevated ground over thick glacial till. •	
The response over this line is not as clear as line (a). 
Fig. 13.5c. Line VLF-EM3, 290 m. The anomaly observed at 80 m is again associ-•	
ated with black–dark grey, cherty, pyritic mudstone.

On the ERT profiles (Fig. 13.6) areas of lower conductivity (green and blue) correlate 
closely with mapped greywacke sandstones, e.g. the end of ERT1 and most of ERT5, while 
zones of high conductivity (orange–red–purple) coincide with the range of mudstones 
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identified during mapping. Unlike the VLF-EM, this method does not appear to differ-
entiate between the mudstone types but comparison of the ERT profiles with the regional 
Tellus EM anomaly (Fig. 13.3) reveals a close match of anomaly width, which is important 
in geological mapping.

Conclusions
This brief study reveals a close match between regional airborne EM anomalies and 
mapped geology, which is important in that it allows the width and lateral extent of MSG 
packages to be mapped using the regional geophysical data set. This knowledge is being 
incorporated into active mapping campaigns north and south of the border (Fig. 13.1).

Ground-based geophysics has detected variations in the conductivity of the MSG 
packages, with the black–dark grey, cherty, pyritic mudstone type being most conductive 
and the grey–cream, slaty mudstones being least conductive. Field work shows that the 
latter mudstone type has been affected by much thrusting and shearing, which appears 
to have reduced its conductivity. In addition to shearing, there is much colour change 
of these mudstones (from black–dark grey to light grey–cream), which is interpreted to 
have taken place through fluid flow during regional deformation. Fluid flow appears to 
have removed carbon, possibly in the form of graphite, from the mudstones along anasto-
mosing, shear-related discontinuities, which could greatly reduce the overall conductivity 
of the rock; petrology and scanning electron microscopy analysis would be required to 
confirm whether or not this is the case. Further investigation is also required to investigate 
the possible effects of overburden, primarily glacial till, on the characteristics of the Tellus 
EM anomalies.

The results presented here add confidence to the interpretation of Beamish et al. (2010), 
which revealed regional scale geological structures in the Longford–Down area, including 
the presence of a major strike-slip duplex in the º area (mapped in detail on Beamish et 
al., 2010, Fig. 4) and significant strike swing in the area west of Slieve Gullion, County 
Armagh (mapped on Beamish et al., 2010, Figs 5 and 6). These bedrock features are impor-
tant in that they are associated with igneous intrusions, some of which have potential for 
geothermal energy and mineral deposits. Interpretation of Tellus and Tellus Border EM 
data is now being applied to revising and refining the geological maps on both sides of the 
border. This is especially important in areas where bedrock is concealed by thick glacial 
deposits. The new maps will provide a regional bedrock context for potentially significant 
gold deposits and will allow better constraints on the extent of certain greywacke sand-
stone tracts that have premium value as high polished road stone.
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