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The Tellus geochemical surveys have identified significantly elevated concentrations of 
potentially toxic elements (PTEs) in rural soils from both natural sources (geogenic) and 
human activity (anthropogenic). In some areas PTE concentrations exceed generic soil 
screening criteria for assessing chronic exposure risks to human health. However, human 
health risk actually depends on the fraction of a contaminant that can be absorbed by the 
body rather than its total concentration. We assess the oral bioaccessible concentrations of 
arsenic, chromium, nickel and lead measured at 145 sites across Northern Ireland. Arsenic 
total concentrations are high over the mineralised areas of County Tyrone and County 
Armagh but oral bioaccessibility is highest in the latter. Total concentrations of chromium 
and nickel are unusually high over the north-east of Northern Ireland but bioaccessibility 
is lower than for arsenic; enhanced bioaccessibility of chromium and nickel occurs in parts 
of County Antrim and also for nickel in County Armagh. High total lead occurs through-
out the surveyed area, probably with a significant anthropogenic component. Enhanced 
lead bioaccessibility is mapped in parts of counties Antrim and Armagh and in the vicinity 
of Belfast. 

Background
The starting point for assessing human health risks from exposure to land contamination 
is often generic soil assessment criteria such as the Soil Guideline Values (SGVs) for certain 
chemical elements and compounds published by the Environment Agency (EA). SGVs 
are intended for use during the generic quantitative risk assessment process as initial soil 
screening values. They are not intended for assessing the potential for acute exposure but 
instead are regarded as the maximum soil contaminant concentrations tolerable over an 
extended exposure period (EA, 2009a). 
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SGVs are calculated using the contaminated land exposure assessment (CLEA) model, 
which assumes a default contaminant bioavailability of 100% (EA, 2009b), whereby all 
of an ingested contaminant will be absorbed by the body and therefore available to cause 
harm. However, contaminant uptake is rarely 100% of intake (Ruby et al., 1999). Assump-
tions made under such default CLEA settings can undermine the appropriateness of a 
CLEA-derived SGV. If required during the risk assessment process, simple or detailed 
adjustments can be made to the CLEA model to suit a variety of site-specific exposure situ-
ations. Detailed adjustment of the CLEA model, however, relies on specialist knowledge 
and the acquisition of site-specific data (EA, 2009a). 

Identifying contaminant linkages
Different contaminants pose variable risks depending upon the exposure pathway encoun-
tered and, if available, such information is taken into account when SGVs are derived. 
Exceeding a SGV is not enough to conclude that significant harm will occur and it is 
not intended as a remediation trigger value (EA, 2009a). Neither does the presence of a 
high contaminant concentration in soil automatically affirm the presence of risk. Assess-
ing potential human health risks from contaminated sites instead relies upon gathering a 
body of evidence to determine if risks are present through the identification of contami-
nant linkages, including consideration of the principal pathways of oral ingestion, dermal 
exposure or inhalation (DEFRA, 2012). Oral bioaccessibility data are just one piece of the 
puzzle when assessing exposure risks if oral exposure is a relevant risk pathway. Collation 
of such data supports the source–pathway–receptor model advocated in the UK CLEA 
framework (DEFRA and EA, 2004). 

Oral bioaccessibility testing in vitro assists in the identification of pollutant link-
ages inside the human body. The oral bioaccessible fraction of a soil contaminant is the 
portion that is solubilised in the human digestive system and potentially available to cause 
adverse health effects. Bioaccessibility differs from bioavailability. For a contaminant to 
be bioavailable when ingested, it must cross the intestinal epithelium, be metabolised by 
the body, and enter the blood stream after it is rendered bioaccessible (solubilised) in the 
gastro-intestinal tract. Bioaccessibility is therefore the limiting step to bioavailability, as 
an ingested contaminant must first be bioaccessible before it can be bioavailable (Ruby et 
al., 1999). While risk assessors may be accustomed to identifying contaminant linkages in 
the external environment, such linkages must also exist inside the human body for health 
risks to be present. An internal pathway (across the intestinal epithelium) exists between 
the contaminant source (the soil particles) and receptor (human organs and tissues) only if 
soil contaminants are rendered bioaccessible in the digestive system. 

Risk estimation based on the bioaccessible fraction may slightly overestimate health 
risks compared to the use of bioavailability data because not all soluble contaminants in 
the digestive system will necessarily be bioavailable. Some solubilised toxins may still be 
excreted by the body unabsorbed (Fig. 25.1). However, using bioaccessibility data still 
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provides a more accurate basis for risk assessment than the use of total soil concentrations 
and also supports the application of a precautionary principle to conducting a CLRA. 

The benefits of oral bioaccessibility testing
Informed contaminated land management practices can save stakeholders substantial sums 
in remediation costs while also preserving soil resources. Oral bioaccessibility data supple-
ment a lines-of-evidence approach to more accurately characterise human health risk from 
oral contaminant exposure. Oral bioaccessibility data are not intended for use in isolation 
to assess risk but instead must be interpreted with all available site-specific information, 
including land-use and receptor sensitivity. 

Bioaccessibility data are particularly useful if the cost of in vitro testing will be less 
than the cost of site remediation. For example, oral bioaccessibility testing may have the 
greatest merits when applied to sites where an area of land that is too large to be remediated 
is classified as contaminated, particularly if there is widespread natural or diffuse anthro-
pogenic contamination. Oral bioaccessibility data can also supplement cost-effective in 
situ remedial strategies on smaller sites and can provide the justification for the reuse of 
excavated material off-site. 

In a case study commissioned by the Natural Environment Research Council (NERC, 
2012) it was reported that an estimated £3.75 million in remediation costs were avoided 
during the redevelopment of a contaminated former coal mining site by employing in vitro 

325 

Oral bioaccessibility and health risk

Ingested Contaminant

GI Tract

Liver

Bloodstream

Tissue Storage

Urinary Tract Excreta

Figure 25.1. Simplified 
illustration of pathways an 

ingested contaminant could 
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oral bioaccessibility testing during the risk assessment process. In vitro soil tests showed 
that arsenic and hydrocarbons present were not highly bioaccessible, supporting the con-
clusion that signifi cant risk was not present and eliminating the need for complex reme-
diation. On a housing development project profi led in the same NERC case study, oral 
bioaccessibility testing supported the conclusion that future residents would not encounter 
signifi cant health risks from exposure to soil contaminants. Th is resulted in estimated 
savings of at least £7 million in remediation costs and further savings in terms of avoiding 
delays in development. 

Soil contamination in the north of Ireland
Figure 25.2 shows the concentrations in topsoil of four heavy metals – arsenic (As), chro-
mium (Cr), nickel (Ni) and lead (Pb) – over the Tellus and Tellus Border survey areas, 
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analysed by inductively coupled plasma mass spectrometry (ICP-MS). High total arsenic 
occurs in the mineralised areas of County Tyrone, extending into County Donegal, and 
of County Armagh, extending into counties Monaghan and Louth. High concentrations 
of chromium and nickel are mapped widely across the basalts of the Antrim Plateau, and 
from south of Lough Neagh, through County Armagh into counties Monaghan, Cavan 
and Louth. Total lead in topsoils displays a varied distribution throughout the Tellus and 
Tellus Border areas, probably reflecting its partly anthropogenic origin; like the other 
PTEs high lead concentrations are found in counties Armagh, Monaghan and Louth. 
Details of the geological provenance and geochemical characteristics of these elements are 
given in Young and Donald (2013).

This study examines the concentrations in Northern Ireland soils of As, Cr, Ni and Pb, 
which in places exceed average UK concentrations as well as generic soil screening values 
(Table 25.1). In an Environment Agency survey (2006) of local authorities in England and 
Wales, over 90% of respondents indicated that As, Ni and Pb were present at elevated levels 
within their jurisdictions. Such elevated concentrations resulted both from anthropogenic 
activity and from natural background sources (EA, 2006). Numerous sites in Northern 
Ireland are known to be affected by industrial contamination, although the area that could 
be designated as contaminated is unknown due in part to the widespread distribution in 
soil of naturally occurring enhanced levels of certain metals and metalloids. 

Table 25.1. Concentrations of selected PTEs (mg kg–1): 
crustal average; UK soils; Northern Ireland soils; lowest 
published oral exposure SGV or generic assessment criteria 
(GAC)

Element Crustal 
average1

UK 
average2

NI 
average3

NI 
max.

SGV or 
GAC4

As 2–3.4 10.9 10.5 271.2 32
(inorganic)

Cr 100–110 34.4 131.0 1229 Cr(III): 3000
Cr(VI): 2.1

Ni 75–89 21.1 46.2 333.6 230

Pb 12–13 52.6 41.7 18,757 (450)
1 ATSDR (2007), Garrett (2013), Taylor (1964), Lee & Yao (1970), Alloway (2013).
2 UK Soil and Herbage Pollutant Survey (EA, 2007).
3 Tellus Survey total XRFS concentrations in shallow soils (speciation not identified during 
analysis: toxic effects are species-dependent for some elements). 
4 Lowest available UK criteria reported where ingestion pathway considered relevant, assuming 
chronic exposure. The Pb and Ni SGVs have been withdrawn and are provided for reference 
only. DEFRA and EA (2002), EA (2009c, 2009d), Nathanail et al. (2009).
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Methods

Laboratory procedures
In order to determine whether oral exposure to high levels of PTEs in Northern Irish soils 
poses a possible human health risk, in vitro oral bioaccessibility testing was carried out 
on a subset of archived Tellus Survey shallow (‘A’ profile) soils in 2013 using the Unified 
BARGE (Bioaccessibility Research Group of Europe) Method (UBM). The UBM is an 
extraction technique that measures the bioaccessible portion of a toxic substance by simu-
lating the conditions of the human stomach (gastric, G) and upper intestine (gastrointes-
tinal, G-I) (Wragg et al., 2011). The full UBM procedure is available online through the 
BARGE website (BARGE/INERIS, 2011). 

UBM extracts were analysed by the British Geological Survey (BGS) Analytical Geo-
chemistry Facility in Nottingham using ICP-MS to provide bioaccessible concentration 
data (mg kg–1). PTE bioaccessible fractions (BAFs, %) were calculated as percentages 
of total and partial soil concentrations as measured by X-ray fluorescence spectrometry 
(XRFS) and ICP-MS respectively (Smyth, 2007). ICP-MS measures only the fraction of 
trace elements solubilised by aqua regia digestion and such analytical results are therefore 
often regarded as partial rather than total concentrations.
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Spatial analysis 
The UBM extraction data obtained in 2013 were amalgamated with a pre-existing UBM 
data set from previous analyses of Tellus soil samples in 2009 (Barsby et al., 2012). A total 
of 145 ‘A’ profile soil sample locations was thus considered (Fig. 25.3), covering a com-
prehensive geographical range of soil and underlying rock types across the study area. By 
joining these two UBM data sets, it was possible to develop geographical models of PTE 
bioaccessibility covering all of Northern Ireland.

Regional maps of As, Cr, Ni and Pb bioaccessibility were generated using inverse 
distance weighting (IDW) to illustrate trends in PTE bioaccessibility. IDW is an exact 
interpolator that estimates mapped values between sample locations by giving the greatest 
weight to the nearest neighbouring sample locations. For comparison against bioaccessible 
concentrations, total PTE concentration maps were generated from the shallow (top)soils 
XRFS Tellus data (n = 6862) using ordinary kriging (OK) with 10–12 nearest neighbours. 
IDW outputs favoured the smaller sample size represented by the bioaccessibility data set 
while OK was well suited to providing outputs of total soil PTE concentrations for which 
a larger number of sample locations was available. 

The extraction phase yielding the highest average bioaccessible PTE concentration was 
chosen for illustrative purposes in line with a precautionary principle to ensure that health 
risks from oral contaminant exposure were not underestimated. G concentrations are pre-
sented for Pb, Ni and Cr. In line with available validation criteria (Wragg, 2009), G-I 
concentrations are presented for As. 

Key findings
Table 25.2 provides summary statistics for total, partial and bioaccessible concentrations 
and fractions of As, Cr, Ni and Pb. For these elements, Figs 25.4–25.7 compare the spatial 
distributions of their total concentrations with their bioaccessibility. 
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Table 25.2. Summary statistics for As, Cr, Ni and Pb soil and bioaccessible 
concentrations (mg kg–1) and fractions (BAF, %) of total XRFS and 
partial ICP-MS soil concentrations (Palmer et al., 2014, 2015; Barsby et al., 
2012). Where large differences are observed between ICP-MS and XRFS 
concentrations and fractions, low PTE solubility is inferred, which is 
common for geogenic elements. SD = standard deviation.

XRFS ICP-MS

As Total
XRFS

Partial
ICP G G-I G BAF G-I BAF G BAF G-I BAF

Min. 2.30 0.05 0.18 0.20 2.58 3.35 3.31 5.26

Mean 10.58 6.49 1.46 1.39 12.01 11.83 24.31 24.15

Med. 8.40 4.50 0.96 0.94 11.15 11.67 22.20 22.49

Max. 135.6 108.0 45.15 37.17 58.61 49.35 90.81 91.95

SD 12.09 10.10 3.83 3.16 6.73 5.62 14.20 13.36

Cr

Min. 4.60 0.50 0.00 0.00 0.04 0.00 0.20 0.02

Mean 117.4 39.21 1.50 1.11 1.20 1.01 3.67 3.31

Med. 85.10 31.00 1.00 0.82 1.09 0.89 3.32 2.81

Max. 510.2 180.0 9.96 7.39 5.36 4.44 13.04 19.84

SD 100.3 33.51 1.57 0.98 0.65 0.55 1.69 2.31

Ni

Min. 2.20 1.20 0.33 0.07 1.42 0.60 1.64 0.70

Mean 41.12 34.83 3.84 1.89 12.43 5.69 15.24 6.89

Med. 26.20 23.00 2.45 1.31 9.05 5.23 10.12 6.13

Max. 235.1 194.0 30.70 11.10 46.30 16.02 53.64 18.11

SD 42.40 34.47 4.39 1.86 9.17 2.84 11.66 3.57

Pb

Min. 6.00 5.70 1.49 0.03 8.22 0.17 9.69 0.29

Mean 40.62 36.04 15.34 5.96 32.75 12.46 38.02 14.43

Med. 29.20 24.40 8.38 3.55 32.51 12.40 38.48 14.32

Max. 291.2 268.0 199.8 85.90 68.63 35.06 74.57 38.08

SD 38.18 36.34 21.78 9.52 12.41 6.56 13.60 7.46



Arsenic
On average across the study area of Northern Ireland, less than one quarter of soluble As 
was bioaccessible in soil (median G-I BAF = 22%). A maximum of 37 mg kg–1 of As was 
solubilised by G-I UBM extraction and this maximum occurred in the central southern 
portion of the study area in the County Armagh mining district (Fig. 25.4b). 

Chromium
Despite high total Cr concentrations in the north-east of the study area (Fig. 25.5a), Cr 
displayed the lowest measured oral bioaccessibility compared with other PTEs (Table 
25.2). This is likely to be due to Cr residing in insoluble forms in soil (Palmer et al., 2014; 
Cox et al., 2013). However, all exposure pathways should be investigated for this PTE as 
dust inhalation could also present toxic health risks to exposed populations. Furthermore, 
Cr speciation has not yet been analysed in Northern Ireland and toxic effects are species-
dependent (Alloway, 2013). A maximum Cr G concentration approaching 10 mg kg–1 was 
recorded in the north-east of Northern Ireland (Table 25.2, Fig. 25.5b).

Nickel
Although Ni shares geogenic origins with Cr in soils of the study area, different trends in 
Ni oral bioaccessibility were observed. Overall, higher measured G and G-I bioaccessibility 
was recorded compared with Cr, although the average G fraction of total Ni concentra-
tions reached only 12.4% (Table 25.2). Higher G Ni concentrations were found south of 
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Figure 25.6. Nickel (Ni) (mg kg–1): (A) total XRFS concentrations (ordinary kriging); (B) G Ni concentrations (inverse distance weighting), showing higher 
measured Ni bioaccessibility south of Lough Neagh despite the highest total Ni concentrations occurring in the north-east (Palmer et al., 2014).

Figure 25.5. Chromium (Cr) (mg kg–1): (A) total XRFS concentrations (ordinary kriging); (B) G Cr concentrations (inverse distance weighting), showing 
higher total and bioaccessible Cr concentrations in the north-east of the study area (Palmer et al., 2014).



Lough Neagh and in the Armagh mining district, reaching a maximum of 31 mg kg–1, 
despite higher total Ni concentrations occurring in the north-east (Fig. 25.6). 

Lead
On average, approximately one third of total Pb soil concentrations were measured as 
bioaccessible in the stomach in vitro. This average decreased substantially in the intestinal 
phase, however, with 12.5% of total Pb potentially available for intestinal absorption. 

Similarities in total and partial Pb concentrations and BAF suggest that a large propor-
tion of Pb in the study area is highly soluble and therefore potentially bioaccessible (Table 
25.2; Palmer et al., 2015). Geographically, the highest concentrations of bioaccessible Pb 
occur along the north coast in an area of historical mining activity, around the Belfast 
Metropolitan Area and also in the Armagh mining district (Fig. 25.7). 

Conclusions
Conducting a thorough contaminated land risk assessment relies on the collation of data 
about all possible sources of and exposure pathways of toxic substances and proposed 
site-specific land-use activities. Here only the oral pathway has been considered. However, 
these results demonstrate how total concentrations of PTEs are not the sole determinant 
for possible human health risks from soil contaminant exposure. It is equally important 
to determine the fractions of PTEs in soils that are both bioaccessible and bioavailable 
for human absorption. These are demonstrated to be relatively low in Northern Ireland 
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for naturally occurring nickel and chromium, which both show unusually high total 
concentrations. Not all geogenic PTEs are devoid of potential health risks, however. For 
example, because of the documented spatial correlation between oral arsenic exposure and 
an increase in human disease burdens (McKinley et al., 2013), further risk evaluation of 
this largely geogenic element may be warranted in Northern Ireland. 

Elevated and bioaccessible lead concentrations appear to arise in part from anthropo-
genic sources, notably in the historical mining area of County Armagh, which extends 
into County Monaghan. Despite the low measured G-I lead fractions relative to total and 
partial lead concentrations measured in soils, it is arguable that any measured bioaccessible 
lead should be investigated, in view of the current lack of a published threshold (Palmer 
et al., 2015).
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