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The Palaeogene Mourne Mountains Complex in County Down is a potential geothermal 
energy resource due to the high levels of radioactivity in its granitic rocks. The regional 
Tellus geochemical and geophysical surveys mapped the radioelement distribution of the 
rocks at surface. Follow-up investigations confirmed the heat potential of these, some of 
the most radioactive rocks in the island of Ireland, and investigated their depth extent by 
electromagnetic (magnetotelluric, MT) depth sounding. The results suggest that resis-
tive rocks, interpreted as the granitic intrusion, reach depths of 5 to 6 km in the Eastern 
Magmatic Centre and 4 to 5 km in the Western Magmatic Centre. The MT results are 
discussed in the context of the different models of granite emplacement proposed for the 
Mournes.

Tellus aeromagnetic data and MT modelling suggest that the granite bodies extend at 
depth to the south of the outcrop, as predicted for the laccolith emplacement mechanism, 
although modelled granite thickness is greater than expected. The MT data indicate a 
high-conductivity zone of unknown origin beneath the granites, extending from depths 
of 8 to 20 km. The high radiogenic heat production and the modelled thicknesses of 
granites are favourable factors for the enhanced geothermal system (EGS) potential of the 
Mournes, although the measured geothermal gradients and calculated heat flows are lower 
than those in comparable EGS targets. 

The scope for geothermal energy in Ireland
Geothermal energy is energy stored in the form of heat beneath the surface of solid earth. 
Assuming an average worldwide geothermal gradient of 25°C km–1, it is simple to calculate 
that 99.7% of the Earth is at a temperature greater than 150°C. Clearly the heat resources 

1 Geological Survey of Ireland, Dublin.
2 Geological Survey of Northern Ireland, Belfast.
3 Dublin Institute for Advanced Studies.
4 Camborne School of Mines, University of Exeter; British Geological Survey, Keyworth.
5 University of Birmingham.

129 

How to cite this chapter:

Ture, M.D., Reay, D.M., 
Muller, M.R., Yeomans, 

C.M. and Ayres, L.A., 2016 
‘Geothermal potential of 

granitic rocks of the Mourne 
Mountains’ in M.E. Young 
(ed.), Unearthed: impacts of 

the Tellus surveys of the north 
of Ireland. Dublin. Royal Irish 

Academy.

DOI: https://doi.org/10.7486/
DRI.ff36jm09f



of the Earth are vast. However, the engineering challenges of heat extraction are great 
and the capital costs and geological risks high, so there has to date been little incentive to 
invest in the development of geothermal energy, compared with other low-carbon energy 
resources. Nevertheless, in the future, as the use of fossil fuels declines and technology 
develops, the scope for wider exploitation of geothermal resources can only increase.

Extracting geothermal energy from readily accessible shallow heat reservoirs in volcani-
cally active regions is well established, notably for example in Iceland. In less active regions, 
such as the UK and Ireland, there is also scope for exploiting geothermal resources from 
two principal categories. Firstly, in hot sedimentary aquifers (HSAs), naturally occurring 
hot water in sedimentary strata is pumped to the surface to feed district heating networks 
or, if hot enough, to generate electricity. An HSA system has been running successfully for 
district heating in Southampton since 1987, and the method could be used in other areas. 
HSA targets in Northern Ireland have been identified from geophysical surveys and deep 
boreholes in the Larne, Lough Neagh and Rathlin sedimentary basins. 

Secondly, in EGSs cold water is injected from surface into a zone of fractured hot 
rock, where it is circulated and heated before being pumped to surface, usually to drive 
a power station turbine. In the UK and Ireland, such hot rock reservoirs appropriate for 
EGS may exist in several intrusive granite bodies (known as high heat production (HHP) 
granites) in which heat is produced by natural radioactive decay. A UK deep geothermal 
energy research programme in the 1980s, jointly funded by the EC and the UK govern-
ment, included drilling and fracturing the radioactive Carnmenellis granite in Cornwall. 
Follow-on developments from this earlier programme include two proposed power plants 
in Cornwall. 

The geological potential and economic implications of development of geothermal targets 
in Britain and Northern Ireland have been widely reported; reviews include those by Kelly et 
al. (2005), Busby (2010), Pasquali et al. (2010), GT Energy (2011) and SKM (2012). Similar 
assessments for the Republic of Ireland have been made by Goodman et al. (2004, 2010), 
Jones et al. (2010) and Pasquali et al. (2015). Several sites in Northern Ireland and the Repub-
lic of Ireland are the subject of geological and geophysical research by the IRETHERM 
project (www.iretherm.ie) led by the Dublin Institute of Advanced Studies (DIAS). 

The Tellus and Tellus Border Projects, through a limited programme of ground surveys, 
drilling and analysis, examined the EGS potential of the Mourne Mountains Complex, 
County Down. In the Tellus and Tellus Border survey areas other less radioactive granite 
bodies that may in the future offer scope for EGS are the Cooley Mountains, County 
Louth; the Ox Mountains, County Sligo; and the County Donegal granites.

Enhanced geothermal systems and heat production
The flow of heat from the Earth’s interior to the surface has two components: primor-
dial heat released by the cooling down from the Earth’s formation, and radiogenic heat 
produced by the decay of radioactive isotopes in the mantle and crust. Most crustal 
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rocks contain small concentrations of the radioactive isotopes of uranium (238U, 235U), 
thorium (232Th) and potassium (40K), but in some granite bodies the concentrations may 
be anomalously high. These HHP granites typically have elevated radiogenic heat produc-
tion rates that can be estimated from the measured concentrations of the heat-producing 
radionuclides. Such measurements can be made locally by geochemical analyses of rock 
samples or by ground gamma-ray spectrometry and regionally by airborne gamma ray 
spectrometry (AGRS). 

Using current EGS technology, water temperatures of 100–150°C are needed for elec-
tricity generation and so the target depth in stable continental settings is usually between 
3 and 5 km, depending on the local geothermal gradient. Key parameters for assessing 
EGS potential are heat flow, heat production, the depth and extent of the granite and its 
capacity to be fractured.

Thermal characteristics of granites in the UK and Ireland
Busby (2010) has summarised the research of the past 30 years into the thermal char-
acteristics of UK rocks. The average background crustal heat flow for the British Isles 
is approximately 52 mW m–2. Radiogenic granites in Cornwall (113–126 mW m–2), the 
Pennines (78–101 mW m–2) and the Eastern Highlands of Scotland (59–76 mW m–2) all 
show above-average heat flows. Wheildon et al. (1985) calculated values of 84–87 mW 
m–2 in two boreholes in the Mourne Mountains Complex, after topographic and palaeo-
climate corrections, although these boreholes were relatively shallow (66 m and 149 m 
total depth). Downing and Gray (1986) indicate (their Fig. 10.1) that the Mournes area is 
one of only three areas in the UK where a temperature of 200°C may be encountered at 
depths of less than 7 km, although the geothermal gradients may have been overestimated 
by these authors. 

Systematic research into the radiogenic heat potential of granites in Ireland has been 
carried out by scientists at NUI Galway, funded by EC and government grants. These 
quantitative studies into the radioelement abundances of granite batholiths in County 
Galway (Feely and Madden, 1986, 1987, 1988; Feely et al., 1991; Madden, 1987), Leinster 
and Donegal (McCabe, 1993) were based largely on extensive ground surveys using port-
able gamma-ray spectrometers, augmented by measurements made in shallow boreholes. 
Of these Caledonian granites, the small Costelloe Murvey leucogranite in the Galway 
batholith had the highest calculated heat flows (72–79m W m–2) and heat production 
estimates (5.0–7.83 µW m–3). 

This research also characterised the Barnesmore granite in County Donegal as HHP 
granite, and this has been confirmed by both the Tellus Border AGRS data and Willmot 
Noller et al. (2015), who determined a mean production of 3.11 µW m–3 from existing 
data. Cook and Murphy (1952) estimated that the Barnesmore granite was about 5 km 
thick, based on simple 2D gravity modelling. Elsewhere, the Tellus Border stream sedi-
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ment geochemistry showed high values of uranium around The Rosses in the west of the 
county, an area not yet covered by AGRS data.

Radiogenic heat production in the Mourne Mountains Complex
O’Connor (1981) reported that the Palaeogene granites are consistently more radioactive 
than the Caledonian granites of Ireland. The geology of the Mourne Mountains Complex 
is described by Cooper and Johnston (2004). The Complex was the focus for uranium 
exploration in the 1970s and 1980s and more recently the radiochemistry was investigated 
by Tellus geochemical sampling and AGRS, which mapped enhanced levels of uranium, 
thorium and potassium. Figure 10.1 shows the geology and ternary images of these three 
elements for soils and AGRS. Using the AGRS data, Van Dam (2007) calculated the 
radiogenic heat flux for Northern Ireland using the formula of Carmichael (1989):

heat production (µW m–3) = 0.337(0.74eU + 0.199eTh + 0.26K)

where eU = equivalent uranium concentration in mg kg–1, eTh = equivalent thorium con-
centration in mg kg–1 and K = potassium concentration in %. Figure 10.1d shows the 
calculated radiogenic heat production for the study area with high values of >4.6 µW 
m–3 over the Mourne Mountains. The Eastern Magmatic Centre (EMC) generally shows 
higher values than the Western Magmatic Centre (WMC). However, the Tellus survey 
AGRS underestimates the true radioelement concentration where the gamma radiation 
from bedrock is attenuated by soil and peat and where erosion has disturbed the equilib-
rium of the radioactive decay chain. Appleton et al. (2008) compared the AGRS data with 
soil sample analyses and found that the values of K2O, eTh and eU measured by AGRS 
across all Northern Ireland were, respectively, approximately 20%, 30% and 66% less than 
those measured directly from the soil samples. 

Yarr (2013) reported similar findings based on field survey measurements on exposed 
granite, using a portable gamma-ray spectrometer (PGRS). She calculated average heat 
production values of 7.79 µW m–3 and 6.56 µW m–3 for the eastern and western centres, 
respectively, comparable with the adjusted AGRS results. Willmot Noller et al. (2015) 
calculated heat production rates from 3300 new and legacy radioelement analyses across 
Ireland and found that the Mourne Mountains Complex shows the highest rate of all Irish 
granites sampled, averaging 6.83 µW m–3 from 57 samples. The calculated heat produc-
tion rates for the Cornish (4.0–5.3 µW m–3) and Pennine (3.7–5.2 µW m–3) granites are 
significantly lower.

In 2009 a 600 m deep borehole was drilled into the EMC granite at Silent Valley as part 
of a Government-funded GSNI research programme into the geothermal energy poten-
tial of Northern Ireland (Reay and Kelly, 2010; Fig. 10.2). Continuous rock cores were 
retrieved and a suite of geophysical measurements was made (Kelly, 2010). A temperature 
gradient of 21.07°C km–1 was calculated, similar to the values recorded in the two earlier 
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Figure 10.1. The Mourne 
Mountains Complex: (a) 

geology; (b) ternary image of 
soil U, Th and K; (c) ternary 

image of AGRS eU, eTh 
and K; (d) radiogenic heat 

production. EMC, Eastern 
Magmatic Centre; WMC, 

Western Magmatic Centre. 
Black lines are three MT 

survey lines, numbered with 
distances (km).



shallow boreholes, but lower than the gradients measured in the Cornish granites. Labora-
tory measurements of thermal conductivity, density and specific heat capacity were made 
from granite core samples. Yarr (2013) used the PGRS to measure the radioactivity of the 
drill-core of the Silent Valley borehole and found that it increased slowly with depth.

Geophysical and structural models of the Mourne Mountains 
Complex
The radiometric data and the heat flow calculations discussed above are derived from 
measurements from the near-surface rocks only. The deep geothermal energy potential 
will also depend on the geometry (shape, thickness and volume), the bulk geochemistry 
of the rocks including the water content, the extent of existing fractures at depth and the 
capacity to enlarge these artificially. During the Tellus Project we investigated some of 
these using surface geophysical methods.

Features and implications of the gravity and magnetic anomalies
Variations in the densities of the rocks at depth across an area will be reflected by changes 
in the gravity anomaly. Relatively higher gravity indicates the presence of denser mafic 
rocks, while less dense rocks such as granite show lower gravity values. Figure 10.3 shows 
the variation in gravity across the Mournes; the Palaeogene Slieve Gullion, Carlingford 
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Figure 10.2. Exploratory 
drilling in the Eastern 
Magmatic Centre, Silent 
Valley, 2009.



and Mournes Igneous complexes are characterised by high positive anomalies untypical 
of granites. In contrast, the older Devonian Newry Granodiorite to the north shows the 
low anomaly that would be expected from a large granitic body extending to great depth. 
The gravity low over the Newry Granodiorite is consistent with a low-density intrusion 
extending to depths of more than 10 km and is similar to the anomalies seen over other 
Caledonian granite batholiths in the Southern Uplands of Scotland. 

The gravity field of the north of Ireland was first mapped and modelled by Cook and 
Murphy (1952). With the benefit of more extensive data, Carruthers et al. (1999) and Reay 
(2004) presented models that demonstrate that the large positive gravity anomaly across 
the Gullion/Cooley/Mournes area is caused by a large mafic or ultramafic body underlying 
the Palaeogene intrusions. An initial 2D model estimated the thickness of the Mournes 
granite at 2.5 to 4 km, although 2D modelling overestimates the gravity effect, and thus 
underestimates the thickness, of a 3D body with the shape of the Mournes Complex. 
Strong positive gravity anomalies are characteristic of other intrusive centres of the British 
Palaeogene Igneous Province (Emeleus et al., 2005) and the Skye, Mull, Rum and Black-
stone Complexes in the Inner Hebrides have been modelled as cylindrical bodies of mafic 
or ultramafic composition extending to depths of about 15 km.

Gravity anomaly values decrease from Slieve Gullion and the Carlingford Igneous 
centre on the Cooley peninsula in a northerly and north-westerly direction towards the 
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elongate SW–NE gravity low over the Newry Granodiorite. There is no marked change of 
the gravity gradient across the Mournes, which suggests that the granite intrusions are not 
very thick, although, when a 20 km high pass filter is applied to the gravity data (Fig. 10.4), 
the gravity lows (blue) on the western margin of the WMC and the northeastern margin of 
the EMC indicate that the low-density granite may be thicker here. It is not immediately 
obvious from Fig. 10.4 whether the mafic body extends north from the Gullion–Cooley 
area beneath the entire Mournes granite intrusion, but the anomaly highs (red) suggest 
that high-density rocks underlie much of the Mournes granite. Three-dimensional (3D) 
modelling of the gravity anomalies may help to constrain this.

Variations in the magnetic mineral content of rocks can also be mapped by ground or 
airborne surveys, which may reveal the subsurface extent of igneous intrusions. The Tellus 
and Tellus Border airborne magnetic data have been merged (Fig. 10.5) and distinctive 
positive anomalies can be seen to match closely the outcrop pattern of the Slieve Gullion 
and Carlingford intrusions. In the area of the Mourne Mountains, however, the magnetic 
anomalies appear to extend south under Carlingford Lough and eastwards slightly off-
shore. This anomaly pattern indicates that the intrusions may extend beyond the granite 
outcrop beneath the country rocks. The magnetic data also suggest an asymmetry to the 
Mournes intrusions, with the anomaly maxima being located just to the south of the 
WMC and in the eastern part of the EMC.
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Structural models for the emplacement of the Mourne Mountains granites
Structural studies of the Mourne Mountains have suggested two main mechanisms for the 
emplacement of the granite intrusion: cauldron subsistence (Richey, 1928) and laccolithic 
emplacement (Stevenson et al., 2007; Stevenson and Bennett, 2011). 

Cauldron subsidence involves a large block of country rock, bounded by a steeply 
dipping ring dyke, sinking into the underlying magma chamber. Granite magma then 
rises up the widening ‘wall’ fissure before moving laterally into a ‘roof ’ fissure using the 
space created by the sinking country rock. In this passive type of emplacement the magma 
chamber would be directly below the intrusion. The Richey model proposed that the 
granite emplacement was asymmetric, with the magma mainly coming up the eastern 
wall and spreading west to south-westwards into the roof. Steeply dipping mineral fabrics 
might be expected in the wall zone with shallow dipping or sub-horizontal mineral ori-
entation in the roof zone, and the country rock should show little deformation from the 
passive intrusion. Walker (1975) proposed a different mechanism involving diapiric ascent 
of the granite magma, assisted by the upward movement of underlying mafic magma. In 
this case the granite intrusion was more forceful but the mafic magma chamber was still 
directly below the granite.

The field evidence for the cauldron subsidence model is not strong and, after reviewing 
the field mapping by Gibson (1984) and Hood (1981) and studying deformation fabrics 
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deduced from the anisotropy of magnetic susceptibility, Stevenson and co-workers pro-
posed a new model of emplacement. They proposed that the granitic magma rose from a 
feeder zone to the south-southwest and was emplaced as a laccolith. The laccolithic model 
implies a thinner, more lenticular granite body perhaps 2 km thick and a more forceful 
emplacement, with deformation of the country rock as observed in places. In this model 
the granite would be laterally displaced from the underlying mafic magma chamber, as 
suggested by the gravity data. 

Modelling the intrusion dimensions using electromagnetic sounding
In 2010, in a collaborative field programme, geoscientists from GSNI, DIAS and the Uni-
versity of Birmingham undertook an MT survey to investigate the deep structure of the 
Mourne Mountains Complex. The operational details and analysis of results are described 
by Ayres (2011) and Yeomans (2011). Three lines totalling 56 km were surveyed using 
Phoenix MT equipment, with MT soundings taken at approximately 1 km intervals. 

The MT data were modelled by joint inversion of the transverse electric and mag-
netic modes to produce cross-sections beneath the three traverses. For the models in this 
chapter Ture applied REBOCC inversion software (Siripunvaraporn, 1999) within the 
band 0.000167 to 22.727 seconds. This produced robust 2D models of the variation 
in resistivity of the rocks beneath the profiles that may be interpreted as different rock 
types. Sedimentary rocks typically have relatively low resistivities whereas dry granites 
are characterised by high resistivities, although these may be reduced by several orders of 
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magnitude if they are fractured or contain even 1% water. Mafic igneous rocks tend to 
have much higher resistivities than sedimentary rocks but lower than granite, although 
water content may again be significant.

The EMC model (Fig. 10.6) shows a near-vertical resistor (R1, with values of >10,000 
Ω m) at the northern end of the profile, which reaches a depth of approximately 10 km 
and lies north of the granite outcrop. This body could be interpreted as a steeply dipping 
wall intrusion, consistent with asymmetric intrusion from a feeder zone in the north-east. 
The near-vertical relatively conductive body (C1, values of <1000 Ω m), observed between 
R1 and the main granite body (R2), may represent a fault zone or a concealed slab of the 
Silurian greywacke and slate country rock separating different granitic pulses. 

The model delineates a large central resistor (R2, values of >2500, up to 40,000 Ω m), 
which corresponds to the granite outcrop. R2 is interpreted as the main granite body of the 
EMC and extends to depths of 5–6 km. Both R1 and R2 have central zones with electrical 
resistivities of >10,000 Ω m, which are typical of relatively dry granites. 

At the southern end of the model, where Lower Palaeozoic greywackes crop out, resis-
tor R3 dips at a moderate angle towards the south. R3 is less resistive than R1 and R2 
(4000–10,000 Ω m) and it may represent a buried intrusion composed of granite, with 
higher water content, or of a more mafic lithology. Variations in modelled resistivities may 
also arise where the same rock types cross the profile at different strike angles (one of the 
limitations of the 2D MT modelling technique is that a single geological strike angle must 
be defined for the entire profile, and this strike angle may not be exactly correct everywhere 
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along the profile, potentially leading to inaccuracies in the recovery of resistivity values). The 
position and dip of R3, to the south of the granite outcrop, could be taken as support for the 
laccolithic emplacement model but the separation of R3 from the main EMC by a narrow 
conductive zone and the relatively steep dip of R3 at depth would require some modification 
of the Stevenson model. Additional MT and gravity modelling work is required to further 
constrain the geological origin of R3 and assess its geothermal potential.

Conductive body C3 (resistivities of <100 Ω m) at depths of 8 km to 20 km beneath 
the EMC would be consistent with the position of a deep high-density intrusion originally 
proposed by Cook and Murphy (1952), but the origin of its low resistivity is not known 
and such values are not typical of mafic igneous rocks. Possible explanations include 
hydrothermal alteration of mafic rocks beneath the granites; the presence of water-filled 
fractures; ductile shear zones with highly conductive graphite; or sulphide mineralisation 
relating to the Mournes magmatism.

The MT model across the WMC (Fig. 10.7) also shows a near-vertical resistor (R4) at 
its northern end extending to depths of at least 15 km, which may be interpreted as the 
MT response from the Newry granodiorite which crops out here. Resistors R6 and R7 
correspond to most of the outcrop of the WMC and R5 may represent a northward exten-
sion of the WMC beneath the country rock. These resistors are relatively shallow (4–5 km 
maximum depth) and separated by relatively conductive bodies C4 and C5, which may 
be related to fault zones. South of the granite outcrop, resistor R8, which dips southward 
from 1 km to 10 km depth, could represent a magmatic feeder zone of granite with higher 
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water content, or more mafi c lithologies, similar to R3. Although R3 and R8 have diff er-
ent resistivity values, such a situation can arise where a 2D resistive body crosses the two 
profi les at diff erent strike angles. From the result of the model it can be seen that diff erent 
relatively conductive zones are mapped between resistive granitic bodies. Conductive body 
C7, lying beneath the southern part of the WMC, is similar to C3 under the EMC but 
with slightly higher resistivities (100–400 Ω m). 

Th e model along the profi le SLA, which runs just south of the WMC and EMC granite 
outcrops in a WSW-ENE direction (Fig. 10.8), has two laterally persistent shallower resistors. 
R9 is interpreted as a southward extension of the G4 granite intrusion concealed beneath the 
greywackes and with its base at about 4 km depth. Th e resistor appears to extend close to the 
surface, which suggests that the granite is close to the surface and/or that the hornfelsed grey-
wacke outcropping here is also highly resistive where contact metamorphism has reduced 
its water content. Th e laterally extensive resistor R10 corresponds to the northern shallower 
margin of resistors R3 and R8, its base rising to 5 km depth between the WMC and EMC 
profi les. Together these resistors suggest the presence of an intrusive body concealed beneath 
the greywackes and dipping south towards Carlingford Lough. Over its western part R11 is 
overlain by the shallow relatively conductive C8, which may be interpreted as relatively unal-
tered greywacke country rock. Conductive body C9, with minimum resistivities of about 40 
Ω m at about 7 km depth, lies beneath R10 and R11 and corresponds to the locations of the 
shallowest parts of C3 and C7 on the EMC and WMC profi les respectively. 

Th e MT models suggest that the granites are relatively thin (EMC 5–6 km, WMC 4–5 
km), although thicker than proposed for the laccolith model and still with some potential as 
a deep geothermal energy resource. Th e steeply dipping resistor and conductor at the north-
ern end of the EMC profi le may represent the juxtaposition of a granite wall intrusion and 
a thin slab of water-bearing country rock, which could constitute an attractive EGS target. 
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Similarly, the southward-dipping resistor south of the two magmatic centres, if interpreted as 
a buried granitic intrusion, would be a credible EGS target. However, some caution must be 
exercised when considering the detailed geometry of the modelled bodies described above. 

The inversion of the MT data produced robust deep 2D models that are broadly similar 
to those produced independently by Yeomans (2011) and Ayres (2011) from the same data, 
although the modelled ‘bodies’ differ in details of shape and resistivity values (Fig. 10.9). 
The differences between the models produced by different modelling algorithms reflect the 
non-uniqueness of the MT inversion method. This highlights the importance of integrat-
ing the use of MT data with other methods such as gravity and magnetic interpretation. 

Conclusions
The Tellus surveys have mapped variations in the radioelement distribution of rocks and 
soils of the Mourne Mountains Complex. Previous work and recent geochemical ground 
follow-up of the Tellus data confirm the radiogenic heat potential of these rocks, which 
are among the most radioactive granites in Ireland. 2D modelling along an MT sounding 
transect across the WMC suggests that the granite extends down to 4–5 km depth, which 
is consistent with the results from 2D modelling of the gravity data. The results from the 
MT modelling yielded slightly greater depths of 5–6 km for the granites of the EMC. 

The MT models do not provide clear evidence in favour of either the cauldron subsidence 
or the laccolith emplacement models of granite intrusion. The steeply dipping resistive body 
to the north could be interpreted as a wall intrusion of the former whereas the south-dipping 
resistor in the south could be the feeder zone of the latter. Irrespective of their origin, these 
deeper bodies could represent EGS targets. The MT models indicate the presence of an unex-
pected high-conductivity zone beneath the resistive granites. This zone is of unknown origin 
and is much deeper than current targets but, if indicative of fractured water-bearing rocks, 
could hold EGS potential in the future. Detailed 3D modelling of the gravity and magnetic 
anomalies may help to constrain the extent of any underlying mafic intrusion and resolve its 
relationship to the conductive mass below the Mourne Mountains. 

The EGS potential of the Mournes granite remains enigmatic, the measured high heat 
production values of the granites being very favourable, whereas the complicated gravity 
signature, moderate heat flow values and modest geothermal gradients are less favourable 
factors. The thicknesses of the main granite bodies, as interpreted from the MT data, are 
less than those of other EGS targets in the UK but the steeply dipping resistive zones to 
the north and south of the granite outcrop may warrant further investigation to confirm 
their form and shed some light on their origin. 
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