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The Tellus airborne radiometric data have enabled assessments of environmental radio-
activity levels in unprecedented detail across the north of the island of Ireland. Both the 
natural (geological) and man-made (industrial) contributions to public exposure from ion-
ising terrestrial gamma radiation are considered. Over much of the area the gamma-ray 
flux is significantly attenuated by peat and organic soil but relatively highly radioactive 
rocks are exposed in places, notably in the south-east of the surveyed area. The results indi-
cate that across the area the effective dose from terrestrial gamma radiation is everywhere 
within the acceptable level, subject to the inherent spatial averaging of the measurements. 
The airborne survey also revealed areas where industry has concentrated or exposed natu-
rally occurring radioactive material, including quarries and fly-ash piles.

Introduction
Since the days of Marie Curie it has been appreciated that exposure to ionising radiation 
may be hazardous to health. The first definition of a unit of radiation was made in 1928. 
Units of absorbed dose, the actual energy absorbed in the tissue being irradiated, are now 
used and are given as 1 J kg–1 or 1 gray (Gy). The gray can be used for any type of radia-
tion but it does not express the biological effects from different types of radiation. The 
absorbed dose rate in air (nGy h–1) is used to indicate the gamma ray intensity in the air 
from radioactive materials in the earth and atmosphere. Equivalent dose rate relates the 
absorbed dose in human and biota tissue and organs to the effective biological damage. 
The current SI unit of equivalent dose is the Sievert (Sv). The Tellus airborne radiometric 
data sets provide estimates of the absorbed dose rate in air (nGy h–1); these may then be 
converted to equivalent annual dose rate estimates.

Terrestrial gamma radiation (the natural flux from rocks and soils) accounts for approx-
imately 16% of the total annual dose of natural ionising radiation to which the population 
is exposed (Watson et al., 2005). This terrestrial component arises due to primordial radio-
nuclides that were synthesised during the creation of the planet, and has always accom-
panied life on Earth. Both humans and biota are exposed to an annual dose rate. The 
average annual dose to the UK population is estimated to be 2.7 mSv, with 2.2 mSv of this 

1  British Geological Survey, Keyworth.
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coming from natural radiation (Hughes et al., 2005). According to Watson et al. (2005), 
the annual UK exposure from terrestrial gamma radiation is about one third that from the 
inhalation of radon gas (see Appleton and Hodgson, Chapter 20, this volume; Hodgson 
and Young, Chapter 2, this volume). The data considered here do not assess the potential 
exposure from terrestrial radon.

Since the natural flux is largely determined by soil and associated parent geological 
material, personal annual exposure to terrestrial gamma radiation is determined by the 
home location, the localities visited and the amount of time spent indoors and outdoors, 
within a geological framework. The annual exposure of the UK population from all natural 
and artificial sources is further evaluated in Watson et al. (2005). 

Terrestrial gamma dose rates largely reflect the natural variation of potassium, uranium 
and thorium across the environment. The high spatial resolution airborne surveys, and 
their continuous local to regional scale, allow assessments of both the geological back-
ground and its spatial variability together with localised concentrations due to industrial/
technological processes. The data sets provide a basis for studies of dose rates derived from 
both NORMs (naturally occurring radioactive materials) and TENORMs (technologi-
cally enhanced naturally occurring radioactive materials). Watson et al. (2005) discuss 
both subjects in relation to UK assessments.

Materials and methods
Estimates of radioelement concentrations are available from the Tellus airborne surveys 
and the ground geochemistry. The geochemical soil-sample estimates are referred to here 
as ‘in-soil’ and the airborne estimates as ‘in-air’. The latter provide a measure of the air-
absorbed dose rate directly above the ground surface. Radium (226Ra) is the fifth daughter 
decay product of uranium (238U) and is the parent of the natural gas radon (222Rn), respon-
sible for radon exposure of the population (i.e. at locations where radon gas may build 
up). An airborne radiometric survey includes measurements that are used to minimise 
the potential radon contributions in the air-column. When effective, the airborne data 
then provide estimates of the ground concentration of the radium–radon parent uranium. 
Airborne measurements of uranium levels can then be used as one of the supporting tech-
niques in the estimation of indoor radon levels alongside indoor radon measurements and 
digital geological maps (Appleton et al., 2008; Appleton and Hodgson, Chapter 20, this 
volume).

The present study considers air absorbed dose (AAD) defined, using the airborne 
ground concentration estimates (IAEA, 2010), as:

AAD (nGy h–1) = 13.078 × %K + 5.675 × eU + 2.494 × eTh

where radionuclide equivalent concentrations, eU and eTh, are in ppm. %K is percent-
age potassium. The combined dose measurement covers the energy range from 1.37 to 
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2.81 MeV and excludes contributions from artificial (man-made) sources. The airborne 
absorbed dose rate values may be converted into units of Bq kg–1 if comparison with 
international and UK legislation is required. A range of radionuclide conversion factors 
have been reported in the literature over the years and these are summarised by Beamish 
(2014).

Effective dose is a sum of multiples of equivalent doses in separate human organs each 
with a specific weighting factor. As noted in UNSCEAR (2000), to estimate annual effec-
tive doses, account must be taken of (a) the conversion coefficient from absorbed dose in 
air to effective dose and (b) the indoor–outdoor occupancy factor. The average numeri-
cal values of those parameters vary with the age of the population and the climate at the 
location considered. The UNSCEAR committee used 0.7 Sv Gy–1 for the conversion coef-
ficient from absorbed dose in air to effective dose received by adult organs and 0.8 for the 
indoor occupancy factor, i.e. the fraction of time spent indoors and outdoors is 0.8 and 
0.2, respectively. The annual effective dose rate (AEDR) in mSv y–1 may be calculated from 
the AAD rate using the above factors to give:

AEDR (mSv y–1) = AAD (nGy h–1) * 8760 (h) * 1.0 * 0.7 (Sv Gy–1) * 10–6

The factor of 8760 represents the number of hours (h) in a year and an occupancy 
of unity (meaning totally indoors) has been applied. The conversion indicates that the 
airborne dose rate values of 10, 100 and 1000 (nGy h–1) produce equivalent annual effec-
tive dose estimates of 0.061, 0.61 and 6.1 mSv, respectively. The statutory UK limit on 
the amount of radiation to which the general public may be exposed, in excess of natural 
background and excluding medical exposure, is 1 mSv per annum (Watson et al., 2005). 

Results
Previous studies of dose rates across the UK noted the remarkable skew (to low values) of 
the original Tellus radiometric data set (Beamish, 2013). The composite Tellus radiometric 
data used here have had water bodies (areas > 5 km2) removed. The unusually extensive 
areas of reduced radioactivity result from the attenuation of the signal by peat bogs, which 
cover some 17% of Northern Ireland (Beamish, 2013). However, when considering dose 
rates it is usually the high value end of the distribution that has most relevance to both 
NORM and TENORM investigations.

NORM contributions
Figure 18.1 summarises the low and high values of the observed distribution of dose rates 
obtained from the two Tellus surveys. The low values (<8 nGy h–1) are shown in black–grey 
and the high values (>60 nGy h–1) are shown in yellow–red. The widely distributed low 
values display a high spatial correspondence with areas of peat. At the scale shown, it is 
evident that high values are associated with a subset of the granite outcrops shown in pink. 
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The most spatially persistent set of high values are found in the eastern Mourne Mountains 
granite complex with other, less extensive zones being found within the Slieve Gullion, 
Carlingford and Newry granites. The Caledonian Barnesmore granite (B) in southern 
Donegal also displays a persistent zone of high values, largely confined to the western 
margins. The Ordovician granites (O) within the Midland Valley terrane are not associ-
ated with high values despite the absence of peat.

The maximum dose values within the data set occur in the eastern Mourne Mountains 
and range from 267 to 320 nGy h–1; the precise value depends on factors applied with 
merging of the Tellus survey data sets. In order to assess the spatial behaviour of the dose 
rate values, it is useful to additionally consider soil and water information. Figure 18.2 
shows an area centred on the outcrop of Mourne granite complex (the inner polygon in 
grey) with coloured contours of high dose rate (>150 nGy h–1). Areas of peat are shown 
using transparent brown and water bodies are in blue. The high values are largely confined 
to the outcrop although it can be noted (Fig. 18.1) that values > 60 nGy h–1 extend to the 
south of the outcrop. The locations of the zones of high values are spatially complex and 
it is probable that the areas of extensive peat modify (attenuate) the flux pattern observed. 
It is worth noting that the granitic responses noted in Fig. 18.2 also have a concomitant 
elevated response in uranium values.
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Figure 18.1. Air absorbed dose 
rate estimates obtained by 
the Tellus surveys. Low value 
amplitudes (<8 nGy h–1) in 
grey scale, high amplitudes 
in yellow–red (>60 nGy 
h–1). Pink areas are granite 
outcrops (B = Barnsmore, C = 
Carlingford, M = Mournes, N 
= Newry, O = Ordovician, SG 
= Slieve Gullion). Q1 and Q2 
are locations of two quarries 
discussed in the text. CF = 
Carrickfergus.



The bedrock geology across the survey area is complex and any assessment of the radio-
metric response is complicated by the soil modification to the flux. The environmental 
component of annual dose rate is undoubtedly related to the main place of residence of 
each individual. It is possible to exploit the uniform coverage of the airborne survey data to 
provide estimates of city and town dose rates. When the complexities of the geological and 
soil responses are fixed (as would be expected at the housing-district scale), a more direct, 
population-related assessment can be undertaken. Given a spatial database of defined local 
authority areas, it is possible to conduct the analysis by size of population or by area; here 
we use the former. The analysis was conducted using areas with a population > 5000 indi-
viduals (2001 census). 

Statistical analysis of the dose rates within 37 population centres of Northern Ireland 
is summarised in the box-whisker plot of Fig. 18.3, which is arranged in decreasing popu-
lation size (from 276,705 to 5076). The majority of towns have dose rates below 50 nGy 
h–1. Thirteen locations with higher dose rate levels are identified in red. These areas are 
predominantly underlain by granitic bedrock but there are additional contributions from 
the variable ground cover, so the method is effective in distinguishing the actual ‘at-home’ 
terrestrial gamma exposure levels experienced by the population. A similar analysis con-
ducted using the Tellus Border data, where granitic areas are less extensive, revealed that 
the central values were all < 50 nGy h–1. The high value tails of the distributions are also 
significant, since these reveal more localised high exposure values. The behaviour of the 
Carrickfergus distribution is very distinctive and is discussed further below.
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Figure 18.2. 3D perspective 
view (see north arrow) showing 

area of Mourne Mountains 
granite outcrop (in grey), with 

a 2 km extension showing base 
map, and draped on a base 

digital terrain model (DTM). 
Colour contours of high values 

of dose rate in yellow–green–
red. Peat areas in brown, water 

bodies in blue.



TENORM contributions
The main central values for the Carrickfergus distribution (Fig. 18.3) lie in the range 
30–40 nGy h–1, but high values (data outliers) exceed this by a factor of 3. Kilroot Power 
Station, based in Carrickfergus, is Northern Ireland’s largest power station. The waste 
material from combustion (fly ash) is contained within a landfill area on the coast. Figure 
18.4 shows the detailed airborne observation points (dots) looking inland from the coast 
and centred on the landfill. High dose values are colour contoured and it is evident that 
the high values are confined to the landfill and that the data offer discrimination in the 
levels observed across the site. Further analysis, not shown here, indicates that the high 
levels are due to elevated concentrations in both thorium and uranium. In the context of 
other UK airborne data sets, colliery spoil heaps, iron ore mines and processing works and 
power stations are also marked by relatively high values of all three natural radioelements, 
but most notably thorium (Lahti and Jones, 2003). Radiometric measurements at ground 
level display a greater range of radionuclide concentrations due to the spatial averaging 
(typically > 100 × 100 m) inherent to the airborne measurement.

By their nature, TENORM contributions to high dose rates derive from existing and 
historical industrial activities and are spatially compact. A range of legacy effects due to 
many centuries of activity in the UK are reported by Beamish (2014). The largest recorded 
dose rate observed in modern UK airborne surveys is 579 nGy h–1, from a highly localised 
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Figure 18.3. Box and 
whisker plot summarising 
the statistical behaviour 
of the airborne dose rate 
values classified according 
to the 37 towns of Northern 
Ireland with a population > 
5000. Arranged in order of 
decreasing population.



zone (predominantly along one flight line) associated with a former uranium mine in the 
vicinity of the St Austell granite in Cornwall. In the case of the Tellus surveys, TENORM 
contributions are observed to be typically less than 100 nGy h–1. The relatively high value 
dose rates shown in Fig. 18.1 use a threshold of 60 nGy h–1. The relatively high values 
account for only 1% of the total data. Areas of high dose were examined in relation to base 
topographical maps and airborne images. A significant proportion of the values occur in 
the vicinity of existing quarrying and other extractive industries. Two examples of local-
ized detection (identified in Fig. 18.1) are shown in Fig. 18.5; both show the zone of values 
with dose rate > 60 nGy h–1. Figure 18.5a shows a quarrying operation about 4 km SE of 
Stormont. The main zone is localised on one flight line. Figure 18.5b shows a larger quar-
rying operation in County Cavan, about midway between Bailieborough and Kingscourt, 
where two separate zones are detected across four flight lines. Site-specific conditions and 
potential causes of localised high values at a range of existing and former industrial sites 
across the UK are further discussed by Beamish (2014).

These determinations of TENORM are of course limited to the effects of direct radia-
tion. They do not reflect the potentially greater health hazards of radiation from inhaled 
radioactive particulates (dust), which if lodged within the body may continue to emit 
tissue-damaging alpha and beta particles for many years.
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Figure 18.4. 3D perspective 
view (see north arrow), looking 

down on coastal landfill 
adjacent to the Kilroot power 
station at Carrickfergus. Air 

photograph draped on DTM. 
Colour contours show high 

values of dose rate. White dots 
are airborne survey sampling 

points, along flight lines every 
200 m.



The Chernobyl nuclear accident took place in April 1986 and deposited significant 
amounts of the man-made radioelement caesium (137Cs) over an extensive area of Europe. 
Although in the UK and Ireland this fallout was not directly hazardous to health, in some 
contaminated areas restrictions were placed on the movement and sale of sheep, which 
might accumulate caesium by grazing over an extended period.

Radiometric data from the first Tellus survey, alongside other airborne sets, were used 
to map the caesium (137Cs) distribution (Scheib and Beamish, 2010; Rawlins et al., 2011). 
The distribution obtained using the combined Tellus data sets is shown in Fig. 18.6, which 
identified zones and bands where high concentrations were deposited. The areas and bands 
of high concentration were found to cut across both and high and low topographical fea-
tures, all soil types and differing land-use areas. The ‘banding’ in the results obtained was 
interpreted as representing a series of rain fronts intercepting the Chernobyl plume. Such a 
full understanding was, in fact, only achieved some 20 years after the accident.

Summary
Radiological assessments by bodies such as Public Health England (formerly the Health 
Protection Agency) and its predecessors have periodically refined assessments of the expo-
sure of the population. The average annual dose from natural radiation remains at 2.23 
mSv, with about half of this coming from indoor radon exposure. The average AAD UK 
dose rate, weighted by the distribution of population, has been found to be 32 nGy h–1. 
It should be noted that, due to the spatial averaging inherent to the airborne measure-
ments, ground distributions will typically display a higher spatial variance than the values 
reported here.

The pervasive blanket bog and organic soils, and their water content, attenuate the 
radioactive flux and therefore screen much of the survey area (say >25%) from potential 
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Figure 18.5. Two quarry 
areas with high (>60 nGy h–1) 
dose rates identified with red 
contours and transparent infill. 
The black lines are flight lines 
(spaced at 200 m). Locations 
are shown in Fig 18.1. The 
background images are © 
Google Earth.



high, in-air dose levels. The highest natural background dose rates are found in association 
with granites. Only a few small areas possess values in excess of 200 nGy h–1 (an effective 
annual dose rate of 1.23 mSv). The city–town analysis of dose rates, which covers the major 
percentage of the population, indicates that central values are routinely below 100 nGy h–1, 
but one granite location (Kilkeel) has a median value close to 100 nGy h–1. 

TENORM contributions are localised and there are many contributions that can be 
identified, typically at levels below 100 nGy h–1. The fly-ash landfill at Carrickfergus has a 
localised area providing in excess of 140 nGy h–1. 

The audit on environmental radioactivity reported here indicates that effective (bio-
logical) dose thresholds are within acceptable levels, subject to the inherent spatial averag-
ing of the measurements.
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