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The statistical process of ‘self-modelling mixture resolution’ has been used to identify 
chemical signatures of diffuse pollution in the topsoil samples of the Tellus Border geo-
chemical survey, Ireland. Seventeen geochemical components were identified, of which 
nine were derived from underlying geology (high concentrations of trace metals suggest 
two of these are from mineralised sources), four were from secondary processes (iron oxides 
and carbonates) and four were associated with peat. One of the peat bog components has 
high concentrations of certain anthropogenic elements, probably from aerial deposition of 
anthropogenic particulates derived from modern industrialisation. The spatial extent of 
the diffuse pollution from aerial deposition in peat bogs has been mapped over the whole 
region.

Introduction
Several studies have used a multivariate statistical approach to interpret the inorganic 
analyses of soils in Ireland (Dempster et al., 2013; Zhang, 2006; Zhang et al., 2008). 
Zhang and colleagues’ studies on the soils of Galway (Zhang, 2006) and one using 
the national soil database (Zhang et al., 2008) make particular use of the comparison 
of element distribution shapes to categorise elements followed by multivariate statistical 
methods, including principal component analysis and cluster analysis. In their study on 
soils in Galway, they identified that copper (Cu), lead (Pb), zinc (Zn) and arsenic (As) were 
coming principally from anthropogenic sources. In the study of the national soil database 
they identified nickel (Ni), Zn, cadmium (Cd), yttrium (Y), molybdenum (Mo), mercury 
(Hg), Pb and antimony (Sb) as probably coming from anthropogenic sources. The diffuse 
pollution study used here uses a self-modelling mixture resolution methodology to provide 

1 British Geological Survey, Keyworth.
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quantitative outputs that have been used to determine the sources of geochemical inputs 
in the Tellus Border soils.

Self-modelling mixture resolution (SMMR)
The SMMR methodology is fully described by Cave (2009); a brief overview follows. As 
the term ‘self-modelling’ implies, SMMR, in principle, does not require a priori any spe-
cific information concerning the data to resolve the pure variables. The basis for these 
techniques can be explained by reference to Fig. 22.1.

The data matrix A represents the experimental mixture data, which in this case are the 
combined total element data set of the 3475 Tellus Border soil samples analysed for 45 
elements. The aim of SMMR is to arrive at the pure component information consisting of 
the proportions matrix (B) and the component composition matrix (C) without any other 
information apart from that contained in the experimental data (A). In matrix notation 
this is:

A = BC + E (22.1)

The method uses Varimax rotation of the principal component analysis (PCA) scores 
matrix, of the soils elemental compositions data (matrix A, equation 22.1), as a first approx-
imation of the pure components proportions matrix. This is followed by iterative refining 
of the pure components matrices (B and C, equation 22.1), applying non-negativity and 
mass balance constraints at each step. PCA produces a qualitative outcome in the form 
of series of abstract groupings in the data which can be open to subjective interpretation, 
whereas SMMR converts these to quantitative values and associated uncertainties that can 
be dealt with more objectively.
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Results and discussion

Exploratory data analysis
Only elements with more than 60% of the data greater than the detection limit were 
chosen. This set consisted of 45 elements (Al, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, 
P, S, Sr, V, Zn, Zr, Ag, As, Be, Bi, Cd, Ce, Co, Cs, Ga, Hg, In, La, Lu, Mo, Nb, Pb, Rb, 
Sb, Sc, Se, Sn, Tb, Th, Tl, U, Y, Yb).

Recent studies (Ander et al., 2013) have shown that the shape of the data distributions 
is similar for elements derived from similar sources. In particular, elements derived from 
anthropogenic sources tend to have extended positive tails due to point source inputs. 
Using this approach, exploratory data analysis (EDA) of the relationships between ele-
ments was undertaken by assigning them to six groups, defined using k-means clustering 
of the shape of the data distributions, using a combination of the skew, octile skew, kurto-
sis, log skew and log kurtosis of the data distributions. 

A plot of natural logarithm of the skew against natural logarithm of the kurtosis with 
the different element groupings is shown in Fig. 22.2. Moving from the bottom left to 
the top right of Fig. 22.2, the data distributions change from being broad symmetrical 
distributions to narrower, more positively skewed distributions with possible outliers in 
the distribution tail. The results are shown in Table 22.1.
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Figure 22.2. Element 
groupings based on the shapes 

of their data distributions.



Table 22.1. Element groupings identified by EDA using 
k-means clustering of data distribution parameters

K-means 
group Elements Comments

1 Ba, Pb, Sn, U
Plots in the top right of Fig. 22.2 with long 

right-hand tails are more likely to have a diffuse 
pollution origin 

2 Ca, Mn, Zn, Co, Hg, 
Mo, Tl , Y 

Plots in the centre of Fig. 22.2 with carbonates 
and iron oxides 

3 As
Plots in the top right of Fig. 22.2 with long 

right-hand tails are more likely to have a diffuse 
pollution origin 

4 Na, Sr, Ag, Bi, Cd, Sb. 
Plots in the top right of Fig. 22.2 with long 

right-hand tails are more likely to have a diffuse 
pollution origin 

5
Al, K, Li, Mg, Ni, P, 
S, V, Be, Ga, In, Rb, 

Sc , Th

Plots in the bottom left of Fig. 22.2, associated 
with geogenic, silicate and sulphide sources

6
Cr, Cu, Fe, Zr, Ce, 
Cs, La, Lu, Nb, Se, 

Tb, Yb

Plots in the centre of Fig. 22.2 with carbonates 
and iron oxides 

While these results provide some insight into geochemical inputs to the soil, they 
need to be used in conjunction with other statistical approaches to provide more substan-
tive interpretation of the evolution of soil geochemistry. This is provided by the SMMR 
analysis. 

SMMR
SMMR modelling provides a more quantitative approach to identifying the number and 
chemical composition of the geochemical signatures in the soil samples. The SMMR 
analysis of the soil data sets suggests there are 19 underlying source components. This 
was determined by carrying out the SMMR algorithm on the data using an increasing 
number of components. The model with the minimum number of components required 
to reproduce the original data (i.e. not significantly different from the original data) was 
chosen. In order to ensure that the SMMR source components have physical meaning 
and are not artefacts of the data processing algorithm, it is necessary to put the SMMR 
source components into a geochemical context, making sure they are consistent with addi-
tional soil properties (pH and loss on ignition (LOI)), geology and the related physical and 
human geography of the region. Each component was screened according to the following 
criteria.
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Does the SMMR source have a clearly defined chemical composition? Large uncer-1. 
tainties on the major and trace elements suggests that this may just be describing 
a ‘noise component’.
Does the spatial extent of the SMMR source align with the underlying geology of 2. 
the region, and is the geochemical composition consistent with the geology?
Does the SMMR source show a correlation to soil properties or to physical or 3. 
human geographic parameters? 

Examination of the SMMR sources with respect to criterion (1) removed two compo-
nents having poorly defined chemical compositions and relatively low overall contribution 
to the overall extracted mass (<1.4%). Under criterion (2) it was possible to clearly define 
the source of eight of the components as having been derived from the underlying geology. 
These are summarised in Table 22.2.

Table 22.2. Summary of geological sources identified in the 
soil chemistry: names of sources include elements that make 
up more than 10% of the source composition

SMMR source Geology Comments

Al.Fe.Mg 1 Lower Palaeozoic, mostly associated with 
the greywacke formation

Al.Fe.Mg
Same as Al.Fe.Mg 1 but with higher 

trace elements resulting from additional 
mineralisation

Fe.Al.K Clay High in K and Rb

Ca.Al Mostly associated with the Tournasian 
limestone formation High in Cd

Al.K.Mg Probably derived from weathering of 
Dalradian aluminosilicates

High concentration 
of Zr

Al.Fe Underlying granites High in Li, Th and U

Fe.P Namurian shales High in Mo

Mg.Fe Derived from weathering of Dalradian 
aluminosilicate rocks

High in rare earth 
elements
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Table 22.3. Summary of sources identified in the soil 
chemistry related to secondary processes: names of sources 
include elements that make up more than 10% of the source

SMMR source Source description Comments

Fe Made up of over 90% iron: suggests that 
this an Fe oxide source 

Occurs primarily in 
localised regions of the 
highlands of County 

Donegal

Fe.Mn.Al Mixed Fe/Mn oxides (60% Fe 20% Mn)

Occurs primarily in 
localised regions of the 
highlands of County 
Donegal and counties 

Sligo and Leitrim

Ca Made up of over 90% Ca: suggests that this 
is a Ca carbonate source

Probably a marine 
carbonate as it occurs 
along the shoreline of 

County Donegal
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In addition to the underlying geology, three other components were identified from 
their chemical composition as being derived from secondary processes (Table 22.3): a 
source made up of over 90% Fe, suggesting that this is an iron (Fe) oxide; a source con-
taining 60% Fe and 20% manganese (Mn), which is probably a mixed Fe/Mn oxide; and 
a source made up of over 90% calcium (Ca), occurring almost exclusively along the shore-
line of County Donegal, which suggests a marine calcium carbonate origin.

Correlations of the SMMR sources with soil properties and physical or human geo-
graphic parameters (Fig. 22.3) found four sources with high sulphur content and positive 
correlations with LOI and negative correlations with pH which, along with their spatial 
distributions, suggest that these are components associated with peat bogs (Table 22.4).

Table 22.4. Summary of sources identified in the soil 
chemistry related to peat bogs: names of sources include 
elements that make up more than 10% of the source 
composition

SMMR source Source description Comments

S.Mg

Made up of over 60% S and 15% Mg with 
highest concentrations found along the coast 
of County Donegal. High correlation with 

LOI and elevation

Relatively low 
concentrations of 

inorganic elements 
suggest that this is a 
high organic matter 

content

S.Al.Fe Made up of 30% S and Al. U content of 0.1%
High correlation with LOI and elevation

Higher concentration 
of inorganic elements 
suggests higher ash 

content

Mg.S.Na Contains 30% Mg and S and 3% Pb. High 
correlation with LOI and elevation

High concentrations 
of anthropogenically 

derived elements suggest 
aerial deposition

Mg.S.Ca

Contains 30% Mg and S and occurs 
principally on the Carlingford peninsula, 

Co. Louth. Has the lowest correlation with 
LOI and elevation of the four components 

associated with peat sources

The SMMR sources have relatively low correlation coefficients (<0.45) with population 
density (Fig. 22.3), indicating a lack of causative effect. There is no evidence of any major 
chemical fingerprint from areas of higher population, which is very much in contrast to 
England and Wales (Ander et al., 2013).
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Table 22.5. Summary of sources identified in the soil 
chemistry whose sources are less clearly identified; the 
names of the sources are made up from those elements that 
make up more than 10% of the source composition

SMMR source Source description Comments

Fe.Ca.P 

Made up of 45% Fe, 25% Ca, with high 
concentrations of Zn, Pb and Hg. Highest 
concentrations found principally along the 

edge of the greywacke formation in counties 
Monaghan and Cavan 

Probably a mineralised 
source

Fe.Al.Ca
Made up of 40% Fe, 30% Al with high 

concentrations of As. Fairly widespread over 
the Tellus Border region

Probably a mixed Fe 
oxide 
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represent the 95th percentile 
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The origins of two of the source components were less easily defined (Table 22.5), but 
the Fe.Ca.P component is probably derived from mineralised underlying geology and the 
Fe.Al.Ca is possibly derived from a mixed Fe oxide phase in the soil.

Figures 22.4 and 22.5 show how the mass of selected elements, likely to be related to 
anthropogenic sources (Pb, Sb, Hg, Cd, As and U), summed over all soil samples is dis-
tributed between the source components identified by the SMMR modelling along with 
95th percentile error bars. 

For lead and antimony (Fig. 22.4), the Mg.S.Na component identified as the possible 
diffuse pollution source in Table 22.4 has the highest single contribution to the overall 
mass inventory for these elements. For mercury (Hg) (Fig. 22.4) the mineralised compo-
nent (Fe-Ca-P) has the highest contribution; taking account of the uncertainty, the next 
highest contribution is the diffuse pollution Mg.S.Na component. 

Cadmium (Fig. 22.4) is associated with carbonate components, with the top two 
highest mass contributors being the Ca-Al limestone derived component and the Fe.Ca.P 
mineralised component and the next most significant being the Mg.S.Na diffuse pollution 
component.

Arsenic (Fig. 22.5) shows a very different but probably predictable mass distribution 
with Fe oxide as the main host for As in the soils, which is similar to studies in England 
which show that As is most often associated with Fe oxides (Palumbo-Roe et al., 2005). 
There is, however, a significant portion of the As associated with the diffuse pollution 
component.
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Finally uranium (Fig. 22.5) shows a pattern quite different from those of the other 
anthropogenically derived elements, with the highest concentrations associated with 
granites (Al.Fe), Dalradian aluminosilicates (Mg.Fe) and limestones (Ca.Al), and Fe/Mn 
oxides (Fe.Mn.Al). Interestingly, the next highest contribution is to the mineralised peat 
component (S.Al.Fe) but there is no significant U content associated with the peat-derived 
diffuse pollution component.

Identification of diffuse pollution
The results of the SMMR analysis of the Tellus Border soils data suggest that most chemi-
cal sources that contribute to the soil chemistry are derived from three broad categories: 
the underlying geology; secondary processes such as the formation of Fe oxides and car-
bonates; and peat bogs. The anthropogenic pathfinder elements can be found occurring 
naturally in geologically derived components, particularly where mineralisation occurs, 
and in the case of As it occurs principally in Fe oxides. 

One source (Mg.S.Na) with the highest positive correlation to elevation (Fig. 22.3) 
shows particularly high concentrations of anthropogenically derived elements (e.g. Pb 
4%, As 0.15%, Sb 0.05%, Cd 0.02 and Hg 0.01%; Fig. 22.6). This source is thought to 
be related to peat bogs (Table 22.4) and has the highest individual contribution for the 
total Pb and Sb found in the Tellus Border soils. It is an important source for Cd and Hg 
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but has less contribution to total As and U. Plotting the concentration of this source as a 
contour plot overlaying a colour map of elevation, Fig. 22.7 shows a close spatial match 
between high concentrations of the component and high elevation. 

Peat records from ombrotrophic bogs (i.e. those fed with nutrients and pollutants from 
atmospheric inputs, rather than from streams) have been shown to provide valuable infor-
mation about the atmospheric inputs of trace metals (e.g. Farmer et al., 2009; Shotyk, 
1996). The SMMR component Mg.S.Na is therefore believed to be a peat-derived compo-
nent containing aerial deposition of anthropogenic particulates.

A study of peat core just to the south of the Tellus Border region in counties Mayo and 
Galway (Coggins et al., 2006) showed elevated concentrations of Cd, Hg and Pb, which, 
when dated using Pb and Cs isotopes, were shown to be associated with recent anthro-
pogenic pollution (1950–70) from aerial deposition. This suggests that the component 
dominated by an organic matter source, which is associated with high elevations, has trace 
element concentrations (Fig. 22.7) identified in this study which are expected to be simi-
larly derived from aerial deposition of anthropogenic pollution onto peat uplands.

The source of the high concentrations of these pathfinder elements is subject to specu-
lation. Coggins et al. (2006) comment that the prevailing wind direction across Ireland 
is from the Atlantic Ocean in the west, not from easterly winds, which suggests that the 
diffuse pollution is not from Britain and Northern Europe. They point out, however, that 
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the peat core profiles are similar to those found in North America, and suggest that the 
anthropogenic pollution could be derived from this source.

The unique feature of this study is that the data have been derived from surface soil 
samples, not from a few core samples, so the spatial extent of the diffuse pollution from 
aerial deposition can be mapped over a large region.

Conclusions: implications for policy and planning
The identification of both natural and anthropogenic inputs to soils in the Tellus Border area  
using the SMMR approach not only is scientifically interesting but also has practical use for 
environmental policy and planning at local and national scales in Ireland. The SMMR data 
interpretation has the potential to predict potential pollution problems that could occur; 
resolve newly identified or suddenly high-profile short- or long-term contamination prob-
lems to minimise the impact on the living ecosystem; recognise and quantify natural or 
human-induced changes in the future; and identify potential mineral resources. 
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