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Abstract 
 

With the development of society and technology, and the emergence of the Fifth-

Generation Mobile Wireless networks, people’s demand for communication speed and 

connectivity is increasing greatly. And there are several methods to improve the performance 

of the 5G networks, which are the increase of the spectral efficiency, the use of larger amounts 

of spectrum such as millimetre wave band [1], and the use of much more base stations per unit 

area which means to increase the densification. 

This article considers the third method which is increasing the densification as the main 

driving force for the high transmission speed required in the future 5G networks. As for this 

purpose, this paper focuses on ultra-dense networks (UDN). 

Firstly, this paper expresses a network model mathematically which is 2D. The network 

model contains infinite base stations and infinite user equipment and both of them are arranged 

periodically. And then, because of its periodicity, we can just analyse the performance and the 

mathematical expression of one of them. And based on the mathematical expression, how to 

optimize the resource and power allocation is figured out. Finally, the performance limits of 2D 

ultra-dense networks also can be analysed by using the outcomes of the previous work. 
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Chapter 1: Introduction 

The arrival of the 4G era has brought an overwhelming network, let us be surrounded by the 

network, such as wireless WiFi, TV boxes and other wireless tools around people, madding 

people’s lives full of convenience, in the 5G era, the network has become faster and faster, 

which just satisfies the increasing demand of people. And also, with the development of Fifth- 

Generation wireless networks, the ear of the Internet of Things has quietly entered our lives. 

The premise of the Internet of Everything is the foundation of the popularity of the network, 

and higher network configuration and faster network transmission are required, but luckily, 5G 

can provide these precisely. This paper mainly considers the ultra-dense networks (UDNs), 

generally defined as those networks who contain more base stations than active users. 

As for the ultra-dense networks, if we decrease the distance between the base station the user, 

the average radio link quality would be increase since the path loss would be decreased. While, 

at the same time, the interference would be increased from the non-serving base stations. So, 

this paper establishes a system model to find out what is the best distance between base station 

and user equipment which means at which place, the performance of the network is the best. 

So, we decided to analyse the performance of 5G network, and to find out under which 

circumstances the ultra-dense network would have a best performance. Because of the 

destination, we build an analytical model firstly, which is two dimensional. The two dimension 

means there is a layer which is full of infinite base stations and there is another layer full of 

user equipment. User equipment could be mobile phones or laptops. By the way, these two 

layers and are parallel and separated h meters. So, the minimum distance between one base 

station and a user is h meters. And then, we build a coordinate system to put both of base station 

layer and user equipment layer into it to express the model clearer and easier to understand. We 

set the model is periodic, the distance between two closest base stations is fixed, and similarly, 

the distance between two closest user equipment is fixed, so we can just express one of clusters, 

because they the same. After express the location of base stations and user equipment, we can 

find the mathematical expression of path loss value by using the distance expression between a 

specific base station which transmit to a specific user equipment. Then we come to the most 

important part which are three related elements: signal power, interference term, and the 

achievable rate. At this time, we use the Barnes’ multiple zeta function [2] to express the 

interference term. Since the Barnes’ multiple zeta function is convergence, which means the 

interference term is also convergence, indicating the interference is limited and would not be 
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infinite with the distance between base stations decreasing. So, if we have the expression of 

signal power, the interference term, and the achievable rate, we are able to draw the related 

figures, such as we could see what the performance would be if we decrease the distance 

between the base stations until the distance nearly equals to 0, or to see which type of cluster 

would be better, the overlapped or the non-overlapped. 
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Chapter 2: Background 

With the development of technology, much ink has been spilled about Fifth-Generation 

wireless network. With the increasing demand of digital users for speed and connectivity, 

network densification is very important for 5G. And to satisfy this advantage, the distance 

between base stations is decreased and this increases the available network capacity by adding 

more cellular base stations (including wireless access network, macro base station, indoor 

wireless and small base station deployment).  

More and more network connected devices and the wide variety of service requirements 

attached to them have brought great pressure to the current 4G network. Therefore, new 

enhancements must be added to the available features in 4G networks in the next generation of 

wireless systems. To this end, industry partners and academia are working together to define 

5G system concept. As we conceive, the requirements of 5G network are various. Indeed, 

although the most important service requirements for road safety applications are reliability and 

low latency, large-scale connection of equipment is more important for smart cities. In order to 

integrate the requirements of all possible scenarios, because different application scenarios need 

different performance, 5G network needs to meet. Then the following points summarize the 

various requirements that 5G network needs to support [3]: 

1. 1 to 10 Gbps data rates in real networks, what implies 10 times increase from the 

theoretical peak data rate in LTE networks. 

2. 1ms end to end latency. 

3. Higher bandwidth per area. 

4. Enormous number of connected devices to support the emerging IoT. 

5. Perceived availability of 99.999% of the time. 

6. Almost 100% coverage for anywhere connectivity. 

7. Reduction in energy usage by almost 90% to support the progressive introduction of 

green communications. 

8. High battery life for the devices, by reducing their power consumption. 

 

A one-dimensional ultra-dense network analytical model has been proposed because of the 

tendency of the 5G [4]. The model firstly has a very detailed description of the model which is 
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periodic and is composed of infinite base stations which transmit to infinite users. The base 

station and user equipment are deployed in two parallel lines. And the fixed number of base 

stations and user equipment are deployed into infinite clusters respectively. Cluster, is a new 

technology to get better performance in reliability and flexibility with lower cost. And in this 

paper, the author mainly considers two types of cluster: the one is overlapped, the other is non-

overlapped. Then the author uses the mathematical expression to describe the model to let us 

have a clear understanding of this model. 

In the description of the model, there are three important element that account for the 

performance of the networks, which are signal power, interference term and the achievable rate. 

The point we have to pay attention is that, the achievable rate means the performance. Since 

the interference is mainly caused by the path loss, path loss value is mainly related with the 

distance between the base station and user equipment, although the signal power is also 

associate with the distance. So, the question is with the distance increasing, is the signal power 

greater or the interference greater?  

As for the interference term, there exists a Hurwitz zeta function [5], which is convergence 

and luckily, we can use the Hurwitz zeta function to express the interference term, which means 

the interference is convergence and limited at the same time. 

After express the analytical model mathematically, we can use the expression to figure 

them out in MATLAB. Then, according to the figures we made out, the author optimizes the 

resource and power allocation, finds that there exists a situation, under such circumstances, the 

performance of networks is best. Also, with decreasing the distance between base stations or 

user equipment, the achievable rate convergence to a certain number instead of infinite. 
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Chapter 3: Design and Implementation 

Normally there will be a part about the design and implementation of the system, especially for 

an implementation project. However, every project has its unique phases so you should talk to 

your supervisor about it. 

3.1 System model 
In this section, we describe the network analytical model. First of all, since the model is two 

dimensions, so I plot this figure like Figure 1. After this, I make the mathematical expression 

of model. Since the model is periodic, so we could just express one of them in both base stations 

and user equipment. By getting this, we are able to get the expression of path loss value. Finally, 

according to the path loss value, the signal power and interference term is deduced. And, what 

is known to all of us is that the Shannon equation could be got from both of the signal power 

and interference term. 

we provide a detailed description of the network deployment. Second, the resource and power 

allocation models are explained, which feature certain spatial periodicity. Third, an expression 

for the achievable rates is derived from the resource and power allocation models. Finally, the 

function is invoked to describe the infinite source of interference. 

3.1.1 Deployment description 
We consider a network composed of infinite BSs that transmit to infinite UEs. Both are 

uniformly distributed in 2 parallel layers separated h meters, that is 2 dimensions. Therefore, 

the minimum distance between and BS-UE pair is h. And we consider that there are two 

mutually perpendicular coordinate axes, one x-axis and one y-axis in both layers. The inter-UE 

distance along the x-axis is  along the y-axis is . The inter-BS distance along the x-axis 

is , along the y-axis is . We assume that the network presents certain spatial periodicity, 

so that ,  i.e.,  

, , .     (1) 

As point out later, the equality in (1), with  and  natural numbers, ensures that the 

structure of the network is repeated every  UEs or  BSs along x-axis and every  

dUx dUy

dBx dBy

dBx
dUx

∈!+
dBy
dUy

∈!+

MxdUx = KxdBx MydUy = KydBy Mx ∈!
+ ,My ∈!

+ ,Kx ∈!
+ ,Ky ∈!

+

Mx ,My ,Kx , Ky

Mx Kx My
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UEs or  BSs along y-axis. The location or position of a BS along the x-axis of BS is 

, , the location or position of a BS along the y-axis of  BS is 

, , so the location or position of a BS is 

. The location or position of a UE along the x-axis of

UE is , , the location or position of a BS along the y-

axis of UE is , .And the location of the  along 

the x- axis with  along the y-axis UE is 

, where  is the location of UE 

(0,0). The structure of the system makes the only values in an area of  

 are meaningful to . In particular, we have that 

, and hence the case and 

 are equivalent except for relabelling of the UEs. Hereinafter, we take 

 and  without loss of generality. In order to compute the expectation 

of the performance metrics, we assume that the location of UE (1,1)-st is uniformly distributed 

in the square of . 

Ky kx − th

lBx (kx ) = kxdBx kx ∈! ky − th

lBy (ky ) = kydBy ky ∈!

lB(kx ,ky ) = (kxdBx ,kydBy ),kx ∈!,ky ∈!

mx − th lUx (mx ,sx ) = (mxdUx + sx ) mx ∈!

my − th lU y (my ,sy ) = (mydUy + sy ) my ∈! mx − th

my − th

lU (mx ,my ,sx ,sy ) = (mxdUx + sx ,mydUy + sy ),mx ∈!,my ∈! (sx ,sy )

(0,0),(dUx ,0),(dUx ,dUy ),(0,dUy ) (sx ,sy )

lU (mx ,my ,sx ,sy ) = lU (mx −1,my −1,sx + dUx ,sy + dUy ) (sx ,sy ) = (0,0)

(sx ,sy ) = (dUx ,dUy )

sx ∈[0,dUx ] sy ∈[0,dUy ]

(0,0),(dUx ,0),(dUx ,dUy ),(0,dUy )
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Figure 1 Two-dimensional ultra-dense network analytical model 

 

Remark 1. Any two UEs separated a distance both greater than or equal to  in x-axis 

and greater than or equal to  in y-axis are served by clusters without common BSs. 

In order to be able to use the Hurwitz zeta function in 2-D, path loss is computed considering 

1-norm distance. In particular, the distance between  BS and  UE is 

, and hence, the path loss from this BS to this 

UE is : 

 (2) 

MxdUx

MydUy

(kx ,ky )− th (mx ,my )− th

h+ | lBx (kx )− lUx (mx ,sx ) |+ | lBy (ky )− lU y (my ,sy ) |

Lkx ,ky ,mx ,my (sx ,sy ) = (h+ | lBx (kx )− lUx (mx ,sx ) |+ | lBy (ky )− lU y (my ,sy ) |)
γ
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where  is path loss exponent. Using Equation (1), it can be shown that 

                                          (3) 

Remark 2. The system viewed by UEs in 

, is equivalent, which is also true for 

BSs in . 

In other words, except for the UE labelling, it is not possible to distinguish between UEs in 

 

Sometimes similar occurs for BSs in 

 

3.1.2 Resource and power allocation models 
In this section, we will use the deployment pointed out in Remark 2 to show that the resource 

and power allocated in the BSs to transmit to the UEs are spatially repeated, with periodicity 

given by . We will, then, use this fact to represent the amount of resources and 

power levels used for each BS-UE link with two finite-dimensional variables. 

Regarding the power allocation, we assume that the transmit power is limited in each resource 

element to the same maximum value P. Letting  be the portion of the 

maximum power that is used by BS  to transmit to UE . Using 

Remark 2 and following a similar rational as before, we conclude that the power allocation is 

periodic, with the same periodicity as the resource allocation, i.e., 

                        (4) 

Since BSs that are not included in the cluster that serves UE  do not spend power 

to transmit to this UE, we have that, 

          (5) 

 

where  is the left and bottom BS that serves UE  

γ

{(iMx +mx )( jM y +my )}i∈!, j∈! ,mx = 1,...,Mx ,my = 1,...,My

{(iKx + kx )( jKy + ky )} i∈!, j∈! ,kx = 1,...,Kx ,ky = 1,...,Ky

{(iMx +mx )( jM y +my )}i∈!, j∈! ,mx = 1,...,Mx ,my = 1,...,My

{(iKx + kx )( jKy + ky )} i∈!, j∈! ,kx = 1,...,Kx ,ky = 1,...,Ky

Mx ,My ,Kx ,Ky

ρkx ,ky ,mx ,my ∈[0,1]

(kx ,ky )− th (mx ,my )− th

(mx ,my )− th

((λmx (sx )+ kx ),(λmy (sy )+ ky ))− th (mx ,my )− th

L( iKx+kx ),( jKy+ky ),( iMx+mx ),( jM y+my )
(sx ,sy ) = Lkx ,ky ,mx ,my (sx ,sy )

ρ(λmx (sx )+kx ),(λmy (sy )+ky ),mx ,my
= 0,∀kx ∈! \{1,...,Kx},∀ky ∈! \{1,...,Ky},∀mx ,my ∈!

ρkx ,ky ,mx ,my = ρ( iKx+kx ),( jKy+ky ),( iMx+mx ),( jM y+my )
,∀i, j,kx ,ky ,mx ,my ∈!
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when this UE is located at . Using (4) and (5), the set of all power allocations 

can be expressed by means of a matrix . In 

particular, given certain power allocation, the  element of the corresponding 

matrix X, , is given by, 

                                             (6) 

and, letting , the power allocation 

corresponding to some given matrix X is 

 

 

for all                                                       (7) 

3.1.3 Achievable rates 
Matrix X can be used to obtain the signal and interference powers at each UE, which, at the 

same time, can be used to describe an achievable rate per resource element of the UEs. To this 

aim, we define the function: 

                          (8) 

 

 

 

               (9) 

 

                                     (10) 

 

Where B is a constant that accounts for the effects of the resource element bandwidth and 

multiple antennas, and N is the experienced noise power. The expression in (8), (9), and (10) 

will be used to describe the signal power, the interference power and the achievable rate, 

lU (mx ,my ,sx ,sy )

{{ρkx ,ky ,mx ,my}kx ,ky∈!}mx ,my∈! X ∈[0,1]Kx×Ky×Mx×My

(kx ,ky ,mx ,my )

xkxkymxmy

mx = (m−1modMx )+1,my = (m−1modMy )+1

ρkx ,ky ,mx ,my = x(kx−λmx (sx ),(ky−λmy (sy ),mx ,my

ρkx ,ky ,mx ,my = 0,otherwise

kx ,ky ,mx ,my ∈!

xkx ,ky ,mx ,my = ρ((λmx (sx )+kx ),(λmy (sy )+ky )),mx ,my

pmx ,my ( y,sx ,sy ) = P L
 (λmx  sx( )+kx ),(λmy  sy( )+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑

zmxmy ( y,sx ,sy ) = P L
(λmx  sx( ))+iKx+kx )  ,(λmy  sy( ))+ jKy+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
i=−∞

∞

∑
j=−∞

∞

∑

−P L
 (λmx sx( )+kx ),(λmy  sy( )+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑

rmxmy ( y,sx ,sy ) = B log(1+
pmxmy ( y,sx ,sy )

N + zmxmy ( y,sx ,sy )
)
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respectively. We will do this extracting the elements of the vector y, which are the portions of 

the maximum power used for transmission, from the matrix X. 

Letting  be the  column of X, and letting  be the  column of X, the 

signal power received by the  UE in each resource element allocated to it is 

. Note that, for  this is equivalent to 

 Due to the spatial periodicity of the system structure pointed out in 

Remark 2, the same signal power is received every UEs along the x-axis, and every  

along the y-axis UEs. In other words, using (3) and (4), it can be shown that 

                                      (11) 

With respect to the interference, its power receives by the  UE is 

 ,which depends only on  and , and no other columns of X, due to 

the resource and power allocation models.  Similarly, to the signal power and due to Remark 

2, the same interference power is received every UEs, i.e., 

                                      (12) 

Using the previous signal and interference levels, an achievable rate of the  

UE in a particular resource element is . From (11) and (12), it is 

straightforward to show that the achievable rates are repeated every  UEs, i.e., 

                                      (13) 

The total achievable rate of the  UE is a multiple of  that 

depends on the amount of resource elements allocated to the UE. Defining the function 

                                          (14) 

 

this rate can be expressed as  

xmx mx − th
xmy my − th

(mx ,my )− th

pmxmy (xmx ,xmy ,sx ,sy ) mx ∈{1,...,Mx},my ∈{1,...,My}

pmxmy (xmx ,xmy ,sx ,sy )

Mx
My

(mx − th,my − th)

zmxmy (xmx ,xmy ,sx ,sy ) x
mx

x
my

Mx *My

(mx − th,my − th)

rmxmy (xmx ,xmy ,sx ,sy )

Mx × My

Mx × My
rmxmy (xmx ,xmy ,sx ,sy )

Rmxmy (ωmx ,my
,x
mx ,my

,sx ,sy )

pmxmy (xmx ,xmy ,sx ,sy ) = pmx my (xmx ,xmy ,sx ,sy )

zmxmy (xmx ,xmy ,sx ,sy ) = zmxmy
(x
mx
,x
my
,sx ,sy )

rmxmy (xmx ,xmy ,sx ,sy ) = rmxmy
(x
mx
,x
my
,sx ,sy )

Rmxmy (υ, y,sx ,sy ) =Wυrmxmy ( y,sx ,sy )
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3.1.4 Convergence of the interference term 

In the 2-dimensional deployment, in which infinite UEs and BSs are homogeneously distributed 

in two dimensions. In this case, the interference can be modelled as a double series whose 

convergence point can be expressed using also the Barnes zeta function. In particular, the 

 converges for all  , and 

. 

In this case, the interference power 

can be expressed as 

      

 

(15) 

 

      (16) 

 

     (17) 

 

(18) 

 

(19) 

 

   (20) 

 

                                                                                                                                                                       
 (21) 

ζ N (s,w | a1,...,aN ) = (w+m1a1 + ...+mNaN )
m1,...,mN =0

∞

∑
−s

s > N w > 0

a1,...,aN > 0

zmxmy ( y,sx ,sy ) = P L
(λmx  sx( ))+iKx+kx )  ,(λmy  sy( ))+ jKy+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
i=−∞

∞

∑
j=−∞

∞

∑

−P L
 (λmx sx( )+kx ),(λmy  sy( )+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑

zmxmy ( y,sx ,sy ) =

P (h+ | (λmx (sx )+ iKx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ jKy + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑
kx=1

Kx

∑
i=−∞

∞

∑
j=−∞

∞

∑ ykxky

−P (h+ | (λmx (sx )+ kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑

= P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ (sx ,sy )ykxky

ky=1

Ky

∑
kx=1

Kx

∑
′i =1

∞

∑
′j =1

∞

∑

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =1

∞

∑

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =1

∞

∑
′j =−∞

−1

∑

+P (h+ | (λmx (sx )+ kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′j =−∞

−1

∑

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =−∞

−1

∑
′j =−∞

−1

∑

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =−∞

−1

∑
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   (22) 

 
                                                                                                                                                                           

 (23) 
                                                                                                                                                                           

Let us take (16) as an example. Firstly, let , so 

(24) 

will become 

  (25) 

And according to the Barnes’ multiple zeta function  depends on the 

parameters that will be taken positive and which is defined by the series 

                              (26) 

,  

So, (16) will become 

                                               

(27) 

where 

   (28) 

                                                           (29) 

                                                        (30) 

 is the location of the  closest 

interferer BS to the right and top of the cluster that serves the  UE. Therefore, it 

is straightforward to show that and 

, which yields the inequality in (16). And this is the reason 

why . 

i = ′i −1, j = ′j −1

ζ N (s,w | a1,...,aN )

a1,...,aN

Rew > 0 Res > N

((λmx (sx )+ Kx + kx )dBx ,(λmy (sy )+ Ky + ky )dBy ) (kx ,ky )− th

(mx ,my )− th

(λmx (sx )+ Kx + kx )dBx > mxdUx + sx

(λmy (sy )+ Ky + ky )dBy > +mydUy + sy

w1 > 0

= P [h+ λmx (sx )dBx + KxdBx + kxdBx −mxdUx − sx + λmy (sy )dBy + KydBy + kydBy −mydUy − sy + iKxdBx + jKydBy ]
ky=1

Ky

∑
−γ

ykxky
kx=1

Kx

∑
i=0

∞

∑
j=0

∞

∑

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =−∞

−1

∑
′j =1

∞

∑

+P (h+ | (λmx (sx )+ kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′j =1

∞

∑

= P [h+ (λmx (sx )+ (i +1)Kx + kx )dBx −mxdUx − sx + (λmy (sy )+ ( j +1)Ky + ky )dBy −mydUy − sy ]
ky=1

Ky

∑
−γ

ykxky
kx=1

Kx

∑
i=0

∞

∑
j=0

∞

∑

= P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ (sx ,sy )ykxky

ky=1

Ky

∑
kx=1

Kx

∑
′i =1

∞

∑
′j =1

∞

∑

ζ N (s,w | a1,...,aN ) = (w+m1a1 + ...+mNaN )
m1,...,mN =0

∞

∑
−s

= P ζ 2(γ ,w1 |α11,α12 )
ky=1

Ky

∑
kx=1

Kx

∑ ykxky

w1 = h+ λmx (sx )dBx + KxdBx + kxdBx −mxdUx − sx + λmy (sy )dBy + KydBy + kydBy −mydUy − sy > 0

α11 = KxdBx > 0

α12 = KydBy > 0
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As for (18), let and , so 

 

will become 

                                               (31) 

where 

   (32) 

                                                           (33) 

                                                           (34) 

As for (17), let  

 

(35) 

 

                                                   (36) 

         (37) 

 (38) 

So, we can draw the conclusion that 

 

 

(39) 

Where 

                                                                                                                                                                      
(40) 

                                                                                                                                                                       

i = ′i −1 j = − ′j −1

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ′j Ky + ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =1

∞

∑
′j =−∞

−1

∑ > 0

i = ′i −1

+P (h+ | (λmx (sx )+ ′i Kx + kx )dBx −mxdUx − sx |+ | (λmy (sy )+ ky )dBy −mydUy − sy |)
−γ

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
′i =1

∞

∑

zmxmy ( y,sx ,sy ) = P L
(λmx  sx( ))+iKx+kx )  ,(λmy  sy( ))+ jKy+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑
i=−∞

∞

∑
j=−∞

∞

∑

−P L
 (λmx sx( )+kx ),(λmy  sy( )+ky ),mx ,my
−1

ky=1

Ky

∑ (sx ,sy )ykxky
kx=1

Kx

∑

= P ζ 2(γ ,w3 |α31,α32 )
ky=1

Ky

∑
kx=1

Kx

∑ ykxky

w3 = h+ λmx (sx )dBx + KxdBx + kxdBx −mxdUx − sx − λmy (sy )dBy + KydBy − kydBy +mydUy + sy > 0

α31 = KxdBx > 0

α32 = KydBy > 0

= P ζ1(γ ,w2 |α 2 )
ky=1

Ky

∑
kx=1

Kx

∑ ykxky

= P [h+ (λmx (sx )+ (i +1)Kx + kx )dBx −mxdUx − sx + (λmy (sy )+ ky )dBy −mydUy − sy ]
i=0

∞

∑
ky=1

Ky

∑
kx=1

Kx

∑
−γ

ykxky

w2 = h+ (λmx (sx )+ kx + Kx )dBx −mxdUx − sx+ | (λmy (sy )+ ky )dBy −mydUy − sy |> 0

α 2 = KxdBx > 0

= P [ζ 2(γ ,w1 |α11,α12 )
ky=1

Ky

∑
kx=1

Kx

∑ +ζ 2(γ ,w3 |α31,α32 )+ζ 2(γ ,w5 |α51,α52 )

+ζ 2(γ ,w7 |α71,α72 )+ζ1(γ ,w2 |α 2 )+ζ1(γ ,w2 |α 2 )+ζ1(γ ,w2 |α 2 )+ζ1(γ ,w2 |α 2 ))]ykxky

w1 = h+ λmx (sx )dBx + KxdBx + kxdBx −mxdUx − sx + λmy (sy )dBy + KydBy + kydBy −mydUy − sy > 0
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(41) 
 

 
     (42) 

 
                                                                                                                                                                         

(43) 
 

                                                                                                                                                                         
(44) 

 
                                                                                                                                                                         

(45) 
 

                                                                                                                                                                         
(46) 

 
                                                                                                                 

(47) 
 

                                                              (48) 
 

                                                      (49) 
 

                                                       (50) 
 

                                                       (51) 
 

                                                        (52) 
 

                                                         (53) 
 

                                                                 (54) 
 

                                                                (55) 
 

                                                                 (56) 
 

                                                                (57) 
 

                                                                (58) 
 

(59) 
               

w2 = h+ (λmx (sx )+ kx + Kx )dBx −mxdUx − sx+ | (λmy (sy )+ ky )dBy −mydUy − sy |> 0

w3 = h+ λmx (sx )dBx + KxdBx + kxdBx −mxdUx − sx − λmy (sy )dBy + KydBy − kydBy +mydUy + sy > 0

w4 = h+ | (λmx (sx )+ kx )dBx −mxdUx − sx |−(λmy (sy )+ ky − Ky )dBy +mydUy + sy > 0

w5 = h− λmx (sx )dBx + KxdBx − kxdBx +mxdUx + sx − λmy (sy )dBy + KydBy − kydBy +mydUy + sy > 0

w6 = h− (λmx (sx )+ kx − Kx )dBx +mxdUx + sx+ | (λmy (sy )+ ky )dBy −mydUy − sy |> 0

w7 = h− λmx (sx )dBx + KxdBx − kxdBx +mxdUx + sx + λmy (sy )dBy + KydBy + kydBy −mydUy − sy > 0

w8 = h+ | (λmx (sx )+ kx )dBx −mxdUx − sx |+(λmy (sy )+ ky + Ky )dBy −mydUy − sy > 0

α11 = KxdBx > 0

α12 = KydBy > 0

α 2 = KxdBx > 0

α31 = KxdBx > 0

α32 = KydBy > 0

α 4 = KydBy > 0

α51 = KxdBx > 0

α52 = KydBy > 0

α6 = KxdBx > 0

α71 = KxdBx > 0

α72 = KydBy > 0

α8 = KydBy > 0
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Chapter 4: Results and Discussion 

4.1 Achievable rates of UDNs 
In this section, we would find out the outcomes which is come from the model in the previous 

section, mostly, to find out how the number of base stations in one cluster or the number of user 

equipment in one cluster or, especially, to figure out how the distance between base station 

would influence the performance of the ultra-dense networks.In particular, the behaviour of the 

achievable rates is evaluated with respect to the inter-BS distance . In order to observe 

the effects of densification without the distortion caused by introducing more available power 

in dense networks, the maximum transmitted power per resource element in each BS is set to 

, where  is the available power per meter and resource element along the 

x-axis and  is the available power per meter and resource element along the y-axis. The 

rates in this section were obtained with the resource and power allocation of the previous section 

and assuming h=B=W=N=1 and . Note that, by selecting h=1 and N=1, P can be 

understood as the maximum signal to noise (SNR) of any BS-UE link. 

Figure 2 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 

dBx + dBy

P =ηxdBx +ηydBy ηx

ηy

γ = 3
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Figure 3 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 
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Figure 4 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 

 

Figure 5 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 
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Figure 6 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 
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Figure 7 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 

 

Figure 8 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 



                                                                                                                                                              

22 
 

 

Figure 9 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 
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Figure 10 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 

 

Figure 11 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 
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Figure 12 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types1. 
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Figure 13 achievable rates with respect to the UEs position for different inter-BS distances and clustering 
types. 

 

 

Figure 2-13 shows the achievable rates with respect to the UEs location or position in the x-

axis and y-axis for four different inter-BS distances and two clustering techniques: overlapped 

and no overlapped clustering. The four figures were obtained setting 

 and , and varying the values of . Specifically, we 

set  and  in Figure 2,3,4,5, and  and 

in Figure 5,6,7. Figure 2-13 show that, in all studies cases, since we could find that 

the overlapped ones always greater or equal to those with the non-overlapped clusters in the 

achievable rate. The difference between these two techniques are especially significant around 

the cluster borders and in denser networks. Note, for instance, the significant rate drops around 

the position exhibited by the non-overlapped clusters in Figure 11,12,13. Near the cluster centre, 

both clustering techniques have a very similar behaviour. 

 

Figure 14 Expected rate density versus BS density for different values of available power meter. 

dUx = dUy = 0.1

ηx =ηy = 100 Mx = My = 4 dBx ,dBy ,Kx ,Ky

dBx = dBy = 0.2 Kx = Ky = 2 dBx = dBy = 0.1

Kx = Ky = 4
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It is important to note that, in Figure 14, the rate with overlapped clusters seems to converge to 

some value in the interval when   and , which contradicts the conclusion in 

[6], [7], i.e., rate increases linearly with along the x-axis or y-axis with BS density. This 

conclusion was obtained in [6], [7] by considering lack of cooperation among BSs and 

deployments with more UEs than BSs. Due to this, resources were shared among less UEs by 

increasing the quantity of BSs, which, together with the SINE invariance, led these works to 

conclude that the achievable rate should increase linearly along the x-axis or y-axis with BS 

density. However, in the particular case of Figure 14, UE density is constant and resources are 

shared among . The fact that the rate converges implies that the SINR also 

converges, supporting some kind of SINR invariance as observed in [6], [7], but noting that this 

is not always accompanied by a rate increment. 

The SINR invariance was refuted in [8], [9] using the dual-slope path loss model. However, 

this is not uniquely caused by the particular characteristics of this model. We will show that the 

same conclusion can be achieved with our system and path loss models by increasing both UE 

and BS density. To this aim, we computed an average metric of the achievable rates similar to 

the system throughput obtained in [8], [9]. In particular, the metric was the expected rate density, 

i.e., the expected rate provided by the network per meter, where expectation is taken over 

 uniformly distributed in the area of , that is 

 

 

 (59) 

The results of the rest of this section were obtained for only overlapped clustering technique, 

due to its superior performance in comparison with non-overlapped clusters. 

dBx → 0 dBy → 0

Mx = My = 4

(sx ,sy ) (0,0),(dUx ,0),(dUx ,dUy ),(0,dUy )

ER = E[
1

MxdUx +MydUy
Rmx ,my (ωmx ,my

*(sx ,sy ),xmx ,my *(sx ,sy ),sx ,sy )
my=1

My

∑
mx=1

Mx

∑ ]

= 1
MxdUx

2+MxdUx
2 Rmx ,my (ωmx ,my

*(sx ,sy ),xmx ,my *(sx ,sy ),sx ,sy )
my=1

My

∑
mx=1

Mx

∑
0

dUy

∫
0

dUx

∫ dsxdsy
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Figure 15 Expected rate density versus BS density for different values of UE density. 

Figure 15 shows the expected rate density for , different cluster sizes 

( and , which, from (1), implies that and  , 

respectively), and different available power per meter. The most relevant conclusion of this 

figure is that, independently of the cluster size and the available power per meter, the expected 

rate density converges when the density increases, i.e., when decrease. Therefore, 

the rate of a particular UE decreases if both BS and UE density increase, as concluded in [8], 

[9]. However, there are strong differences between our model and the model in [8], [9]. One of 

these differences can be pointed out nothing that one of the conclusions of [8], [9] is that the 

system throughput increases linearly with densification for near-field path loss exponents 

greater than 2. In fact, this is the case depicted in Figure 15, which was obtained for . 

However, with our model, the expected rate density converges with densification due to the use 

of fixed available power per meter and a minimum distance between BSs and UEs through the 

use of h=1. 

Comparing now the different lines in Figure 16, we observe that, independently of the cluster 

size, the expected rate density increases with the available power. However, this increment has 

a limit, which is illustrated in Figure 16 with the curves for and . In other 

dUx = dUy = dBx = dBy

Mx = My = 1 Mx = My = 4 Kx = Ky = 1 Kx = Ky = 4

dUx ,dUy ,dBx ,dBy

γ = 3

ηx →∞ ηy →∞
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words, no matter how much power is available in the BSs, the expected rate density cannot be 

higher than that shown in the curves with and . There curved were obtained 

assuming a null noise power, i.e., N=0, in which case the network is clearly interference limited. 

The best cluster size depends on the available power. Specifically, for and 

, the expected rate density is higher with  than with , 

although for and and  this order is reversed. This result 

highlights the need of increasing the cluster size with the available power in order to mitigate 

the effect of interference. 

Comparing now the different lines in Figure 14, we observe that, independently of the cluster 

size, the expected rate density increases with the available power. However, this increment has 

a limit, which is illustrated in Figure 14 with the curves for and . In other 

words, no matter how much power is available in the BSs, the expected rate density cannot be 

higher than that shown in the curves with and . There curved were obtained 

assuming a null noise power, i.e., N=0, in which case the network is clearly interference limited. 

The best cluster size depends on the available power. Specifically, for and 

, the expected rate density is higher with  than with , 

although for and  and  this order is reversed. This result 

highlights the need of increasing the cluster size with the available power in order to mitigate 

the effect of interference. 

Probably, the most unforeseeable result shown in Figure 14 is that the expected rate density 

converges for   and  to the same value independently of the cluster size. 

The convergence point, however, increases with the available power. This points out that, in 

networks with very high density of BSs and UEs, it is beneficial to increase the available power, 

and the use of interference avoidance mechanism is not critical. 

Due to this surprising result, one may wonder if the same behaviour is exhibited when only the 

BS density increases. This question in answered in Figure 17, when curves of the expected rate 

density with  and  are shown for fixed UE densities. In particular, the figure 

ηx →∞ ηy →∞

ηx =ηy = 1

ηx =ηy = 10 Mx = My = 1 Mx = My = 4

ηx =ηy = 100 ηx →∞ ηy →∞

ηx →∞ ηy →∞

ηx →∞ ηy →∞

ηx =ηy = 1

ηx =ηy = 10 Mx = My = 1 Mx = My = 4

ηx =ηy = 100 ηx →∞ ηy →∞

dBx → 0 dBy → 0

ηx →∞ ηy →∞
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shows results for all possible combinations of cluster sizes for  to 

(let always be true) and inter-UE distances of ,  

and . In this case, all the curves converge when   and  but to 

different values. The optimum cluster size depends on the inter-UE distance. 

 

4.2 Achievable rates in the limits of densification 
a) 

 
Figure 16 UEs achievable rate with respect to their location for dBx nearly equals to 0 and dBy nearly 

equals to 0 with overlapped cluster. 

Mx = My = 1 Mx = My = 3

Mx = My
dUx = dUy = 0.125 dUx = dUy = 0.5

dUx = dUy = 2 dBx → 0 dBy → 0
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Figure 17 UEs achievable rate with respect to their location for dBx nearly equals to 0 and dBy nearly 

equals to 0 with non-overlapped cluster. 

 
Figure 18 UEs achievable rate with respect to their location for dBx nearly equals to 0 and dBy nearly 
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equals to 0 with both overlapped and non-overlapped clusters. 

In this section, we show results for the case and . The rates were obtained 

using the achievable rates per resource element of the previous section, equally dividing the 

resource elements among the UEs that share serving BSs as deduced in the previous section, 

and assuming h=B=W=N=1 and . 

 

Figure 19 Comparison of energy components. 

Fig 19 expected rate density with respect to with overlapped clusters. (where ) 

Figure 16,17,18 shows the achievable rates for different UE locations when , 

 and . This figure corresponds to the limit when and 

 of Figure 2-13. As advanced in the previous section, the achievable rate with 

overlapped clusters converges to around 0.28b/s, independently of the UE position. Form the 

figure, it can be observed that the uniform rate achieved with overlapped clusters is the 

maximum rate achieved with non-overlapped cluster. Moreover, the performance of the non-

overlapped clusters is damaged around the cluster borders, e. g., even when and 

, although in the cluster centre the difference between the two types of clustering is 

dBx → 0 dBy → 0

γ = 3

dUx dUx = dUy

Mx = My = 4

dUx = dUy = 0.1 ηx =ηy = 100 dBx → 0

dBy → 0

dBx → 0

dBy → 0
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negligible. 

he expected rate density at the limit of densification with overlapped clusters is presented in 

Figure 19, with respect to ,  and for different values of  and . It is 

important to note that, since BS density is infinite, cooperation among BSs is essential for 

scenarios considered in this figure. In the  case, there is, however, no 

interference coordination. BSs cooperate for the transmission to only one UE, without 

considering any potential interference caused to other UEs. Conversely, in the  

cases, in addition to cooperation to transmit to a UE, resources are divided among  

UEs. Thanks to this, the sources of interference are distanced, although this is only beneficial 

if enough power is available in the UDE, as depicted by the different curves for 

and   in Figure 19. This result has an interesting interpretation. Even if the 

density of BSs is infinity, a UDN with a finite available power along x-axis or along y-axis can 

be noise-limited. 

Another important conclusion of Figure 19 is that, for a particular available power per meter 

along x-axis or along y-axis, the expected rate density converges to the same value when the 

UE density increases, independently of the amount of UEs. A similar result was obtained in the 

previous section, where we concluded that, for networks with very high density of BSs and UEs, 

it is beneficial to increase the available power, and the use of interference avoidance mechanism 

is not critical. 

 

 

dUx dUy Mx
My ηx ηy

Mx = My = 1

Mx = My >1

Mx × My

ηx =ηy = 1

ηx =ηy = 100
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Chapter 5: Conclusion and Further Work 

We have considered UDNs with densities approaching infinite that provide proportionally 

fair rates to the user equipment.  

We find that though there are two types of clustering techniques, the performance of 

overlapped cluster is greater than or equal to the non-overlapped one, especially significant 

around the cluster borders and in denser networks, so in the future work, we would consider 

more about the overlapped clustering. What’s more, when the distance between base station is 

nearly 0, the rates convergence to a certain value instead of infinite. And regardless of the cluster 

size and available power per meter, the expected rate density converges when density increases, 

and the convergence point increases with the available power. Because of this, in networks 

which are very high density of base stations and user equipment, it is beneficial to increase the 

available power. 

In my model, I set the noise be a fixed constant, and in the future, I think we should make 

the noise part be more precise to make the model be more reliable. 
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Appendix 
You must include the following here, in the order of:  

In this appendix, we will obtain a power allocation  that solves (27). To do that, 

we define 

 

 

and  

and note that  also solves . 

And then, we will show that there is a permutation function of elements for each 

, such that 

 

 

where . 

And if  

, 

then, we have that 

 

Consequently, is the largest that satisfies the previous expression. 

 

 

x*mx ,my (sx ,sy )

akx ,ky ,mx ,my (sx ,sy ) = L
−1
(λmx (sx )+kx ),(λmy (sy )+ky ),mx ,my

(sx ,sy )

bkx ,ky ,mx ,my (sx ,sy ) = L−1(λmx (sx )+iKx+kx ),(λmy (sy )+ jKy+ky ),mx ,my
(sx ,sy )

j∈!\{0}
∑

i∈!\{0}
∑

σ mx ,my
(xmx ,my ,sx ,sy ) =

akx ,ky ,mx ,my (sx ,sy )xkx ,ky ,mx ,my
ky=1

Ky

∑
kx=1

Kx

∑

N
P + bkx ,ky ,mx ,my (sx ,sy )xkx ,ky ,mx ,my

kx=1

Kx

∑
kx=1

Kx

∑

x*mx ,my (sx ,sy )
max

xmx ,my∈Η
Kx ,Ky

σ mx ,my
(xmx ,my ,sx ,sy )

Kx × Ky

mx ,my ,πmx ,my

aπmx ,my (1),mx ,my
(sx ,sy ) ≥ ...≥ aπmx ,my (Kx×Ky ),mx ,my

(sx ,sy )

bπmx ,my (1),mx ,my
(sx ,sy ) ≥ ...≥ bπmx ,my (Kx×Ky ),mx ,my

(sx ,sy )

πmx ,my (1) = (kx ,ky )

aπmx ,my (k ),mx ,my
(sx ,sy )(

N
P + bπmx ,my (k ),mx ,my

(sx ,sy )
j=1

k−1

∑ ) ≥ bπmx ,my (k ),mx ,my
(sx ,sy ) aπmx ,my ( j ),mx ,my

(sx ,sy )
j=1

k−1

∑

∂σmx ,my
∂xπmx ,my ( k ),mx ,my

(xmx ,my ,sx ,sy ) ≥ 0,∀xmx ,my ∈Η
Kx×Ky

k* k ∈{1,...,Kx × Ky}


